Open Access

Existence of solutions for a differential inclusion problem with singular coefficients involving the p(x)-Laplacian

Boundary Value Problems20122012:11

DOI: 10.1186/1687-2770-2012-11

Received: 5 November 2011

Accepted: 9 February 2012

Published: 9 February 2012

Abstract

Using the non-smooth critical point theory we investigate the existence and multiplicity of solutions for a differential inclusion problem with singular coefficients involving the p(x)-Laplacian.

Mathematics Subject Classification 2000: 35D05; 35J20; 35J60; 35J70.

Keywords

p(x)-Laplacian differential inclusion singularity

1 Introduction

In this article, we study the existence and multiplicity of solutions for the differential inclusion problem with singular coefficients involving the p(x)-Laplacian of the form
- div ( | u | p ( x ) - 2 u ) λ a 1 ( x ) G 1 ( x , u ) + μ a 2 ( x ) G 2 ( x , u ) in Ω , u = 0 on Ω ,
(1.1)

where the following conditions are satisfied:

(P) Ω is a bounded open domain in N , N ≥ 2, p C ( Ω ̄ ) , 1 < p- := infΩp(x) ≤ p+ := supΩp(x) < +∞, λ, μ .

(A) For i = 1, 2, a i L r i ( x ) ( Ω ) , a i ( x ) > 0 for x Ω, G i (x, u) is measurable with respect to x (for every u ) and locally Lipschitz with respect to u (for a.e. x Ω), ∂G i : Ω × is the Clarke sub-differential of G i and | ξ i | c 1 + c 2 | t | q i ( x ) - 1 for x Ω, t and ξ i G i , where c i is a positive constant, r i , q i C Ω ̄ , r i - > 1 , q i - > 1 , r i (x) > q i (x) for all x Ω, and
q i ( x ) < r i ( x ) - q i ( x ) r i ( x ) p * ( x ) , x Ω ¯ ,
(1.2)
here
p * ( x ) = N p ( x ) N - p ( x ) if  p ( x ) < N , if  p ( x ) N .
(1.3)

( A 1 ) q 1 + < p - . ( A 2 ) q 2 - > p + .

A typical example of (1.1) is the following problem involving subcritical Sobolev-Hardy exponents of the form
- div ( | u | p ( x ) - 2 u ) λ 1 | x | s 1 ( x ) G 1 ( x , u ) + μ 1 | x | s 2 ( x ) G 2 ( x , u ) in Ω , u = 0 on Ω ,
(1.4)

and in this case the assumption corresponding to (A) is the following

( A ) * 0 Ω ̄ , for i = 1, 2, ∂G i : Ω × is the Clarke sub-differential of G i and | ξ i | c 1 + c 2 | t | q i ( x ) - 1 for x Ω, t and ξ i G i , where c i is a positive constant, s i , q i C Ω ̄ , 0 s i - s i + < N , q i - > 1 , and
q i ( x ) < N - s i ( x ) q i ( x ) N p * ( x ) , x Ω ̄ .
(1.5)

The operator -div(|u| p(x)-2 u) is said to be the p(x)-Laplacian, and becomes p-Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more complicated nonlinearities than the p-Laplacian; for example, it is inhomogeneous. The study of various mathematical problems with variable exponent growth condition has been received considerable attention in recent years. These problems are interesting in applications and raise many difficult mathematical problems. One of the most studied models leading to problem of this type is the model of motion of electro-rheological fluids, which are characterized by their ability to drastically change the mechanical properties under the influence of an exterior electro-magnetic field [1, 2]. Problems with variable exponent growth conditions also appear in the mathematical modeling of stationary thermo-rheological viscous flows of non-Newtonian fluids and in the mathematical description of the processes filtration of an ideal baro-tropic gas through a porous medium [3, 4]. Another field of application of equations with variable exponent growth conditions is image processing [5]. The variable nonlinearity is used to outline the borders of the true image and to eliminate possible noise. We refer the reader to [611] for an overview of and references on this subject, and to [1221] for the study of the p(x)-Laplacian equations and the corresponding variational problems.

Since many free boundary problems and obstacle problems may be reduced to partial differential equations with discontinuous nonlinearities, the existence of multiple solutions for Dirichlet boundary value problems with discontinuous nonlinearities has been widely investigated in recent years. Chang [22] extended the variational methods to a class of non-differentiable functionals, and directly applied the variational methods for non-differentiable functionals to prove some existence theorems for PDE with discontinuous nonlinearities. Later Kourogenis and Papageorgiou [23] obtained some nonsmooth critical point theories and applied these to nonlinear elliptic equations at resonance, involving the p-Laplacian with discontinuous nonlinearities. In the celebrated work [24, 25], Ricceri elaborated a Ricceri-type variational principle and a three critical points theorem for the Gâteaux differentiable functional, respectively. Later, Marano and Motreanu [26, 27] extended Ricceri's results to a large class of non-differentiable functionals and gave some applications to differential inclusion problems involving the p-Laplacian with discontinuous nonlinearities.

In [21], by means of the critical point theory, Fan obtain the existence and multiplicity of solutions for (1.1) under the condition of G i ( x , ) C 1 ( ) and  g i = G i satisfying the Carathéodory condition for i = 1, 2, x Ω. The aim of the present article is to generalize the main results of [21] to the case of the functional of problem (1.1) is nonsmooth.

This article is organized as follows: In Section 2, we present some necessary preliminary knowledge on variable exponent Sobolev spaces and the generalized gradient of the locally Lipschitz function; In Section 3, we give the variational principle which is needed in the sequel; In Section 4, using the critical point theory, we prove the existence and multiplicity results for problem (1.1).

2 Preliminaries

2.1 Variable exponent Sobolev spaces

Let Ω be a bounded open subset of N , denote L + ( Ω ) = { p L ( Ω ) : ess inf Ω p ( x ) 1 } .

