Existence of solutions for integral boundary value problems of second-order ordinary differential equations

Boundary Value Problems20122012:147

DOI: 10.1186/1687-2770-2012-147

Received: 24 June 2012

Accepted: 26 November 2012

Published: 17 December 2012

Abstract

In this paper, we investigate the existence of solutions for some second-order integral boundary value problems, by applying new fixed point theorems in Banach spaces with the lattice structure derived by Sun and Liu.

MSC:34B15, 34B18, 47H11.

Keywords

lattice fixed point integral boundary value problem sign-changing solution

1 Introduction

In this paper, we consider the following second-order integral boundary value problem:
{ x ( t ) = f ( t , x ( t ) ) , 0 t 1 , x ( 0 ) = 0 , x ( 1 ) = 0 1 a ( s ) x ( s ) d s , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ1_HTML.gif
(1.1)

where f C ( [ 0 , 1 ] × R , R ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq1_HTML.gif, a L [ 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq2_HTML.gif is nonnegative with 0 1 a 2 ( s ) < 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq3_HTML.gif.

The multi-point boundary value problems for ordinary differential equations have been well studied, especially on a compact interval. For example, the study of three-point boundary value problems for nonlinear second-order ordinary differential equations was initiated by Gupta (see [1]). Since then, the existence of solutions for nonlinear multi-point boundary value problems has received much attention from some authors; see [26] for reference.

The integral boundary value problems of ordinary differential equations arise in different areas of applied mathematics and physics such as heat conduction, underground water flow, thermo-elasticity and plasma physics (see [7, 8] and the references therein). Moreover, boundary value problems with Riemann-Stieltjes integral conditions constitute a very interesting and important class of problems. They include two, three, multi-point and integral boundary value problems as special cases (see [9, 10]). For boundary value problems with other integral boundary conditions, we refer the reader to the papers [1121] and the references therein.

In [15], Zhang and Sun studied the following differential equation:
{ x ( t ) = f ( x ( t ) ) , 0 t 1 , x ( 0 ) = 0 , x ( 1 ) = 0 1 a ( s ) x ( s ) d s , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equa_HTML.gif

where f C ( [ 0 , 1 ] × R , R ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq1_HTML.gif, a L [ 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq2_HTML.gif is nonnegative with 0 1 a 2 ( s ) < 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq3_HTML.gif. By fixed-point index theory, the existence and multiplicity of sign-changing solutions was discussed.

As we know, nearly all the methods computing the topological degree depend on cone mappings. Recently, Sun and Liu introduced some new computation of topological degree when the concerned operators are not cone mappings in ordered Banach spaces with the lattice structure (for details, see [2225]). To the best of our knowledge, there is only one paper to use this new computation of topological degree to study an integral boundary value problem with the asymptotically nonlinear term (see [16]).

Motivated by [15, 16, 2225], this paper is concerned with the boundary value problem (1.1) under sublinear conditions. The method we use is based on some recent fixed point theorems derived by Sun and Liu [22, 23], which are different from [16] and the results we obtain are different from [1121].

This paper is organized as follows. In Section 2, we recall some properties of the lattice, new fixed point theorems and some lemmas that will be used to prove the main results. In Section 3, we prove the main results and, finally, we give concrete examples to illustrate the applicability of our theory.

2 Preliminaries

We first give some properties of the lattice and give new fixed point theorems with the lattice structure (see [2225]).

Let E be a Banach space with a cone P. Then E becomes an ordered Banach space under the partial ordering ≤ which is induced by P. P is said to be normal if there exists a positive constant N such that θ x y http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq4_HTML.gif implies x N y http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq5_HTML.gif. P is called solid if it contains interior points, i.e., int P θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq6_HTML.gif.

Definition 2.1 [2225]

We call E a lattice under the partial ordering ≤ if sup { x , y } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq7_HTML.gif and inf { x , y } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq8_HTML.gif exist for arbitrary x , y E http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq9_HTML.gif.

For x E http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq10_HTML.gif, let
x + = sup { x , θ } , x = inf { x , θ } , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equb_HTML.gif

x + http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq11_HTML.gif and x http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq12_HTML.gif are called the positive part and the negative part of x, respectively, and obviously x = x + x http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq13_HTML.gif. Take | x | = x + + x http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq14_HTML.gif, then | x | P http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq15_HTML.gif. For convenience, we use the notations x + = x + http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq16_HTML.gif, x = x http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq17_HTML.gif.

Let B : E E http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq18_HTML.gif be a bounded linear operator. B is said to be positive if B ( P ) P http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq19_HTML.gif.

