Lie group analysis and similarity solutions for hydromagnetic Maxwell fluid through a porous medium
 Khaled Saad Mekheimer^{1}Email author,
 Mostafa Fatouh ElSabbagh^{2} and
 Rabea Elshennawy AboElkhair^{1}
DOI: 10.1186/16872770201215
© Mekheimer et al; licensee Springer. 2012
Received: 20 August 2011
Accepted: 13 February 2012
Published: 13 February 2012
Abstract
The equations of two dimensional incompressible fluid flow for hydromagnetic Maxwell fluid through a porous medium have been studied. Lie group analysis has been employed and the group invariant solutions are obtained. Solutions corresponding to translational and rotational symmetries are obtained. A boundary value problem for the translational symmetry is investigated and the results are also sketched graphically. The effects of physical parameters have been noticed.
MSC 2011: 53C11; 76S05.
Keywords
lie point symmetries similarity solutions Maxwell fluid porous medium MHD1 Introduction
NonNewtonian fluid behavior, which is characterized by a nonlinear viscosity dependence on the strain, can be observed in many complex fluids, for example, polymers, dense colloidal dispersions, surfactant solutions, micellar solutions chemical, and petroleum industries [1]. In addition to shearthinning and shearthickening behavior, a dynamic or even chaotic response can be found in some fluids subjected to a steady shear flow. Because of the difficulty to suggest a single model which exhibits all properties of nonNewtonian fluids, they cannot be described as simply as Newtonian fluids. Due to this fact many models of constitutive equations have been proposed and most of them are empirical or semi empirical [2]. Amongst these the differential type fluid model gained considerable attention of many researchers. The flows of nonNewtonian fluids are not only important because of their technological significance but also in the interesting mathematical features presented by the equations governing the flow. However on the other hand there are much controversies on these models as well. Such fluids are also inadequate to describe the relaxation phenomena. For a complete and detailed discussion of the relevant issues for differential type fluids, we refer the readers to Dunn and Rajagopal [3] and Aksel [4].
The nonNewtonian fluids are mainly classified into three types namely differential, rate and integral. The simplest subclass of the rate type fluids is the Maxwell model [5]. This fluid model can very well describe the relaxation time effects. Specifically the Maxwell fluid model has been used for the viscoelastic flows where the dimensionless relaxation time is small. However in some more concentrated polymeric fluids the Maxwell model is also useful for large dimensionless relaxation time. Some recent investigations dealing with the flows of Maxwell fluids are given in the references [6–9].
Modified Darcy's law for a Maxwell fluid including the Hall current has been used for the modeling. In fact, the Hall effect is important when the Hall parameter, which is the ratio between the electroncyclotron frequency and the electronatomcollision frequency, is high. This happens, when the magnetic field is high or when the collision frequency is low. In most cases, the Hall term has been ignored in applying Ohm's law as it has no marked effects for small and moderate values of the magnetic field. However, the current trend in the application of magnetohydrodynamics is towards a strong magnetic field, so that the influence of electromagnetic force is noticeable. Under these conditions, the Hall current is important and it has marked effects on the magnitude and direction of the current density and consequently on the magneticforce term. Therefore, it is of interest to study the influence of the Hall current on the flow.
In the Earth there are a large number of problems that can be described by the interaction of a low viscosity fluid (water, oil, gas, magma) in a permeable (possibly deformable) matrix. Darcy's Law is the classic, empirically derived equation for the flux of a low viscosity fluid in a permeable matrix. This equation assumes that flow in the pores or cracks of the medium is essentially laminar and provides the average flux through a representative area that is larger than the pore scale and smaller than the scale of significant permeability variation (if such a scale exists). Various approaches have been used to justify this rule from first principles (see e.g., Dagan [10]) but it generally seems to work.
In this article, we apply the socalled symmetry methods for a particular problem of fluid mechanics. The main advantage of such methods is that they can successfully be applied to nonlinear differential equations [11–13]. The similarity solutions are quite popular because they result in the reduction of the independent variables of the problem. The symmetry transformations method transform the given family of equations of n independent variables, say, to another family of equations of n  1 independent variables, which can further be solved [14, 15]. The fundamental concepts of this approach can be found in [16–19]. In our case, the problem under investigation is (2 + 1)nonlinear partial differential equations (PDEs). Hence, any similarity solution will transform the system of (n + 1)nonlinear PDEs into a system of (n)nonlinear PDEs and any similarity solution will transform the system of (2)nonlinear PDEs into a system of ordinary differential equations (ODEs).