For p L + ( Ω ) , denote
p - = p - ( Ω ) = ess  inf x Ω p ( x ) , p + = p + ( Ω ) = ess  sup x Ω p ( x ) .

On the basic properties of the space W1,p(x)(Ω) we refer to [7, 2830]. Here we display some facts which will be used later.

Denote by S(Ω) the set of all measurable real functions defined on Ω. Two functions in S(Ω) are considered as the same element of S(Ω) when they are equal almost everywhere. For p L + ( Ω ) , define the spaces L p(x) (Ω) and W1,p(x)(Ω) by
L p ( x ) Ω = u S ( Ω ) : Ω | u ( x ) | p ( x ) d x <
with the norm
| u | L p ( x ) Ω = | u | p ( x ) = inf λ > 0 : Ω u ( x ) λ p ( x ) d x 1 ,
and
W 1 , p x Ω = u L p x Ω : u L p x Ω
with the norm
| | u | | W 1 , p ( x ) ( Ω ) = | u | L p ( x ) ( Ω ) + | u | L p ( x ) ( Ω ) .

Denote by W 0 1 , p ( x ) ( Ω ) the closure of C 0 ( Ω ) in W1,p(x)(Ω) . Hereafter, we always assume that p - > 1.

Proposition 2.1. [7, 31] The spaces L p(x) (Ω) , W1,p(x)(Ω) and W 0 1 , p ( x ) ( Ω ) are separable and reflexive Banach spaces.

Proposition 2.2. [7, 31] The conjugate space of L p(x) (Ω) is L p 0 ( x ) ( Ω ) , where 1 p ( x ) + 1 p 0 ( x ) = 1 . For any u L p(x) (Ω) andv L p 0 ( x ) ( Ω ) , Ω | u v | d x 2 | u | p ( x ) | v | p 0 ( x ) .

Proposition 2.3. [7, 31] In W 0 1 , p ( x ) ( Ω ) the Poincaré inequality holds, that is, there exists a positive constant c such that
| u | L p ( x ) ( Ω ) c | u | L p ( x ) ( Ω ) u W 0 1 , p x Ω .

So | u | L p ( x ) ( Ω ) is an equivalent norm in W 0 1 , p ( x ) ( Ω ) .

Proposition 2.4. [7, 28, 29, 31] Assume that the boundary of Ω possesses the cone property and p C ( Ω ̄ ) . If q C ( Ω ̄ ) and 1 q ( x ) < p * ( x ) f o r x Ω ̄ , then there is a compact embedding W1,p(x)(Ω) → L q(x) (Ω).

Let us now consider the weighted variable exponent Lebesgue space.

Let a S(Ω) and a(x) > 0 for x Ω. Define
L a ( x ) p ( x ) Ω = u S ( Ω ) : Ω a ( x ) u ( x ) p ( x ) d x <
with the norm
u L a ( x ) p ( x ) Ω = u ( p ( x ) , a ( x ) ) = inf λ > 0 : Ω a ( x ) u ( x ) λ p ( x ) d x 1 ,

then L a ( x ) p ( x ) ( Ω ) is a Banach space. The following proposition follows easily from the definition of | u | L a ( x ) p ( x ) ( Ω ) .

Proposition 2.5. (see [7, 31]) Set ρ(u) =Ωa(x)|u(x)| p(x) dx. For u , u k L a ( x ) p ( x ) ( Ω ) , wehave

(1) F o r u 0 , | u | ( p ( x ) , a ( x ) ) = λ ρ u λ = 1 .

(2) | u | ( p ( x ) , a ( x ) ) < 1 ( = 1 ; > 1 ) ρ ( u ) < 1 ( = 1 ; > 1 ) .

(3) I f | u | ( p ( x ) , a ( x ) ) > 1 , t h e n | u | ( p ( x ) , a ( x ) ) p - ρ u | u | ( p ( x ) , a ( x ) ) p + .

(4) I f | u | ( p ( x ) , a ( x ) ) < 1 , t h e n | u | ( p ( x ) , a ( x ) p + ρ ( u ) | u | ( p ( x ) , a ( x ) ) p .

(5) lim k | u k | ( p ( x ) , a ( x ) ) = 0 lim k ρ ( u k ) = 0 .

(6) | u k | ( p ( x ) , a ( x ) ) ρ ( u k ) .

Proposition 2.6. (see [21]) Assume that the boundary of Ω possesses the cone property and p C ( Ω ̄ ) . Suppose that a L r ( x )(Ω), a(x) > 0 for x Ω, r C ( Ω ̄ ) and r- > 1. If q C ( Ω ̄ ) and
1 q ( x ) < r ( x ) - 1 r ( x ) p * ( x ) : = p a ( x ) * ( x ) , x Ω ̄ ,
(2.1)

then there is a compact embedding W 1 , p ( x ) ( Ω ) L a ( x ) q ( x ) ( Ω ) .

The following proposition plays an important role in the present article.

Proposition 2.7. Assume that the boundary of Ω possesses the cone property and p C ( Ω ̄ ) . Suppose that a L r ( x )(Ω), a(x) > 0 for x Ω, r C ( Ω ̄ ) and r(x) > q(x) for all x Ω. If q C ( Ω ̄ ) and
1 q ( x ) < r ( x ) - q ( x ) r ( x ) p * ( x ) , x Ω ̄ ,
(2.2)

then there is a compact embedding W 1 , p ( x ) ( Ω ) L ( a ( x ) ) q ( x ) q ( x ) ( Ω ) .

Proof. Set r 1 ( x ) = r ( x ) q ( x ) , then r 1 - > 1 and ( a ( x ) ) q ( x ) L r 1 ( x ) ( Ω ) . Moreover, from (2.2) we can get
1 q ( x ) < r 1 ( x ) - 1 r 1 ( x ) p * ( x ) , x Ω ̄ .

Using Proposition 2.6, we see that the embedding W 1 , p ( x ) ( Ω ) L ( a ( x ) ) q ( x ) q ( x ) ( Ω ) is compact.

