Open Access

Solving the Axisymmetric Inverse Heat Conduction Problem by a Wavelet Dual Least Squares Method

Boundary Value Problems20092009:260941

DOI: 10.1155/2009/260941

Received: 17 August 2008

Accepted: 10 March 2009

Published: 17 March 2009


We consider an axisymmetric inverse heat conduction problem of determining the surface temperature from a fixed location inside a cylinder. This problem is ill-posed; the solution (if it exists) does not depend continuously on the data. A special project method—dual least squares method generated by the family of Shannon wavelet is applied to formulate regularized solution. Meanwhile, an order optimal error estimate between the approximate solution and exact solution is proved.

1. Introduction

Inverse heat conduction problems (IHCP) have become an interesting subject recently, and many regularization methods have been developed for the analysis of IHCP [113]. These methods include Tikhonov method [1, 2], mollification method [3, 4], optimal filtering method [5], lines method [6], wavelet and wavelet-Galerkin method [711], modified Tikhonov method [12] and "optimal approximations" [13], and so forth. However, most analytical and numerical methods were only used to dealing with IHCP in semiunbounded region. Some works of numerical methods were presented for IHCP in bounded domain [1419].

Chen et al. [14] applied the hybrid numerical algorithm of Laplace transform technique to the IHCP in a rectangular plate. Busby and Trujillo [15] used the dynamic programming method to investigate the IHCP in a slab. Alifanov and Kerov [16] and Louahlia-Gualous et al. [17] researched IHCP in a cylinder. However to the authors' knowledge, most of them did not give any stability theory and convergence proofs.

In this paper, we will treat with a special IHCP whose physical model consists of an infinitely long cylinder of radius . It is considered axisymmetric and a thermocouple (measurement equipment of temperature) is installed inside the cylinder (at the radius , ). The correspondingly mathematical model of our problem can be described by the following axisymmetric heat conduction problem:

where the functions and belong to for every fixed , is the radial coordinate, denotes the temperature history at one fixed radius of cylinder. We want to recover for . This problem is ill-posed problem; a small perturbation in the data may cause dramatically large errors in the solution (The details can be seen in Section 2).

To the authors' knowledge, up to now, there is no regularization theory with error estimate for problem (1.1) in the interval . The major objective of this paper is to do the theoretic stability and convergence estimates for problem (1.1).

Xiong and Fu [11] and Regińska [20] solved the sideways heat equation in semi-unbounded region by applying the wavelet dual least squares method, which is based on the family of Meyer wavelet. In this paper, we will apply a wavelet dual least squares method generated by the family of Shannon wavelet to problem (1.1) in bounded domain for determining surface temperature. According to the optimality results of general regularization theory, we conclude that our error estimate on surface temperature is order optimal.

2. Formulation of Solution of Problem (1.1)

As we consider problem (1.1) in with respect to variable , we extend , and other functions of variable appearing in the paper to be zero for . Throughout the paper, we assume that for the exact the solution exists and satisfies an apriori bound
where is defined by
Since is measured by the thermocouple, there will be measurement errors, and we would actually have as data some function , for which
where the constant represents a bound on the measurement error, and denotes the norm and
is the Fourier transform of function . The problem (1.1) can be formulated, in frequency space, as follows:

Then we have the following lemma.

Lemma 2.1.

Problem (2.5)–(2.7) has the solution given by
where denotes modified spherical Bessel function which given by [21]


Due to [21], we can solve (2.5), in the frequency domain, to obtain
where denotes also modified spherical Bessel function which is given by
Combining with condition(2.7), we obtain , that is,
According to [21], there holds
where , both and denote the Kelvin functions. Since , we have
Therefore, for ,
Solving the systems (2.6) and (2.12) using (2.15) we get

Substitution of in (2.16) into (2.12), we obtain (2.8).

Applying an inverse Fourier transform to (2.8), problem (1.1) has the solution

In order to obtain ill-posedness of problem (1.1) for , we need the following lemma.

Lemma 2.2.

If function satisfies (2.15), then there exist positive constants such that, for


First, due to [21] and (2.15), we have, for and ,
then there exist positive constants such that, for large enough, say
From these we know that there exist positive constants and such that, for and ,
Then, since function is continuous in the closed region . Threrfore, there exist constants and such that, for and ,

Finally, combining inequalities (2.22) with (2.23), we can see that there exist others constants and such that, for , inequalities (2.18) are valid. Similarly, we obtain inequalities (2.19).

In order to formulate problem (1.1) for in terms of an operator equation in the space , we define an operator , that is,
From (2.8), we have
Denote , and we can see that is a multiplication operator:

From (2.26), we can prove the following lemma.

