# Existence of nontrivial weak homoclinic orbits for second-order impulsive differential equations

Boundary Value Problems20122012:138

DOI: 10.1186/1687-2770-2012-138

Accepted: 7 November 2012

Published: 26 November 2012

## Abstract

A sufficient condition is obtained for the existence of nontrivial weak homoclinic orbits of second-order impulsive differential equations by employing the mountain pass theorem, a weak convergence argument and a weak version of Lieb’s lemma.

## 1 Introduction

Fečkan [1], Battelli and Fečkan [2] studied the existence of homoclinic solutions for impulsive differential equations by using perturbation methods. Tang et al. [36] studied the existence of homoclinic solutions for Hamiltonian systems via variational methods. In recent years, many researchers have paid much attention to multiplicity and existence of solutions of impulsive differential equations via variational methods (for example, see [712]). However, few papers have been published on the existence of homoclinic solutions for second-order impulsive differential equations via variational methods.

In this paper, we consider the following impulsive differential equations:
(1.1)
(1.2)

where is of class , with , and with . ℤ denotes the set of all integers, and () are impulsive points. Moreover, there exist a positive integer p and a positive constant T such that , , , . and represent the right and left limits of at respectively.

We say that a function is a weak homoclinic orbit of Eqs. (1.1) and (1.2) if q satisfies (1.1) and

Motivated by the works of Nieto and Regan [7], Smets and Willem [13], in this paper we study the existence of nontrivial weak homoclinic orbits of (1.1)-(1.2) by using the mountain pass theorem, a weak version of Lieb’s lemma and a weak convergence argument. Our method is different from those of [8, 9].

The main result is the following.

Theorem 1.1 Assume that Eqs. (1.1) and (1.2) satisfy the following conditions:

(H1) There exists a positive number T such that

(H2) uniformly for ;

(H3) There exists a constant such that
(H4) There exist constants and such that
(H5) There exists a constant b, with , such that
and

Then there exists a nontrivial weak homoclinic orbit of Eqs. (1.1) and (1.2).

Remark 1.1 (H2) implies that is an equilibrium of (1.1)-(1.2).

Remark 1.2 Set , . It is easy to see that , satisfy (H1)-(H5).

## 2 Proof of main results

Lemma 2.1 (Mountain pass lemma [14])

Let E be a Banach space and , , be such that and
Let

Then, for each , , there exists such that

(V1) ;

(V2) ;

(V3) .

In what follows, denotes the space of sequences whose second powers are summable on ℤ (the set of all integers), that is,
The space is equipped with the following norm:

We now prove some technical lemmas.

Lemma 2.2 The space
(2.1)
is a Hilbert space with the inner product
(2.2)
and the corresponding norm
(2.3)
Proof Let be a Cauchy sequence in H, then is a Cauchy sequence in and there exists such that converges to y in . Define the function as follows:
It is easy to see that
Since , , we have

which implies that , that is, , . Therefore, q is continuous. Thus, and .

Noticing that, for , we have
which implies . On the other hand, since
and (), we have
Therefore,

Consequently, and converges to q in H. The proof is complete. □

Lemma 2.3 For any , the following inequalities hold:
Furthermore, and
Proof For any , there exists an integer k such that . Then it follows from Cauchy-Schwarz inequality that

which implies .

Furthermore, from the above argument, we have

that is, .

Since
Finally, we obtain that

The proof is complete. □

Define the functional as follows:
(2.4)
Lemma 2.4 If (H1)-(H5) hold, then and
(2.5)
Proof From the continuity of V, and (H2)-(H3), we see that, for each , there exists , such that
Since as , there exists such that
Therefore, we have
It follows from (H5) that, ,
and
(2.6)

Thus, φ and the right hand of (2.5) is well defined on H. By the definition of Fréchet derivative, it is easy to see that and (2.5) holds. □

Lemma 2.5 If is a critical point of the functional φ, then q satisfies (1.1).

Proof If is a critical point of the functional φ, then for any , we have
, take such that for any , and . Therefore, we have
by the definition of the weak derivative, which implies
(2.7)

Hence, the critical point of the functional φ satisfies (1.1). The proof is complete. □

Lemma 2.6 Under the assumptions (H1)-(H5), there exists and such that and
Proof If and , then, by Lemma 2.3, . Hence, by (H5) and Lemma 2.3, we have
(2.8)
and
(2.9)
It follows from (2.8), (H4) and Lemma 2.3 that

Therefore, as and , there exists such that .

Now, let and . Then there exists a subset of ℝ and λ large enough such that
Since , by (2.4), (H4) and Lemma 2.3, we have

Since , the right-hand member is negative of λ sufficiently large, and there exists such that , . The proof is complete. □

Lemma 2.7 Under the assumptions (H1)-(H5), there exists a bounded sequence in H such that

where , . Furthermore, does not converge to 0 in measure.