2.2 Generalized gradient of the locally Lipschitz function

Let (X, || · ||) be a real Banach space and X* be its topological dual. A function f : X is called locally Lipschitz if each point u X possesses a neighborhood Ω u such that |f(u1) - f(u2)| ≤ L||u1 - u2|| for all u1, u2 Ω u , for a constant L > 0 depending on Ω u . The generalized directional derivative of f at the point u X in the direction v X is
f 0 ( u , v ) = lim sup w u , t 0 1 t ( f ( w + t v ) - f ( w ) ) .
The generalized gradient of f at u X is defined by
f ( u ) = { u * X * : u * , φ f 0 ( u ; φ ) for all φ X } ,

which is a non-empty, convex and w*-compact subset of X, where 〈·,·〉 is the duality pairing between X* and X. We say that u X is a critical point of f if 0 f(u). For further details, we refer the reader to Chang [22].

We list some fundamental properties of the generalized directional derivative and gradient that will be used throughout the article.

Proposition 2.8. (see [22, 32]) (1) Let j : X be a continuously differentiable function. Thenj(u) = {j'(u)}, j0(u; z) coincides withj' (u), z X and (f + j)0(u, z) = f 0 (u; z) + 〈j' (u), z X for all u, z X.
  1. (2)
    The set-valued mapping u → ∂f(u) is upper semi-continuous in the sense that for each u0 X, ε > 0, v X, there is a δ > 0, such that for each w f (u) with ||w - u0|| < δ, there is w0 f (u0)
    w - w 0 , v < ε .
     
  2. (3)
    (Lebourg's mean value theorem) Let u and v be two points in X. Then there exists a point w in the open segment joining u and v and x w * f ( w ) such that
    f ( u ) - f ( v ) = x w * , u - v X .
     
  3. (4)
    The function
    m ( u ) = min w f ( u ) w X *
     

exists, and is lower semi continuous; i.e., lim inf u u 0 m ( u ) m ( u 0 ) .

In the following we need the nonsmooth version of Palais-Smale condition.

Definition 2.1. We say that φ satisfies the (PS) c -condition if any sequence {u n } X such that φ(u n ) → c and m(u n ) → 0, as n → +∞, has a strongly convergent subsequence, where m(u n ) = inf{||u*|| X* : u* φ (u n )}.

In what follows we write the (PS) c -condition as simply the PS-condition if it holds for every level c for the Palais-Smale condition at level c.

3 Variational principle

In this section we assume that Ω and p(x) satisfy the assumption (P). For simplicity we write X = W 0 1 , p ( x ) ( Ω ) and ||u|| = |u| p ( x ) for u X. Denote by u n u and u n u the weak convergence and strong convergence of sequence {u n } in X, respectively, denote by c and c i the generic positive constants, B ρ = {u X : ||u|| < ρ}, S ρ = {u X : ||u|| = ρ}.

Set
F ( x , t ) = λ a 1 ( x ) G 1 ( x , t ) + μ a 2 ( x ) G 2 ( x , t ) ,
(3.1)

where a i and G i (i = 1, 2) are as in (A).

Define the integral functional
φ ( u ) = Ω 1 p ( x ) | u | p ( x ) d x - Ω F ( x , u ) d x , u X .
(3.2)
We write
J ( u ) = Ω 1 p ( x ) | u | p ( x ) d x , Ψ ( u ) = Ω F ( x , u ) d x ,

then it is easy to see that J C1(X, ) and φ = J - Ψ.

Below we give several propositions that will be used later.

Proposition 3.1. (see [19]) The functional J : X is convex. The mapping J' : XX* is a strictly monotone, bounded homeomorphism, and is of (S+) type, namely
u n u a n d lim ¯ n J ( u n ) ( u n - u ) 0 i m p l i e s u n u .

Proposition 3.2. Ψ is weakly-strongly continuous, i.e., u n u implies Ψ(u n ) → Ψ(u).

Proof. Define ϒ1 = ∫ΩG1(x, u) dx and ϒ2 = ∫ΩG2(x, u) dx. In order to prove Ψ is weakly-strongly continuous, we only need to prove ϒ1 and ϒ2 are weakly-strongly continuous. Since the proofs of ϒ1 and ϒ2 are identical, we will just prove ϒ1.

We assume u n u in X. Then by Proposition 2.8.3, we have
ϒ 1 ( u n ) - ϒ 1 ( u ) = Ω ( G 1 ( x , u n ) - G 1 ( x , u ) ) d x = Ω ξ n ( x ) ( u n - u ) d x ,
where ξ n G1(,τ n (x)) for some τ n (x) in the open segment joining u and u n . From Chang [22] we know that ξ n L q 1 0 ( x ) ( Ω ) . So using Proposition 2.5, we have
ϒ 1 ( u n ) - ϒ 1 ( u ) 0 .

Proposition 3.3. Assume (A) holds and F satisfies the following condition:

(B) F ( x , u ) θ λ a 1 ( x ) ξ 1 , u + θ μ a 2 ( x ) ξ 2 , u + b ( x ) + i = 1 m d i ( x ) | u | k i ( x ) fora.e.x Ω, allu X and ξ1 G1, ξ2 G2, where θ is a constant, θ < 1 p + , b L 1 ( Ω ) , d i L h i ( x ) ( Ω ) , h i , k i C ( Ω ̄ ) , k i ( x ) < h i ( x ) - 1 h i ( x ) p * ( x ) f o r x Ω ¯ , k i + < p - .

Then φ satisfies the nonsmooth (PS) condition on X.