Definition 2.2 [2225]

Let D E http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq20_HTML.gif and A : D E http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq21_HTML.gif be a nonlinear operator. A is said to be quasi-additive on lattice if there exists v E http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq22_HTML.gif such that
A x = A x + + A x + v , x D . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equc_HTML.gif

Let P be a cone of a Banach space E. x is said to be a positive fixed point of A if x ( P { θ } ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq23_HTML.gif is a fixed point of A; x is said to be a negative fixed point of A if x ( ( P ) { θ } ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq24_HTML.gif is a fixed point of A; x is said to be a sign-changing fixed point of A if x ( P ( P ) ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq25_HTML.gif is a fixed point of A.

Lemma 2.1 [22, 23]

Let P be a normal cone of E, and A : E E http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq26_HTML.gif be completely continuous and quasi-additive on lattice. Suppose that
  1. (i)
    there exist a positive bounded linear operator B 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq27_HTML.gif, u P http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq28_HTML.gif and u 1 P http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq29_HTML.gif such that
    u A x B 1 x + u 1 , x P ; http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equd_HTML.gif
     
  2. (ii)
    there exist a positive bounded linear operator B 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq30_HTML.gif and u 2 P http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq31_HTML.gif such that
    A x B 2 x u 2 , x ( P ) ; http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Eque_HTML.gif
     
  3. (iii)

    r ( B 1 ) < 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq32_HTML.gif, r ( B 2 ) < 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq33_HTML.gif, where r ( B i ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq34_HTML.gif is the spectral radius of B i http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq35_HTML.gif ( i = 1 , 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq36_HTML.gif);

     
  4. (iv)

    A θ = θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq37_HTML.gif, the Fréchet derivative A θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq38_HTML.gif of A at θ exists, and 1 is not an eigenvalue of the linear operator A θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq38_HTML.gif, the sum μ of the algebraic multiplicities for all eigenvalues of A θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq38_HTML.gif lying in ( 1 , + ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq39_HTML.gif is an odd number.

     

Then the operator A has at least one nonzero fixed point.

Lemma 2.2 [22]

Let the conditions (i), (ii) and (iii) of Lemma  2.1 be satisfied. Suppose, in addition, that A θ = θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq40_HTML.gif; the Fréchet derivative A θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq38_HTML.gif of A at θ exists; 1 is not an eigenvalue of the linear operator A θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq38_HTML.gif; the sum μ of the algebraic multiplicities for all eigenvalues of A θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq38_HTML.gif lying in ( 1 , + ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq41_HTML.gif is an even number and
A ( P { θ } ) int P , A ( ( P ) { θ } ) int ( P ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equf_HTML.gif

Then the operator A has at least three fixed points: one positive fixed point, one negative fixed point and one sign-changing fixed point.

Let E = C [ 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq42_HTML.gif with the normal x ( t ) = max t [ 0 , 1 ] | x ( t ) | http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq43_HTML.gif, then E is a Banach space. Let P = { x E : x ( t ) 0 , t [ 0 , 1 ] } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq44_HTML.gif, then P is a cone of E. It is easy to see that E is a lattice under the partial ordering ≤ that is induced by P.

For convenience, list the following condition.

(H0)
0 < λ 1 < λ 2 < < λ n < λ n + 1 < http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equg_HTML.gif

is the sequence of positive solutions of the equation sin u = 0 1 a ( s ) sin ( u s ) d s http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq45_HTML.gif.

Define the operators A, B and F:
http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ2_HTML.gif
(2.1)
http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ3_HTML.gif
(2.2)
http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ4_HTML.gif
(2.3)
where
http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equh_HTML.gif

It is obvious that the fixed points of the operator A defined by (2.3) are the solutions of the boundary value problem (1.1) (see [15, 16]).

Lemma 2.3 [16]

  1. (i)

    B : E E http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq18_HTML.gif is a completely continuous linear operator;

     
  2. (ii)

    A : E E http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq26_HTML.gif is a completely continuous operator;

     
  3. (iii)

    A = B F http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq46_HTML.gif is quasi-additive on the lattice;

     
  4. (iv)

    the eigenvalues of the linear operator B are { 1 λ n , n = 1 , 2 , } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq47_HTML.gif and the algebraic multiplicity of 1 λ n http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq48_HTML.gif is equal to 1, where λ n http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq49_HTML.gif is defined by (H0);

     
  5. (v)

    r ( B ) = 1 λ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq50_HTML.gif, where r ( B ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq51_HTML.gif is the spectral radius of the operator B.