Many authors used Lie group analysis method to obtain the exact solutions for some problems in fluid mechanics. Yurusoy and Pakdemirli [20] investigated the boundary layer equations of a nonNewtonian fluid model in which the shear stress is an arbitrary function of the velocity gradient. Yurusoy et al. [21] have obtained the solution for the creeping flow of the second grade fluid. Also the twodimensional equations of motions for the slowly flowing and heat transfer in second grade fluid in cartesian coordinates neglecting the inertial terms are considered by Yürüsoy [22]. Shahzad et al. [23] found the analytical solution of a micropolar fluid by using the Lie group analysis. Recently, Mekheimer et al. studied the Lie group analysis and similarity solutions for a couple stress fluid with heat transfer [24], Lie point symmetries and similarity solutions for an electrically conducting Jeffrey fluid [25] and Lie point symmetries and similarity solution for a micropolar fluid through a porous medium [26].
From discussion above, we attend to find the analytical (similarity) solutions for the flow problem of an incompressible hydromagnetic Maxwell fluid through a porous medium using Lie group analysis. The problem is presented as follows, in Section 2, the equations governing twodimensional motion of an incompressible, MHD Maxwell fluid are introduced. In Section 3, the basic idea of the Lie group analysis method are given and used to find the isovector field of our equations. The similarity solutions corresponding to translational and rotational symmetry are obtained in Sections 3.1 and 3.2. Also a boundary value problem for the similarity solutions corresponding to translational symmetry are obtained in Section 4. The graphs for a boundary value problem (magma flow) are plotted and discussed in Section 5. Finally a concluding remarks are pointed in Section 6.
2 Equations of motion
where ${\nabla}^{2}=\frac{{\partial}^{2}}{\partial {\tilde{x}}^{2}}+\frac{{\partial}^{2}}{\partial {\tilde{y}}^{2}},\theta =\frac{1}{1+{m}^{2}},m=\frac{\partial {B}_{0}}{e{n}_{e}}$ are the fluid velocities in the $\stackrel{\u0303}{x},\u1ef9$ directions, $\stackrel{\u0303}{p}$ is the pressure, and $\stackrel{\u0303}{t}$ is the time. Here $\stackrel{\u0303}{\lambda}$, ρ, μ, φ, k, e, n_{ e }, σ, B_{0}, and m are the relaxation time, density, coefficient of viscosity, porosity of the porous medium, permeability, electric charge, the number density of electrons, electrical conductivity of the fluid, magnetic field and Hall parameter respectively.
where $R=\frac{\rho LU}{\mu}$ is the Reynolds number, $M=\frac{\sigma {B}_{0}^{2}L}{\rho U}$ is the Hartmann number and L, U are the dimensionless length and velocity, respectively.
3 Lie group analysis and isovector fields
where D_{ ij }= D_{ i }(D_{ j }) = D_{ j }(D_{ i }) = D_{ ji }and ${u}_{\alpha ,i}=\frac{\partial {u}_{\alpha}}{\partial {x}_{i}}$.
where a_{ i }, i = 1,..., 5 are arbitrary constants, δ(t) is arbitrary function of the variable t only.
3.1 Translational symmetry
where c_{4} and c_{5} are arbitrary constants.
3.2 Rotational symmetry
where ${\beta}_{1}=\frac{{a}_{3}}{{a}_{1}},\phantom{\rule{2.77695pt}{0ex}}{\beta}_{2}=\frac{{a}_{2}}{{a}_{1}}$, and G_{3} are functions of ψ and t.
where ψ and ϕ are the same in (29).
4 Solutions for hydromagnetic Maxwell fluid through a porous medium: (magmatic fluid) problem
where W = m_{0}m_{1}  m_{2}, α_{1} and α_{2} are the negative roots of Eq. (24).