Proof. Let {u n } be a nonsmooth (PS) sequence, then by (B) we have
c + 1 + u n φ ( u n ) - θ ω , u n = Ω 1 p ( x ) - θ u n p ( x ) d x - Ω ( F ( x , u n ) - θ λ a 1 ( x ) ξ 1 , u n - θ μ a 2 ( x ) ξ 2 , u n ) d x 1 p + - θ | | u n | | p - - c 1 - Ω b ( x ) + i = 1 m d i ( x ) | u n | k i ( x ) d x 1 p + - θ | | u n | | p - - c 2 - i = 1 m | u n | ( k i ( x ) , d i ( x ) ) k i + 1 p + - θ | | u n | | p - - c 2 - c 3 i = 1 m | | u n | | k i + ,

and consequently {u n } is bounded.

Thus by passing to a subsequence if necessary, we may assume that u n u in X as n → ∞. We have
J ( u n ) , u n - u - Ω λ ξ 1 n ( x ) a 1 ( x ) ( u n - u ) - Ω μ ξ 2 n ( x ) a 2 ( x ) ( u n - u ) d x ε n | | u n - u | |
with ε n ↓ 0, where ξ in (x) G i (x, u n ) for a.e. x Ω, i = 1, 2. From Chang [22] or Theorem 1.3.10 of [33], we know that ξ i n ( x ) L q 1 0 ( x ) , i = 1 , 2 . Since X is embedded compactly in L ( a i ( x ) ) q i ( x ) q i ( x ) ( Ω ) , we have that u n u as n → ∞ in L ( a i ( x ) ) q i ( x ) q i ( x ) ( Ω ) , i = 1 , 2 . So using Proposition 2.2, we have
Ω ξ i n ( x ) a i ( x ) ( u n - u ) d x 0 as n , i = 1 , 2 .
Therefore we obtain lim sup n J ( u n ) , u n - u 0 . But we know that J' is a mapping of type (S+). Thus we have
u n u in X .

Remark 3.1. Note that our condition (1.2) is stronger than (1.2) of [21]. Because Ψ' is weakly-strongly continuous in [21], to verify that φ satisfies (PS) condition on X, it is enough to verify that any (PS) sequence is bounded. However, in this paper we do not know whether ξ(u) is weakly-strongly continuous, where ξ(u) Ψ. Therefore, it will be very useful to consider this problem.

Below we denote
F 1 ( x , t ) = λ a 1 ( x ) G 1 ( x , t ) , F 2 ( x , t ) = μ a 2 ( x ) G 2 ( x , t ) .

We shall use the following conditions.

(B1) c0> 0 such that G2(x, t) ≥ - c0 for x Ω and t .

(B2) θ 0 , 1 p + and M > 0 such that 0 < G2(x, u) ≤ θu, ξ2〉 for x Ω, u X and |u|M, ξ2 G2.

Corollary 3.1. Assume (P), (A) and (A1) hold. Then φ satisfies nonsmooth (PS) condition on X provided either one of the following conditions is satisfied.

(1). λ and μ = 0.

(2). λ , μ = 0 and (B1) holds.

(3). λ , μ and (B2) holds.

Proof. In case (1) or (2), we have, for x Ω and t ,
F ( x , t ) F 1 ( x , t ) + | μ | c 0 a 2 ( x ) ( c 1 a 1 ( x ) + | μ | c 0 a 2 ( x ) ) + c 2 a 1 ( x ) | t | q 1 ( x ) ,

which shows that the condition (B) with θ = 0 is satisfied.

In case (3), noting that (B2) and (A) imply (B1), by the conclusion (1) and (2) we know φ satisfies (PS) condition if μ ≤ 0. Below assume μ > 0. The conditions (B2) and (A) imply that, for x Ω and u X,
G 2 ( x , u ) θ u , ξ 2 + c 3 , and F 2 ( x , u ) θ μ a 2 ( x ) u , ξ 2  +  c 3 μ a 2 ( x ) ,
so we have
F ( x , u ) - θ λ a 1 ( x ) ξ 1 , u - θ μ a 2 ( x ) ξ 2 , u = ( F 1 ( x , u ) - θ λ a 1 ( x ) ξ 1 , u ) + ( F 2 ( x , u ) - θ μ a 2 ( x ) ξ 2 , u ) c 1 a 1 ( x ) + c 2 a 1 ( x ) | u | q 1 ( x ) + c 3 μ a 2 ( x ) ,

which shows (B) holds. The proof is complete. ■

As X is a separable and reflexive Banach space, there exist (see [[34], Section 17]) e n n = 1 X and f n n = 1 X * such that
f n e m = δ n , m = 1 if n = m 0 if n m ,
X = span ¯ { e n : n = 1 , 2 , , } , X * = span ¯ W * { f n : n = 1 , 2 , , } .
For k = 1, 2, . . . , denote
X k = span{ e k } , Y k = j = 1 k X j , Z k = j = k X j ¯ .
(3.3)
Proposition 3.5. [35] Assume that Ψ : X is weakly-strongly continuous and Ψ (0) = 0. Let γ > 0 be given. Set
β k = β k ( γ ) = sup u Z k , u γ | Ψ ( u ) | .

Then β k → 0 as k → ∞.

Proposition 3.6. (Nonsmooth Mountain pass theorem, see [23, 33]) If X is a reflexive Banach space, φ : X is a locally Lipschitz function which satisfies the nonsmooth (PS) c -condition, and for some r > 0 and e1 X with ||e1|| > r, max{φ(0), φ(e1)} ≤·inf{φ(u) : ||u|| = r}. Then φ has a nontrivial critical u X such that the critical value c = φ(u) is characterized by the following minimax principle
c = inf γ Γ max t [ 0 , 1 ] φ ( γ ( t )

where Γ = {γ C([0, 1], X) : γ(0) = 0, γ(1) = e1}.

Proposition 3.7. (Nonsmooth Fountain theorem, see [36]) Assume (F1) X is a Banach space, φ : X be an invariant locally Lipschitz functional, the subspaces X k , Y k and Z k are defined by (3.3).