     

3 Main results

Let us list some conditions for convenience.

(H1) There exists a constant b > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq52_HTML.gif such that
f ( t , x ) b , t [ 0 , 1 ] , x 0 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equi_HTML.gif
(H2) There exists a constant ϵ > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq53_HTML.gif such that
lim sup | x | + f ( t , x ) x λ 1 ϵ uniformly on  t [ 0 , 1 ] , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equj_HTML.gif

where λ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq54_HTML.gif is defined by (H0).

(H3) f ( t , 0 ) = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq55_HTML.gif uniformly on t [ 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq56_HTML.gif.

(H4)
lim x 0 f ( t , x ) x = λ uniformly on  t [ 0 , 1 ] , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equk_HTML.gif

where λ n < λ < λ n + 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq57_HTML.gif, λ n http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq49_HTML.gif, λ n + 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq58_HTML.gif is defined by (H0).

Theorem 3.1 Suppose that (H0), (H1), (H2), (H3), (H4) are satisfied and n is an odd number in (H4). Then the boundary value problem (1.1) has at least a nontrivial solution.

Proof Choose 0 < δ < ϵ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq59_HTML.gif, then h = λ 1 ϵ + δ < λ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq60_HTML.gif. By (H2), there exists a constant M > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq61_HTML.gif such that
f ( t , x ) x h , t [ 0 , 1 ] , | x | M . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ5_HTML.gif
(3.1)
So, by (3.1) and (H1), we know that
http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ6_HTML.gif
(3.2)
http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ7_HTML.gif
(3.3)

where C = sup 0 t 1 , | x | < M | f ( t , x ) | http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq62_HTML.gif.

By (3.2) and (3.3), we have
http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ8_HTML.gif
(3.4)
http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ9_HTML.gif
(3.5)

where C 1 = C 0 1 G ( t , s ) d s http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq63_HTML.gif, C = b 0 1 G ( t , s ) d s http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq64_HTML.gif, t [ 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq56_HTML.gif, B ¯ = h B http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq65_HTML.gif, B is defined by (2.1). Obviously, C 1 P http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq66_HTML.gif, C P http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq67_HTML.gif, B ¯ : P P http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq68_HTML.gif is a positive completely continuous operator. By Lemma 2.3, we have r ( B ) = 1 λ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq69_HTML.gif, so r ( B ¯ ) = h r ( B ) < λ 1 r ( B ) = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq70_HTML.gif.

By (H3), we have A θ = θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq37_HTML.gif, and
( A θ u ) ( t ) = 0 1 G ( t , s ) f x ( s , 0 ) u ( s ) d s = λ 0 1 G ( t , s ) u ( s ) d s , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ10_HTML.gif
(3.6)

i.e., A θ = λ B http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq71_HTML.gif. By Lemma 2.3, 1 is not an eigenvalue of the linear operator A θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq38_HTML.gif. Since λ n < λ < λ n + 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq72_HTML.gif, n is an odd number, the sum of the algebraic multiplicities for all eigenvalues of A θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq38_HTML.gif lying in ( 1 , + ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq39_HTML.gif is an odd number. By Lemma 2.1, the operator A has at least one nonzero fixed point. So, the boundary value problem (1.1) has at least one nontrivial solution. □

Theorem 3.2 Suppose (H0), (H2), (H3), (H4) are satisfied and n is an even number in (H4). In addition, assume that
f ( t , x ) x > 0 , t [ 0 , 1 ] , x ( , + ) , x 0 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ11_HTML.gif
(3.7)

Then the boundary value problem (1.1) has at least three nontrivial solutions: one positive solution, one negative solution and one sign-changing solution.

Proof By (3.7), we have
f ( t , x ) > 0 , t [ 0 , 1 ] , x > 0 ; f ( t , x ) < 0 , t [ 0 , 1 ] , x < 0 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ12_HTML.gif
(3.8)

By (3.1) and (3.8), (3.4) and (3.5) hold. From (H3), (3.6) holds, and by Lemma 2.3, 1 is not an eigenvalue of the linear operator A θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq38_HTML.gif. Since λ n < λ < λ n + 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq57_HTML.gif, n is an even number, the sum of the algebraic multiplicities for all eigenvalues of A θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq38_HTML.gif lying in ( 1 , + ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq41_HTML.gif is an even number.

Obviously, from (3.8) and (2.2), we easily get
F ( P { θ } ) P { θ } , F ( ( P ) { θ } ) ( P ) { θ } . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ13_HTML.gif
(3.9)

From (2.1), we easily know that B ( P { θ } ) P { θ } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq73_HTML.gif, B ( ( P ) { θ } ) ( P ) { θ } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq74_HTML.gif.

