In this paper, we consider the generalized Ito-type coupled Korteweg-de Vries (KdV) system [

1]

It is well known that coupled nonlinear systems in which a KdV structure is embedded occur naturally in shallow water wave problems [2, 3]. When $\alpha =-6$, $\beta =-2$ and $\gamma =-1$, the system (1a) and (1b) is called Ito’s system and it describes the interaction process of two internal long waves [4, 5]. It should be noted that in the absence of the effect of *v*, the system (1a) and (1b) reduces to the ordinary KdV equation. In [6] it has been shown that this Ito’s system can be a member of a bi-Hamiltonian integrable hierarchy. The numerical methods for this system are very limited [1]. However, Xu and Shu [3] developed local discontinuous Galerkin methods for Ito’s system and proved the ${L}^{2}$ stability of these methods and, as a result, showed some good numerical results. Recently, in [1], the generalized Ito-type coupled KdV system (1a) and (1b) was constructed as a multi-symplectic Hamiltonian partial differential equation by introducing some new variables, and multi-symplectic numerical methods were applied to investigate this system.

In this paper, we derive conservation laws for the generalized Ito-type coupled KdV system (1a) and (1b). It is well known that the conservation laws play a central role in the solution and reduction of partial differential equations. Conservation laws are mathematical expressions of the physical laws, such as conservation of energy, mass, momentum and so on. In the literature, conservation laws have been extensively used in studying the existence, uniqueness and stability of solutions of nonlinear partial differential equations (see, for example, [7–9]). Conservation laws have also been applied in the development and use of numerical methods (see for example, [10, 11]). Recently, conserved vectors associated with Lie point symmetries have been used to find exact solutions (by exploiting a double reduction method) of some classical partial differential equations [12–14]. Thus, it is important to derive all the conservation laws for a given differential equation.

For variational problems, the celebrated Noether theorem [15] provides an elegant way to construct conservation laws. In fact, it gives an explicit formula for determining a conservation law once a Noether symmetry associated with a Lagrangian is known for an Euler-Lagrange equation. Thus, the knowledge of a Lagrangian is essential in this case. However, there are differential equations, such as scalar evolution differential equations, which do not have a Lagrangian. In such cases, several methods [16–27] have been developed by researchers about the construction of conserved quantities. Comparison of several different methods for computing conservation laws can be found in [21, 27].