If, for every k , there exist ρ k > r k > 0 such that

(F 2 ) a k : = inf u Z k u = r k φ ( u ) , k ,

(F 3 ) b k : = max u Y k u = ρ k φ ( u ) 0 ,

(F4) φ satisfies the nonsmooth (PS) c condition for every c > 0, then φ has an unbounded sequence of critical values.

Proposition 3.8. (Nonsmooth dual Fountain theorem, see [37]) Assume (F1) is satisfied and there is a k0> 0 such that, for each kk0, there exists ρ k > γ k > 0 such that

(D 1 ) a k : = inf u Z k u = ρ k φ ( u ) 0 ,

(D 2 ) b k : = max u Y k u = r k φ ( u ) < 0 ,

(D 3 ) d k : = inf u % Z k | | u | | ρ k φ ( u ) 0 , k ,

(D4) φ satisfies the nonsmooth ( PS ) c * condition for every c [ d k 0 , 0 ) , then φ has a sequence of negative critical values converging to 0.

Remark 3.2. We say φ that satisfies the nonsmooth ( PS ) c * condition at level c (with respect to (Y n )) if any sequence {u n } X such that
n j , u n j Y n j , φ ( u n j ) c , m | Y n j ( u n ) 0

contains a subsequence converging to a critical point of φ.

4 Existence and multiplicity of solutions

In this section, using the critical point theory, we give the existence and multiplicity results for problem (1.1). We shall use the following assumptions:

( O 1 ) δ 1 > 0 , c 3 > 0 and q 3 C ( Ω ̄ ) with q 3 ( x ) < p a 1 ( x ) * ( x ) for x Ω ̄ and q 3 + < p - , such that
G 1 ( x , t ) c 3 t q 3 ( x ) , x Ω , t 0 , δ 1 .
( O 2 ) δ 2 > 0 , c 4 > 0 and q 4 C ( Ω ̄ ) with q 4 ( x ) < p a 2 ( x ) * ( x ) for x Ω ̄ and q 4 - > p + , such that
| G 2 ( x , t ) | c 4 | t | q 4 ( x ) , x Ω , | t | δ 2 .
  1. (S)

    For i = 1, 2, G i (x, -t) = G i (x, t), x Ω, t .

     

Remark 4.1.

(1) It follows from (A), (A2) and (O2) that
G 2 ( x , t ) c 4 | t | q 4 ( x ) + c 5 | t | q 2 ( x ) , x Ω , t .
(2) It follows from (A) and (B2) that (see [33, p. 298])
G ( x , t ) c 6 | t | 1 / θ - c 7 , x Ω , t .

The following is the main result of this article.

Theorem 4.1. Assume (P), (A), (A1) hold.

(1) If (B1) holds, then for every λ and μ ≤ 0, problem (1.1) has a solution which is a minimizer of the corresponding functional φ.

(2) If (B1), (A2), (O1), (O2) hold, then for every λ > 0 and μ ≤ 0, problem (1.1) has a nontrivial solution v1such that v1is a minimizer of φ and φ(v1) < 0.

(3) If (A2), (B2), (O2) hold, then for every μ > 0, there exists λ0(μ) > 0 such that when |λ| ≤ λ0(μ), problem (1.1) has a nontrivial solution u1such that φ(u1) > 0.

(4) If (A2), (B2), (O1), (O2) holds, then for every μ > 0, there exists λ0(μ) > 0 such that when 0 < λλ0(μ), problem (1.1) has two nontrivial solutions u1and v1such that φ(u1) > 0 and φ(v1) < 0.

(5) If (A2), (B2), (O1), (O2) and (S) holds, then for every μ > 0 and λ , problem (1.1) has a sequence of solutionsu k } such that φu k ) → ∞ as k → ∞.

(6) If (A2), (B2), (O1), (O2) and (S) holds, then for every λ > 0 and μ , problem (1.1) has a sequence of solutionsv k } such that φv k ) < 0 and φv k ) → 0 as k → ∞.

Proof. We will use c, c' and c i as a generic positive constant. By Corollary 3.1, under the assumptions of Theorem 4.1, φ satisfies nonsmooth (PS) condition. We write
Ψ 1 ( u ) = λ Ω a 1 ( x ) G 1 ( x , u ) d x , Ψ 2 ( u )  =  μ Ω a 2 ( x ) G 2 ( x , u ) d x ,
then Ψ = Ψ1 + Ψ2, φ(u) = J(u) - Ψ (u) = J(u) - Ψ1(u) - Ψ2(u). Firstly, we use Ψ i ^ to denote its extension to L q i ( x ) ( Ω ) , where i = 1, 2. From (A) and Theorem 1.3.10 of [33] (or Chang [22]), we see that Ψ i ^ (u) is locally Lipschitz on L q i ( x ) ( Ω ) and Ψ i ^ ( u ) { ξ i ( x ) L q i 0 ( Ω ) : ξ i ( u ) G i ( x , u ) } for a.e. x Ω and i = 1, 2. In view of Proposition 2.4 and Theorem 2.2 of [22], we have that Ψ i = Ψ i ^ | X is also locally Lipschitz, and ∂Ψ1(u) λΩa1(x) ∂G1(x, u) dx, ∂Ψ2(u) μΩa2(x) ∂G1(x, u) dx, (see [38]), where Ψ i ^ | X stands for the restriction of Ψ i ^ to X for i = 1, 2. Therefore, φ is a locally Lipschitz functional on X.
  1. (1)
    Let λ and μ ≤ 0. By (A),
    | Ψ 1 ( u ) | c 1 Ω a 1 ( x ) | u | q 1 ( x ) d x + c 2 c 1 ( | u | ( q 1 ( x ) , a 1 ( x ) ) q 1 + + c 3 c 4 | | u | | q 1 + + c 3 .
     