So, by (3.9), we have
A ( P { θ } ) int P , A ( ( P ) { θ } ) int ( P ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equl_HTML.gif

By Lemma 2.2, the boundary value problem (1.1) has at least three nontrivial solutions containing a positive solution, a negative solution and a sign-changing solution. □

Remark By Theorem 3.1 and Theorem 3.2, we can see that the methods used in this paper are different from [1121], and the results are different from [1121].

Example 3.1 We consider the following integral boundary value problem:
{ x ( t ) = f ( t , x ( t ) ) , 0 t 1 , x ( 0 ) = 0 , x ( 1 ) = 0 1 s x ( s ) d s , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ14_HTML.gif
(3.10)
where
f ( t , x ) = { 5 x + t x 40 , t [ 0 , 1 ] , x ( 4 , + ) , t 31 3 ( x 1 ) + 11 + t , t [ 0 , 1 ] , x ( 1 , 4 ] , 10 x + ( 1 + t ) x 5 3 , t [ 0 , 1 ] , x [ 1 , 1 ] , t + 29 7 ( x + 1 ) 11 t , t [ 0 , 1 ] , x ( 8 , 1 ] , 5 x + t x 3 , t [ 0 , 1 ] , x ( , 8 ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equm_HTML.gif

By simple calculations, we get that λ 1 7.53 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq75_HTML.gif, λ 2 37.41 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq76_HTML.gif, λ 3 86.80 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq77_HTML.gif, λ = 10 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq78_HTML.gif. So, λ 1 < λ < λ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq79_HTML.gif. It is easy to know that the nonlinear term f satisfies (H1), (H2), (H3), (H4). Thus, the boundary value problem (3.10) has at least a nontrivial solution by Theorem 3.1.

Example 3.2 We consider the following integral boundary value problem:
{ x ( t ) = f ( t , x ( t ) ) , 0 t 1 , x ( 0 ) = 0 , x ( 1 ) = 0 1 s x ( s ) d s , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equ15_HTML.gif
(3.11)
where
f ( t , x ) = { 6 x + t x , t [ 0 , 1 ] , x ( 4 , + ) , t 18 3 ( x 1 ) + 41 + t , t [ 0 , 1 ] , x ( 1 , 4 ] , 40 x + ( 1 + t ) x 5 3 , t [ 0 , 1 ] , x [ 1 , 1 ] , t + 7 7 ( x + 1 ) 41 t , t [ 0 , 1 ] , x ( 8 , 1 ] , 6 x + t x 3 , t [ 0 , 1 ] , x ( , 8 ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_Equn_HTML.gif

By simple calculations, we get that λ 1 7.53 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq75_HTML.gif, λ 2 37.41 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq76_HTML.gif, λ 3 86.80 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq77_HTML.gif, λ = 40 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq80_HTML.gif. So λ 2 < λ < λ 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq81_HTML.gif. It is easy to know that the nonlinear term f satisfies (H2), (H3), (H4) and f ( t , x ) x > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq82_HTML.gif, t [ 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq83_HTML.gif, x 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-147/MediaObjects/13661_2012_Article_240_IEq84_HTML.gif. The boundary value problem (3.11) has at least three nontrivial solutions containing a positive solution, a negative solution and a sign-changing solution by Theorem 3.2.

Declarations

Acknowledgements

The authors would like to thank the reviewers for carefully reading this article and making valuable comments and suggestions. The project is supported by the National Natural Science Foundation of P.R. China (10971179), Research Award Fund for Outstanding Young Scientists of Shandong Province (BS2012SF022, BS2010SF023), Natural Science Foundation of Shandong Province (ZR2010AM035) and SDUST CISE Research Fund.

Authors’ Affiliations

(1)
Department of Applied Mathematics, Shandong University of Science and Technology
(2)
Jiamusi Hongqi Middle School