Lemma 2.3.

Let be the adjoint to , then corresponds to the following problem where the left-hand side of problem (1.1) is replaced by , says


Via the the following relations, combining with (2.26),
we can get the adjoint operator of in frequency domain
On the other hand, the problem (2.27) can be formulated, in frequency space, as follows:
Taking the conjugate operator for problem (2.5)–(2.7), we realize that . Therefore, by Lemma 2.1, we conclude that
that is,

Hence the conclusion of Lemma 2.3 is proved.

The Parseval formula for the Fourier transform together with inequality (2.18), there holds

This implies that , which is Fourier transform of exact data , must decay rapidly at high frequencies since . But such a decay is not likely to occur in the Fourier transform of the measured noisy data at . So, small perturbation of in high frequency components can blow up and completely destroy the solution given by (2.17) for .

3. Wavelet Dual Least Squares Method

3.1. Dual Least Squares Method

A general projection method for the operator equation , is generated by two subspace families and of and the approximate solution is defined to be the solution of the following problem:
where denotes the inner product in . If and subspaces are chosen in such a way that
Then we have a special case of projection method known as the dual least squares method. If is an orthogonal basis of and is the solution of the equation
then the approximate solution is explicitly given by the expression

3.2. Shannon Wavelets

In [22], the Shannon scaling function is and its Fourier transform is
The corresponding wavelet function is given by its Fourier transform
Let us list some notation: , , , and for , the index set
Because , hence we can define the subspaces
Define an orthogonal projection :
then from (3.4) we easily conclude . From the point of view of an application to the problem (1.1), the important property of Shannon wavelets is the compactness of their support in the frequency space. Indeed, since
it follows that for any

From (3.9), can be seen as a low-pass filter. The frequencies with greater than are filtered away.

Theorem 3.1.

If is the solution of problem (1.1) satisfying the condition , then for any fixed


From (3.9), we have
Due to Parseval relation and (2.8), (2.19), and (2.1), there holds

Hence the conclusion of Theorem3.1 is proved.

4. Error Estimates via Dual Least Squares Method Approximation

Before giving error estimates, we present firstly subspaces . According to , the subspaces are spanned by , where
(4.1) can be determined by solving the following parabolic equation (see Lemma 2.3):
Since is compact, the solution exists for any . Similarly the solution of the adjoint equation is unique. Therefore for a given , can be uniquely determined according to (4.2), furthermore
The approximate solution for noisy data is explicitly given by

Now we will devote to estimating the error .

Theorem 4.1.

If is noisy data satisfying the condition , then for any fixed


From (4.3), we have . Note that given by (4.4), given by (3.4) and (2.18), for , there holds

Hence the conclusion of Theorem 4.1 is proved.

The following is the main result of this paper.

Theorem 4.2.

Let be the exact solution of (1.1) and let be given by (4.4). If and is such that
then for any fixed

where .


Combining Theorem 4.1 with Theorem 3.1, and noting the choice rule (4.7) of , we can obtain
Note that
thus, there holds, for

Hence the conclusion of Theorem 4.2 is proved.

Remark 4.3.
  1. (i)
    When and , estimate (4.8) is a Hölder stability estimate given by
  1. (ii)

    When , estimate (4.8) is a logarithmical Hölder stability estimate.

  2. (iii)
    When , estimate (4.3) becomes

This is a logarithmical stability estimate.

Remark 4.4.

In general, the a-priori bound is unknown in practice, in this case, with

where .



The work is supported by the National Natural Science Foundation of China (No. 10671085), the Hight-level Personnel fund of Henan University of Technology (2007BS028), and the Fundamental Research Fund for Natural Science of Education Department of Henan Province of China (No. 2009B110007).

Authors’ Affiliations

College of Science, Henan University of Technology
School of Mathematics and Statistics, Lanzhou University