5 Discussion of the magmatic fluid problem
This section deals with the graphics on the magmatic fluid. So, the interpretation of the relaxation time λ, Reynolds number R, Hartmann number M, Hall parameter m, the time parameter t, and the permeability parameter k have been studied on the pressure p, and the x and y components of the velocity distributions u and v.
Figures 1 and 2 show that as the permeability parameter k increases the horizontal velocity component u increases, while the vertical velocity component v decreases. Figures 3 and 4 illustrate the variation of the velocity components u and v with the Hall parameter m, which indicate that for small values of t (or at initial values of t) the curves are the same with no obvious different which for t > 2, the gap between the curves appears. Also, we can see that curves with small values of m (m = 0, 0.5) are vanishing rabidly than those for (m = 1,1.5) i.e., as the Hall parameter m increases the disturbance of the velocity components increase. (decreasing the number of density electrons or the electronic charges).
Figures 5 and 6 illustrate the variations of u and v with t for different values of the relaxation time λ, which show that for small values λ the disturbance in u and v will vanish rapidly than those as λ increases. Also, the figures show that the disturbance in u and v for a Newtonian fluid less than those for a NonNewtonian fluid in the case of magma flow.
Figures 7 and 8 show that the variation with the Reynolds number R. As R increases the velocity components u and v increase. Figures 9 and 10 show that as the Hartmann number M increases the velocity components u and v decrease, i.e., the fluid moves as a block and takes a constant value for large values of M. Figures 11 and 12 illustrate the variation of u and v with t for different values of the y axis, which show that the velocity components take the initial values of the magma plate at y = 0 and the velocity components decreases as y increases. Figures 13 and 14 describe the variations of u and v with t for different values of U_{0} and V_{0} (velocities of the magma plate), the figures show that the gab between the curves decreases with time and finally vanishes and for certain values of t the velocity components u and v equal to zero. Also, the magnitudes of u and v increase with increasing U_{0} and V_{0.}
Other cases of symmetry will be considered for other boundary value problems else where for other applications.
6 Concluding remarks
The significant features of Lie group analysis for hydromagnetic Maxwell fluid through a porous medium have been presented. Similarities solutions are obtained and applied to an important phenomena in geology, which is the magmatic fluid. The main points have been summarized as follows:

As the Hall parameter m increases the disturbances of the velocity components are increase.

The disturbances in the fluid velocity components for a Newtonian fluid are less than those for a nonNewtonian fluid (magmatic fluid)

The magmatic fluid moves as a block for large values of the Hartmann number M.

The pressure near to the magma plate is higher for a magnetomagma flow than that for a magma flow without a magnetic field. Also, this pressure for a porous medium is less than that for a medium with high permeability.

The pressure increase near to the magma plate and take the constant value of the pressure deep in the magmatic fluid for large values of y.
Declarations
Authors’ Affiliations
References
 Zhaosheng Y, Jianzhong L: Numerical research on the coherent structure in the viscoelastic secondorder mixing layers. Appl Math Mech 1998, 19: 671–677.View ArticleGoogle Scholar
 Shifang H: Constitutive Equation and Computational Analytical Theory of NonNewtonian Fluids. Science Press, Beijing; 2000.Google Scholar
 Zhaosheng JE, Rajagopal KR: Fluids of differential type: critical review and thermodynamic analysis. Int J Eng Sci 1995, 33: 689–729. 10.1016/00207225(94)00078XView ArticleGoogle Scholar