Proof All we have to prove is that any sequence obtained by taking and in Lemma 2.1 is bounded and does not converge to 0 in measure. For n sufficiently large, it follows from (H3), (H5), (2.4), (2.5), (2.8) and (2.9) that

Since , is bounded in H.

Let . By (H2) and (H3), we have
which implies
For any , there exists such that, for , we have
Therefore, by Lemma 2.3, we have
(2.10)
If converges to 0 in measure on R, then it follows from (H5) and (2.10) that

a contradiction. The proof is complete. □

The following lemma is similar to a weak version of Lieb’s lemma [15], which will play an important role in the proof of Theorem 1.1.

Lemma 2.8 If is bounded in H and does not converge to 0 in measure, then there exist a sequence and a subsequence of such that
Proof If
then, for any , there exists such that, for , we have
Therefore, for all and , we have
which implies
a contradiction. Therefore, there exist a constant and a subsequence of such that
where ℕ denotes the set of all positive integers. So, for , there exists such that
Let , . Since is bounded in H, by Lemma 2.3, it is easy to see that is bounded in . Therefore, has a subsequence which weakly converges to u in . Without loss of generality, we assume that in . Thus, in . Therefore, uniformly converges to u in . Noticing that
we have

that is, . □

Proof of Theorem 1.1 By Lemma 2.7, there exists a bounded in H such that
and does not converge to 0 in measure on ℝ, where d is the mountain pass value. By Lemma 2.8, there exists a sequence in ℤ such that
For any fixed , set and . Then () are impulsive points and
For any with , we have
Hence, we have
which implies
(2.11)
Since , in H, therefore
(2.12)
As in , is bounded in and hence for some and all . Also, uniformly converges to ω on and, being uniformly continuous on , uniformly converges to on . By the Lebesgue dominated convergence theorem, this implies that
(2.13)
For any and , take sufficiently large such that
Since in , in , therefore uniformly converges to ω in . By the continuity of I, there exists such that, when , we have
Since
it follows from Lemma 2.3 that
Similarly, we have
By the Cauchy-Schwarz inequality, we have
Therefore,
(2.14)
From (2.11)-(2.14), we have

Thus, and ω is a nontrivial weak homoclinic orbit of (1.1)-(1.2). □

## Declarations

### Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 10971085). The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the manuscript.

## Authors’ Affiliations

(1)
Department of Mathematics, Kunming University of Science and Technology

## References

1. Fečkan M: Chaos in singularly perturbed impulsive O.D.E. Boll. Unione Mat. Ital, B 1996, 10: 175–198.
2. Battelli F, Fečkan M: Chaos in singular impulsive O.D.E. Nonlinear Anal. 1997, 28: 655–671. 10.1016/0362-546X(95)00182-U
3. Tang XH, Xiao L: Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential. J. Math. Anal. Appl. 2009, 351: 586–594. 10.1016/j.jmaa.2008.10.038
4. Tang XH, Xiao L: Homoclinic solutions for a class of second-order Hamiltonian systems. Nonlinear Anal. 2009, 71: 1140–1152. 10.1016/j.na.2008.11.038
5. Tang XH, Lin XY: Homoclinic solutions for a class of second-order Hamiltonian systems. J. Math. Anal. Appl. 2009, 354: 539–549. 10.1016/j.jmaa.2008.12.052
6. Tang XH, Lin XY: Existence of infinitely many homoclinic orbits in Hamiltonian systems. Proc. R. Soc. Edinb. A 2011, 141: 1103–1119. 10.1017/S0308210509001346
7. Nieto J, O’Regan D: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl. 2009, 10: 680–690. 10.1016/j.nonrwa.2007.10.022
8. Zhang H, Li ZX: Periodic and homoclinic solutions generated by impulses. Nonlinear Anal., Real World Appl. 2011, 1: 39–51.View Article
9. Han X, Zhang H: Periodic and homoclinic solutions generated by impulses for asymptotically linear and sublinear Hamiltonian system. J. Comput. Appl. Math. 2011, 235: 1531–1541. 10.1016/j.cam.2010.08.040
10. Chen H, Sun J: An application of variational method to second-order impulsive differential equation on the half-line. Appl. Math. Comput. 2010, 217: 1863–1869. 10.1016/j.amc.2010.06.040
11. Sun J, Chen H, Yang L: The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method. Nonlinear Anal. 2010, 73: 440–449. 10.1016/j.na.2010.03.035
12. Luo Z, Xiao J, Xu J: Subharmonic solutions with prescribed minimal period for some second-order impulsive differential equations. Nonlinear Anal. 2012, 75: 2249–2255. 10.1016/j.na.2011.10.023
13. Smets D, Willem M: Solitary waves with prescribed speed on infinite lattices. J. Funct. Anal. 1997, 149: 266–275. 10.1006/jfan.1996.3121
14. Brezis H, Nirenberg L: Remarks on finding critical points. Commun. Pure Appl. Math. 1991, 64: 939–963.
15. Lieb EH: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 1983, 74: 441–448. 10.1007/BF01394245