  1. Carasso A: Determining surface temperatures from interior observations. SIAM Journal on Applied Mathematics 1982, 42(3):558–574. 10.1137/0142040MATHMathSciNetView ArticleGoogle Scholar
  2. Fu C-L: Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation. Journal of Computational and Applied Mathematics 2004, 167(2):449–463. 10.1016/ ArticleGoogle Scholar
  3. Murio DA: The Mollification Method and the Numerical Solution of Ill-Posed Problems, A Wiley-Interscience Publication. John Wiley & Sons, New York, NY, USA; 1993:xvi+254.View ArticleGoogle Scholar
  4. Hào DN, Reinhardt H-J: On a sideways parabolic equation. Inverse Problems 1997, 13(2):297–309. 10.1088/0266-5611/13/2/007MATHMathSciNetView ArticleGoogle Scholar
  5. Seidman TI, Eldén L: An 'optimal filtering' method for the sideways heat equation. Inverse Problems 1990, 6(4):681–696. 10.1088/0266-5611/6/4/013MATHMathSciNetView ArticleGoogle Scholar
  6. Eldén L: Solving the sideways heat equation by a method of lines. Journal of Heat Transfer 1997, 119: 406–412. 10.1115/1.2824112View ArticleGoogle Scholar
  7. Eldén L, Berntsson F, Regińska T: Wavelet and Fourier methods for solving the sideways heat equation. SIAM Journal on Scientific Computing 2000, 21(6):2187–2205. 10.1137/S1064827597331394MATHMathSciNetView ArticleGoogle Scholar
  8. Regińska T, Eldén L: Solving the sideways heat equation by a wavelet-Galerkin method. Inverse Problems 1997, 13(4):1093–1106. 10.1088/0266-5611/13/4/014MATHMathSciNetView ArticleGoogle Scholar
  9. Regińska T, Eldén L: Stability and convergence of the wavelet-Galerkin method for the sideways heat equation. Journal of Inverse and Ill-Posed Problems 2000, 8(1):31–49.MATHMathSciNetGoogle Scholar
  10. Fu C-L, Qiu CY: Wavelet and error estimation of surface heat flux. Journal of Computational and Applied Mathematics 2003, 150(1):143–155. 10.1016/S0377-0427(02)00657-XMATHMathSciNetView ArticleGoogle Scholar
  11. Xiong X-T, Fu C-L: Determining surface temperature and heat flux by a wavelet dual least squares method. Journal of Computational and Applied Mathematics 2007, 201(1):198–207. 10.1016/ ArticleGoogle Scholar
  12. Cheng W, Fu C-L, Qian Z: A modified Tikhonov regularization method for a spherically symmetric three-dimensional inverse heat conduction problem. Mathematics and Computers in Simulation 2007, 75(3–4):97–112. 10.1016/j.matcom.2006.09.005MATHMathSciNetView ArticleGoogle Scholar
  13. Tautenhahn U: Optimal stable approximations for the sideways heat equation. Journal of Inverse and Ill-Posed Problems 1997, 5(3):287–307. 10.1515/jiip.1997.5.3.287MATHMathSciNetView ArticleGoogle Scholar
  14. Chen H-T, Lin S-Y, Fang L-C: Estimation of surface temperature in two-dimensionnal inverse heat conduction problems. International Journal of Heat and Mass Transfer 2001, 44(8):1455–1463. 10.1016/S0017-9310(00)00212-XMATHView ArticleGoogle Scholar
  15. Busby HR, Trujillo DM: Numerical soluition to a two-dimensionnal inverse heat conduction problem. International Journal for Numerical Methods in Engineering 1985, 21(2):349–359. 10.1002/nme.1620210211MATHView ArticleGoogle Scholar
  16. Alifanov OM, Kerov NV: Determination of external thermal load parameters by solving the two-dimensional inverse heat-conduction problem. Journal of Engineering Physics 1981, 41(4):1049–1053. 10.1007/BF00824760View ArticleGoogle Scholar
  17. Louahlia-Gualous H, Panday PK, Artyukhin EA: The inverse determination of the local heat transfer coefficients for nucleate boiling on horizontal cylinder. Journal of Heat Transfer 2003, 125(1):1087–1095.View ArticleGoogle Scholar
  18. Hon YC, Wei T: A fundamental solution method for inverse heat conduction problem. Engineering Analysis with Boundary Elements 2004, 28(5):489–495. 10.1016/S0955-7997(03)00102-4MATHView ArticleGoogle Scholar
  19. Shidfar A, Pourgholi R: Numerical approximation of solution of an inverse heat conduction problem based on Legendre polynomials. Applied Mathematics and Computation 2006, 175(2):1366–1374. 10.1016/j.amc.2005.08.040MATHMathSciNetView ArticleGoogle Scholar
  20. Regińska T: Application of wavelet shrinkage to solving the sideways heat equation. BIT Numerical Mathematics 2001, 41(5):1101–1110. 10.1023/A:1021909816563MathSciNetView ArticleGoogle Scholar
  21. Abramowitz M, Stegun IA (Eds): Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover, New York, NY, USA; 1972.MATHGoogle Scholar
  22. Wang JR: The multi-resolution method applied to the sideways heat equation. Journal of Mathematical Analysis and Applications 2005, 309(2):661–673. 10.1016/j.jmaa.2004.11.025MATHMathSciNetView ArticleGoogle Scholar


© W. Cheng and C.-L. Fu. 2009

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.