References

  1. Gupta CP: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equations. J. Math. Anal. Appl. 1992, 168: 540-551. 10.1016/0022-247X(92)90179-HMathSciNetView Article
  2. Zhang GW, Sun JX: Multiple positive solutions of singular second order three-point boundary value problems. J. Math. Anal. Appl. 2006, 317: 442-447. 10.1016/j.jmaa.2005.08.020MathSciNetView Article
  3. Zhang GW, Sun JX: Positive solutions of m -point boundary value problems. J. Math. Anal. Appl. 2004, 291: 406-418. 10.1016/j.jmaa.2003.11.034MathSciNetView Article
  4. Xu X, Sun JX: On sign-changing solution for some three-point boundary value problems. Nonlinear Anal. 2004, 59: 491-505.MathSciNetView Article
  5. Ma RY: Nodal solutions for a second-order m -point boundary value problem. Czechoslov. Math. J. 2006, 56: 1243-1263. 10.1007/s10587-006-0092-7View Article
  6. Zhang KM, Xie XJ: Existence of sign-changing solutions for some asymptotically linear three-point boundary value problems. Nonlinear Anal. 2009, 70: 2796-2805. 10.1016/j.na.2008.04.004MathSciNetView Article
  7. Gallardo JM: Second order differential operators with integral boundary conditions and generation of semigroups. Rocky Mt. J. Math. 2000, 30: 1265-1292. 10.1216/rmjm/1021477351MathSciNetView Article
  8. Timoshenko S: Theory of Elastice Stability. McGraw-Hill, New York; 1961.
  9. Webb JRL, Infante G: Positive solutions of nonlocal boundary value problems: a unified approach. J. Lond. Math. Soc. 2006, 74: 673-693. 10.1112/S0024610706023179MathSciNetView Article
  10. Karakostas GL, Tsamatos PC: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems. Electron. J. Differ. Equ. 2002, 30: 1-17.
  11. Yang ZL: Existence of nontrivial solutions for a nonlinear Sturm-Liouville problem with integral boundary value conditions. Nonlinear Anal. 2008, 68: 216-225. 10.1016/j.na.2006.10.044MathSciNetView Article
  12. Jankowski T: Differential equations with integral boundary conditions. J. Comput. Appl. Math. 2002, 147: 1-8. 10.1016/S0377-0427(02)00371-0MathSciNetView Article
  13. Yang ZL: Positive solutions of a second order integral boundary value problem. J. Math. Anal. Appl. 2006, 321: 751-765. 10.1016/j.jmaa.2005.09.002MathSciNetView Article
  14. Li Y, Li F: Sign-changing solutions for second-order integral boundary value problems. Nonlinear Anal. 2008, 69: 1179-1187. 10.1016/j.na.2007.06.024MathSciNetView Article
  15. Zhang XQ, Sun JX: On multiple sign-changing solutions for some second-order integral boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 44: 1-15.
  16. Li HT, Liu YS: On sign-changing solutions for a second-order integral boundary value problem. Comput. Math. Appl. 2011, 62: 651-656. 10.1016/j.camwa.2011.05.046MathSciNetView Article
  17. Zhang XM, Feng MQ, Ge WG: Existence of solutions of boundary value problems with integral boundary conditions for second-order impulsive integro-differential equations in Banach spaces. J. Comput. Appl. Math. 2010, 233: 1915-1926. 10.1016/j.cam.2009.07.060MathSciNetView Article
  18. Feng MQ, Zhang XM, Ge WG: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2011., 2011: Article ID 720702
  19. Feng MQ, Ji DH, Ge WG: Positive solutions for a class of boundary value problem with integral boundary conditions in Banach spaces. J. Comput. Appl. Math. 2008, 222: 351-363. 10.1016/j.cam.2007.11.003MathSciNetView Article
  20. Feng MQ: Existence of symmetric positive solutions for a boundary value problem with integral boundary conditions. Appl. Math. Lett. 2011, 24: 1419-1427. 10.1016/j.aml.2011.03.023MathSciNetView Article
  21. Feng MQ, Pang HH: A class of three-point boundary-value problems for second-order impulsive integro-differential equations in Banach spaces. Nonlinear Anal. 2009, 70: 64-82. 10.1016/j.na.2007.11.033MathSciNetView Article
  22. Sun JX: Nonlinear Functional Analysis and Applications. Science Press, Beijing; 2008.
  23. Sun JX, Liu XY: Computation of topological degree for nonlinear operators and applications. Nonlinear Anal. 2008, 69: 4121-4130. 10.1016/j.na.2007.10.042MathSciNetView Article
  24. Sun JX, Liu XY: Computation of topological degree in ordered Banach spaces with lattice structure and its application to superlinear differential equations. J. Math. Anal. Appl. 2008, 348: 927-937. 10.1016/j.jmaa.2008.05.023MathSciNetView Article
  25. Liu XY, Sun JX: Computation of topological degree of unilaterally asymptotically linear operators and its applications. Nonlinear Anal. 2009, 71: 96-106. 10.1016/j.na.2008.10.032MathSciNetView Article

Copyright

© Li and Sun; licensee Springer 2012

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.