By (B1), Ψ2(u) ≤ - μc 0 Ωa2(x) dx = c5. Hence φ ( u ) 1 p + | | u | | p - - c 4 | | u | | q 1 + - c 6 . By (A1), q 1 + < p - , so φ is coercive, that is, φ(u) → ∞ as ||u|| → ∞. Thus φ has a minimize which is a solution of (1.1).
  1. (2)
    Let λ > 0, μ ≤ 0 and the assumptions of (2) hold. By the above conclusion (1), φ has a minimize v1. Take v 0 C 0 ( Ω ) such that 0 ≤ v0(x) ≤ min{δ1, δ2}, Ω a 1 ( x ) v 0 ( x ) q 3 ( x ) d x = d 1 > 0 and Ω a 2 ( x ) v 0 ( x ) q 4 ( x ) d x = d 2 > 0 . By (O1) and (O2) we have, for t (0, 1) small enough,
    φ ( t v 0 ) = Ω 1 p ( x ) | t v 0 | p ( x ) d x - λ Ω a 1 ( x ) G 1 ( x , t v 0 ( x ) ) d x - μ Ω a 2 ( x ) G 2 ( x , t v 0 ( x ) ) d x t p - Ω 1 p ( x ) | v 0 | p ( x ) d x - λ Ω a 1 ( x ) c 3 ( t v 0 ( x ) ) q 3 ( x ) d x - μ Ω a 2 ( x ) c 4 ( t v 0 ( x ) ) q 4 ( x ) d x t p - Ω 1 p ( x ) | v 0 | p ( x ) d x - t q 3 + λ c 3 d 1 - t q 4 - μ c 4 d 2 .
     
Since q 3 + < p - < q 4 - , we can find t0 (0, 1) such that φ(t0v0) < 0, and this shows φ(v1) = inf u X φ(u) < 0. So v1 ≠ 0 because φ(0) = 0. The conclusion (2) is proved.
  1. (3)
    Let μ > 0 and the assumptions of (3) hold. By Remark 4.1.(1), for sufficiently small ||u||
    Ψ 2 ( u ) μ Ω a 2 ( x ) c 4 | u | q 4 ( x ) + c 5 | u | q 2 ( x ) d x μ c 4 | u | ( q 4 ( x ) , a 2 ( x ) ) q 4 - + μ c 5 | u | ( q 2 ( x ) , a 2 ( x ) ) q 2 - μ c 8 | | u | | q 4 - + | | u | | q 2 - .
     
Since p + < q 2 - and p + < q 4 - , there exists γ > 0 and α > 0 such that J(u) - Ψ2(u) ≥ α for u S γ . We can find λ0(μ) > 0 such that when |λ| ≤ λ0(μ), Ψ1(u) ≤ α/2 for u S γ . So when |λ| ≤ λ0(μ), φ(u) ≥ α/2 > 0 for u S γ . By Remark 4.1.(2), noting that 1 θ > p + > q 1 + , we can find a u0 X such that ||u0|| > γ and φ(u0) < 0. By Proposition 3.6 problem (1.1) has a nontrivial solution u1 such that φ(u1) > 0.
  1. (4)

    Let μ > 0 and the assumptions of (4) hold. By the conclusion (3), we know that, there exists λ0(μ) > 0 such that when 0 < λλ0(μ), problem (1.1) has a nontrivial solution u1 such that φ(u1) > 0. Let γ and α be as in the proof of (3), that is, φ(u) ≥ α/2 > 0 for u S γ . By (O1), (O2) and the proof of (2), there exists w X such that ||w|| < γ and φ(w) < 0. It is clear that there is v1 B γ , a minimizer of φ on B γ . Thus v1 is a nontrivial solution of (1.1) and φ(v1) < 0.

     
  2. (5)
    Let μ > 0, λ and the assumptions of (5) hold. By (S), we can use the nonsmooth version Fountain theorem with the antipodal action of 2 to prove (5) (see Proposition 3.7). Denote
    Ψ ( u ) = Ω F ( x , u ) d x = λ Ω a 1 ( x ) G 1 ( x , u ) d x + μ Ω a 2 ( x ) G 2 ( x , u ) d x .
     
Let β k (γ) be as in Proposition 3.5. By Proposition 3.5, for each positive integer n, there exists a positive integer k0(n) such that β k (n) ≤ 1 for all kk0(n). We may assume k0(n) < k0(n + 1) for each n. We define {γ k : k = 1, 2, . . . , } by
γ k = n if  k 0 ( n ) k < k 0 ( n + 1 ) 1 if 1 k < k 0 ( 1 ) .
Note that γ k → ∞ as k → ∞. Then for u Z k with ||u|| = γ k we have
φ ( u ) = Ω 1 p ( x ) | u | p ( x ) d x - Ψ ( u ) 1 p + ( γ k ) p - - 1
and consequently
inf u Z k , u = γ k φ u as k ,

i.e., the condition (F2) of Proposition 3.7 is satisfied.

By (A), (A1), (B2) and Remark 4.1.(2), we have
φ ( u ) 1 p - | | u | | p + + c 1 | λ | ( | u | ( q 1 ( x ) , a 1 ( x ) ) ) q 1 + - c 6 μ | u | ( 1 / θ , a 2 ( x ) ) 1 / θ + c 9 .
Noting that 1 θ > p + > q 1 + and all norms on a finite dimensional vector space are equivalent each other, we can see that, for each Y k , φ(u) → - ∞ as u Y k and ||u|| → ∞. Thus for each k there exists ρ k > γ k such that φ(u) < 0 for u Y k S ρk , so the condition (F3) of Proposition 3.7 is satisfied. As was noted earlier, φ satisfies nonsmooth (PS) condition. By Proposition 3.7 the conclusion (5) is true.
  1. (6)
    Let λ > 0, μ and the assumptions of (5) hold. Let us verify the conditions of the Nonsmooth dual Fountain theorem (see Proposition 3.8). By (S), φ is invariant on the antipodal action of 2. For Ψ(u) = ∫ΩF(x, u)dx = Ψ1(u)+ Ψ2(u) let β k (1) be as in Proposition 3.5, that is
    β k ( 1 ) = sup u Z k , | | u | | 1 | Ψ ( u ) | .
     