 Aksel N: A brief note from the editor on the secondorder fluid. Acta. Mech 2002, 157: 235–236. 10.1007/BF01182167MATHView ArticleGoogle Scholar
 Maxwell JC: On the dynamical theory of gases. Philos Trans R Soc Lond A 1866, 157: 26–78.Google Scholar
 Fetecau C, Fetecau C: Decay of a potential vortex in a Maxwell fluid. Int J Nonlinear Mech 2003, 38: 985–990. 10.1016/S00207462(02)000422MATHMathSciNetView ArticleGoogle Scholar
 Fetecau C, Zierep J, Angew Z: The RayleighStokesproblem for a Maxwell fluid. Math Phys 2003, 54: 1086–1093.MATHGoogle Scholar
 Hayat T, Nadeem S, Asghar S: Periodic unidirectional flows of a viscoelastic fluid with fractional Maxwell model. Appl Math Comput 2004, 151: 153–161. 10.1016/S00963003(03)003291MATHMathSciNetView ArticleGoogle Scholar
 Tan WC, Pan WX, Xu MY: A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int J Nonlinear Mech 2003, 38: 645–650. 10.1016/S00207462(01)001214MATHView ArticleGoogle Scholar
 Dagan G: Flow and Transport in Porous Formations. SpringerVerlag, Berlin; 1989.View ArticleGoogle Scholar
 Ali AT: A note on the Expfunction method and its application to nonlinear equations. Phys Scr 2009., 79: 025006Google Scholar
 ElSabbagh MF, Ali AT: New generalized Jacobi elliptic function expansion method. Commun Nonl Sci Numer Simul 2008, 13: 1758–1766. 10.1016/j.cnsns.2007.04.014MATHMathSciNetView ArticleGoogle Scholar
 Ali AT: New generalized Jacobi elliptic function rational expansion method. J Comput Appl Math 2011, 235(14):4117–4127. 10.1016/j.cam.2011.03.002MATHMathSciNetView ArticleGoogle Scholar
 Ali AT: New exact solutions of Einstein vacuum equations for rotating axially symmetric fields. Phys Scr 2009., 79: 035006Google Scholar
 Attallah SK, ElSabbagh MF, Ali AT: Isovector fields and similarity solutions of Einstein vacuum equations for rotating fields. Commun Nonl Sci Numer Simul 2007, 12: 1153–1161. 10.1016/j.cnsns.2006.02.004MATHMathSciNetView ArticleGoogle Scholar
 Bluman GW, Kumei S: Symmetries and differential equations. In Applied Mathematical sciences. Volume 81. SpringerVerlag, New York; 1989.Google Scholar
 Olver PJ: Equivalence, Invariance and Symmetry. Cambridge University, Cambridge; 1995.View ArticleGoogle Scholar
 Ovsiannikov LV: Group Analysis of Differential Equations. Cambridge cademic Press, New York; 1982.Google Scholar
 Stephani H, MacCallum M: Differential equations: Their solutions using symmetries. Cambridge University Press, Cambridge; 1989.Google Scholar
 Yürüsoy M, Pakdemirli M: Group classification of a nonNewtonian fluid model using classical approach and equivalence transformations. Int J Nonlinear Mech 1999, 34: 341–346. 10.1016/S00207462(98)000377MATHView ArticleGoogle Scholar
 Yürüsoy M, Pakdermirli M, Noyan OF: Lie group analysis of creeping flow of a second grade. Int J Nonlinear Mech 2001, 36: 955–960. 10.1016/S00207462(00)000603MATHView ArticleGoogle Scholar
 Yürüsoy M: Similarity solutions for creeping flow and heat transfer in second grade fluids. Int J Nonlinear Mech 2004, 39: 665–672. 10.1016/S00207462(03)000209MATHView ArticleGoogle Scholar
 Shahzad F, Sajid M, Hayat T, Ayub M: Analytic solution for flow of a micropolar fluid. Acta Mech 2007, 188: 93–102. 10.1007/s0070700603984MATHView ArticleGoogle Scholar
 Mekheimer KhS, Husseny SZA, Ali AT, AboElkhair RE: Lie Group Analysis and Similarity Solutions for a Couple Stress Fluid with Heat Transfer. J Adv R Appl Math 2010, 2: 1–17.MathSciNetView ArticleGoogle Scholar
 Mekheimer KhS, Husseny SZA, Ali AT, AboElkhair RE: Lie point symmetries and similarity solutions for an electrically conducting Jeffrey fluid. Phys Scr 2011., 83: 015017Google Scholar
 Mekheimer KhS, Husseny SZA, Ali AT, AboElkhair RE: Similarity Solution for Flow of a MicroPolar Fluid Through a Porous Medium. Applications and Applied Mathematics 2011, 6: 2082–2093.MathSciNetGoogle Scholar
Copyright
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.