By Proposition 3.5, there exists a positive integer k0 such that β k ( 1 ) 1 2 p + for all kk0. Setting ρ k = 1, then for kk0 and u Z k S1, we have
φ ( u ) 1 p + - 1 2 p + = 1 2 p + > 0 ,

which shows that the condition (D1) of Proposition 3.8 is satisfied.

Since X = W 0 1 , p ( x ) is the closure of C 0 ( Ω ) in W 1 , p ( x ) ( Ω ) , we may choose {Y k : k = 1, 2, . . . , }, a sequence of finite dimensional vector subspaces of X defined by (3.5), such that Y k C 0 ( Ω ) for all k. For each Y k , because all norms on Y k are equivalent each other, there is ε (0, 1) such that for every u Y k B ε , | u | min { δ 1 , δ 2 } , | u | ( q 3 ( x ) , a 1 ( x ) ) 1 and | u | ( q 4 ( x ) , a 2 ( x ) ) 1 By (O1) and (O2), for u Y k B ε we have
φ ( u ) 1 p - | | u | | p - - λ c 3 Ω a 1 ( x ) | u | q 3 ( x ) d x + | μ | c 4 Ω a 2 ( x ) | u | q 4 ( x ) d x 1 p - | | u | | p - - λ c 3 | u | ( q 3 ( x ) , a 1 ( x ) ) q 3 + + | μ | c 4 | u | ( q 4 ( x ) , a 2 ( x ) ) q 4 - .
Because q 3 + < p - < q 4 - there exists γ k (0, ε) such that
b k : = max u Y k , | | u | | = γ k φ u < 0 ,

thus the condition (D2) of Proposition 3.8 is satisfied.

Because Y k Z k and γ k < ρ k , we have
d k : = inf u Z k , | | u | | ρ k φ u b k : = max u Y k , | | u | | = r k φ u < 0 .

On the other hand, for any u Z k with ||u|| ≤ 1 = ρ k , we have φ(u) = J(u) - Ψ(u) ≥ -Ψ(u) ≥ k (1). Noting that β k → 0 as k → ∞, we obtain d k → 0, i.e., (D3) of Proposition 3.8 is satisfied.

Finally let us prove that φ satisfies nonsmooth ( PS ) c * condition for every c R. Suppose { u n j } X , n j , u n j Y n j , φ u n j c and m | Y n j u n j 0 . Similar to the process of verifying the (PS) condition in the proof of Proposition 3.3, we can get u n j u in X. Let us prove 0 φ(u) below. Notice that
0 m ( u ) = m ( u ) - m ( u n j ) + m ( u n j ) = m ( u ) - m ( u n j ) + m | Y n j ( u n j ) .
Using Proposition 2.8.4, Going to limit in the right side of above equation, we have
m ( u ) 0 ,

so m(u) ≡ 0, i.e., 0 φ(u), this shows that φ satisfies the nonsmooth ( PS ) c * condition for every c . So all conditions of Proposition 3.8 are satisfied and the conclusion (6) follows from Proposition 3.8. The proof of Theorem 4.1 is complete.    ■

Remark 4.2

Theorem 4.1 includes several important special cases. In particular, in the case of the problem (1.4), i.e., in the case that
a 1 ( x ) = 1 | x | s 1 ( x ) , a 2 ( x )  =  1 | x | s 2 ( x ) ,

all conditions of Theorem 4.1 are satisfied provided (P), (A*), (A1), and (A2) hold.

Declarations

Acknowledgements

The authors are very grateful to the anonymous referees for their valuable suggestions. Research supported by the NSFC (Nos. 11061030, 10971087), 1107RJZA223 and the Fundamental Research Funds for the Gansu Universities.

Authors’ Affiliations

(1)
Department of Mathematics, Northwest Normal University

References

  1. Rüžzička M: Electro-rheological Fluids: Modeling and Mathematical Theory. Springer, Berlin; 2000.
  2. Zhikov VV: Averaging of functionals of the calculus of variations and elasticity theory.Math USSR Izv 1987, 9: 33–66.View Article
  3. Antontsev SN, Shmarev SI: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions.Nonlinear Anal 2005, 60: 515–545.MATHMathSciNetView Article
  4. Antontsev SN, Rodrigues JF: On stationary thermo-rheological viscous flows.Ann Univ Ferrara Sez Sci Mat 2006, 52: 19–36. 10.1007/s11565-006-0002-9MATHMathSciNetView Article
  5. Chen Y, Levine S, Rao M: Variable exponent, linear growth functionals in image restoration.SIAM J Appl Math 2006, 66(4):1383–1406. 10.1137/050624522MATHMathSciNetView Article
  6. Diening L, Hästö P, Nekvinda A: Open problems in variable exponent Lebesgue and Sobolev spaces.Drábek, P, Rákosník, J, FSDONA04 Proceedings, 38–58, Milovy, Czech Republic 2004.
  7. Fan XL, Zhao D: On the SpacesL p(x) andW m,p(x) .J Math Anal Appl 2001, 263: 424–446. 10.1006/jmaa.2000.7617MATHMathSciNetView Article
  8. Harjulehto P, Hästö P: An overview of variable exponent Lebesgue and Sobolev spaces. In Future Trends in Geometric Function Theory. Edited by: Herron D. RNC Workshop, Jyväskylä; 2003:85–93.
  9. Samko S: On a progress in the theory of Lebesgue spaces with variable exponent maximal and singular operators.Integr Trans Spec Funct 2005, 16: 461–482. 10.1080/10652460412331320322MATHMathSciNetView Article
  10. Jikov VV, Kozlov SM, Oleinik OA: Homogenization of Differential Operators and Integral Functionals (Translated from the Russian by Yosifian, GA). Springer, Berlin; 1994.View Article
  11. Zhikov VV: On some variational problems.Russ J Math Phys 1997, 5: 105–116.MATHMathSciNet
  12. Dai G: Three symmetric solutions for a differential inclusion system involving the (p(x),q(x))-Laplacian in N .Nonlinear Anal 2009, 71: 1763–1771. 10.1016/j.na.2009.01.012MATHMathSciNetView Article
  13. Dai G: Infinitely many solutions for a Neumann-type differential inclusion problem involving thep(x)-Laplacian.Nonlinear Anal 2009, 70: 2297–2305. 10.1016/j.na.2008.03.009MATHMathSciNetView Article
  14. Dai G: Infinitely many solutions for a hemivariational inequality involving thep(x)-Laplacian.Nonlinear Anal 2009, 71: 186–195. 10.1016/j.na.2008.10.039MATHMathSciNetView Article
  15. Dai G: Three solutions for a Neumann-type differential inclusion problem involving thep(x)-Laplacian.Nonlinear Anal 2009, 70: 3755–3760. 10.1016/j.na.2008.07.031MATHMathSciNetView Article
  16. Dai G: Infinitely many solutions for a differential inclusion problem in N involving thep(x)-Laplacian.Nonlinear Anal 2009, 71: 1116–1123. 10.1016/j.na.2008.11.024MATHView Article
  17. Fan XL, Han XY: Existence and multiplicity of solutions forp(x)-Laplacian equations inR N .Nonlinear Anal 2004, 59: 173–188.MATHMathSciNet
  18. Fan XL: On the sub-supersolution methods forp(x)-Laplacian equations.J Math Anal Appl 2007, 330: 665–682. 10.1016/j.jmaa.2006.07.093MATHMathSciNetView Article
  19. Fan XL, Zhang QH: Existence of solutions forp(x)-Laplacian Dirichlet problems.Nonlinear Anal 2003, 52: 1843–1852. 10.1016/S0362-546X(02)00150-5MATHMathSciNetView Article
  20. Fan XL, Zhang QH, Zhao D: Eigenvalues ofp(x)-Laplacian Dirichlet problem.J Math Anal Appl 2005, 302: 306–317. 10.1016/j.jmaa.2003.11.020MATHMathSciNetView Article
  21. Fan XL: Solutions forp(x)-Laplacian Dirichlet problems with singular coefficients.J Math Anal Appl 2005, 312: 464–477. 10.1016/j.jmaa.2005.03.057MATHMathSciNetView Article
  22. Chang KC: Variational methods for nondifferentiable functionals and their applications to partial differential equations.J Math Anal Appl 1981, 80: 102–129. 10.1016/0022-247X(81)90095-0MATHMathSciNetView Article
  23. Kourogenis NC, Papageorgiou NS: Nonsmooth crical point theory and nonlinear elliptic equation at .resonance.KODAI Math J 2000, 23: 108–135. 10.2996/kmj/1138044160MATHMathSciNetView Article
  24. Ricceri B: A general variational principle and some of its applications.J Comput Appl Math 2000, 113: 401–410. 10.1016/S0377-0427(99)00269-1MATHMathSciNetView Article
  25. Ricceri B: On a three critical points theorem.Arch Math (Basel) 2000, 75: 220–226. 10.1007/s000130050496MATHMathSciNetView Article
  26. Marano S, Motreanu D: Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving thep-Laplacian.J Diff Equ 2002, 182: 108–120. 10.1006/jdeq.2001.4092MATHMathSciNetView Article
  27. Marano SA, Motreanu D: On a three critical points theorem for non differentiable functions and applications to nonlinear boundary value problems.Nonlinear Anal 2002, 48: 37–52. 10.1016/S0362-546X(00)00171-1MATHMathSciNetView Article
  28. Diening L: Riesz potential and Sobolev embeddings on generalized Lebesque and Sobolev SpacesL p (·)andW k,p (·)Math.Nachr 2004, 268: 31–43. 10.1002/mana.200310157MATHMathSciNetView Article
  29. Fan XL, Shen JS, Zhao D: Sobolev embedding theorems for spacesW k,p(x) (Ω).J Math Anal Appl 2001, 262: 749–760. 10.1006/jmaa.2001.7618MATHMathSciNetView Article
  30. Samko SG: Hardy-Littlewood-Stein-Weiss inequality in the Lebesgue spaces with variable exponent.Fract Calc Appl Anal 2003, 6(4):421–440.MATHMathSciNet
  31. Kovacik O, Rakosnik J: On spacesL p(x) (Ω) andW k,p(x) (Ω).Czechoslovak Math J 1991, 41: 592–618.MathSciNet
  32. Clarke FH: Optimization and Nonsmooth Analysis. Wiley, New York; 1983.
  33. Gasiéski L, Papageorgiou NS: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman and Hall/CRC, Boca Raton; 2005.
  34. Zhao JF: Structure Theory of Banach Spaces (in Chinese). Wuhan University Press, Wuhan; 1991.
  35. Garcia Azorero JP, Peral Alonso I: Hardy inequalities and some critical elliptic and parabolic problems.J Diff Equ 1998, 144: 441–476. 10.1006/jdeq.1997.3375MATHMathSciNetView Article
  36. Dai G: Nonsmooth version of Fountain theorem and its application to a Dirichlet-type differential inclusion problem.Nonlinear Anal 2010, 72: 1454–1461. 10.1016/j.na.2009.08.029MATHMathSciNetView Article
  37. Dai G, Wang WT, Feng LL: Nonsmooth version of dual Fountain theorem and its application to a differential inclusion problem.Acta Math Sci Ser A Chin Ed 32(2012)1: 18–28.
  38. Kristály A: Infinitely many solutions for a differential inclusion problem in N .J Diff Equ 2006, 220: 511–530. 10.1016/j.jde.2005.02.007MATHView Article

Copyright

© Dai et al. ; licensee Springer. 2012

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.