Open Access

Solvability of right focal boundary value problems with superlinear growth conditions

Boundary Value Problems20122012:60

DOI: 10.1186/1687-2770-2012-60

Received: 5 March 2012

Accepted: 2 May 2012

Published: 22 June 2012

Abstract

In this paper, we consider n th-order two-point right focal boundary value problems

https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-60/MediaObjects/13661_2012_Article_172_Equa_HTML.gif

where f : [ 0 , 1 ] × R n R is a L p -Carathéodory ( 1 p < ) function and satisfies superlinear growth conditions. The existence and uniqueness of solutions for the above right focal boundary value problems are obtained by Leray-Schauder continuation theorem and analytical technique. Meanwhile, as an application of our results, examples are given.

MSC:34B15.

Keywords

right focal boundary value problem Leray-Schauder continuation theorem existence uniqueness

1 Introduction

In this paper, we shall discuss the existence and uniqueness of solutions of right focal boundary value problems for n th-order nonlinear differential equation
u ( n ) ( t ) = f ( t , u ( t ) , u ( t ) , , u ( n 1 ) ( t ) ) , a.e. t ( 0 , 1 )
(1.1)
subject to the boundary conditions ( 1 m n 1 )
{ u ( i ) ( 0 ) = 0 , i = 0 , 1 , , m 1 , u ( i ) ( 1 ) = 0 , i = m , m + 1 , , n 1 ,
(1.2)
where f : [ 0 , 1 ] × R n R = ( , + ) satisfies the L p -Carathéodory ( 1 p < ) conditions, that is,
  1. (i)

    for each ( u 0 , u 1 , , u n 1 ) R n , the function t [ 0 , 1 ] f ( t , u 0 , u 1 , , u n 1 ) R is measurable on [ 0 , 1 ] ;

     
  2. (ii)

    for a.e. t [ 0 , 1 ] , the function ( u 0 , u 1 , , u n 1 ) f ( t , u 0 , u 1 , , u n 1 ) is continuous on R n ;

     
  3. (iii)

    for each r > 0 , there exists an α r L p [ 0 , 1 ] such that | f ( t , u 0 , u 1 , , u n 1 ) | α r for a.e. t [ 0 , 1 ] and all ( u 0 , u 1 , , u n 1 ) R n with j = 0 n 1 u j 2 r 2 .

     

As it is well known, the right focal boundary value problems have attracted many scholars’ attention. Among a substantial number of works dealing with right focal boundary value problems, we mention [116, 1825].

Recently, using the Leray-Schauder continuation theorem, Hopkins and Kosmatov [16] have obtained sufficient conditions for the existence of at least one sign-changing solution for third-order right focal boundary value problems such as
{ u ( t ) = f ( t , u ( t ) , u ( t ) , u ( t ) ) , a.e. t ( 0 , 1 ) , u ( 0 ) = u ( 0 ) = u ( 1 ) = 0
and
{ u ( t ) = f ( t , u ( t ) , u ( t ) , u ( t ) ) , a.e. t ( 0 , 1 ) , u ( 0 ) = u ( 1 ) = u ( 1 ) = 0 ,

where f : [ 0 , 1 ] × R 3 R satisfies the L p -Carathéodory ( 1 p < ) conditions and the linear growth conditions.

Motivated by [16], in this paper we study the solvability for general n th-order right focal boundary value problems (1.1), (1.2). The existence and uniqueness of sign-changing solutions for the problems are obtained by Leray-Schauder continuation theorem and analytical technique. We note that the nonlinearity of f in our problem allows up to the superlinear growth conditions.

The rest of this paper is organized as follows. In Section 2, we give some lemmas which help to simplify the proofs of our main results. In Section 3, we discuss the existence and uniqueness of sign-changing solutions for n th-order right focal boundary value problems (1.1), (1.2) by Leray-Schauder continuation theorem and analytical technique, and give two examples to demonstrate our results. Our results improve and generalize the corresponding results in [16].

2 Preliminary

In this section, we give some lemmas which help to simplify the presentation of our main results.

Let A C [ 0 , 1 ] denote the space of absolutely continuous functions on [ 0 , 1 ] , and C n 1 [ 0 , 1 ] denote the Banach space of ( n 1 ) times continuously differentiable functions defined on [ 0 , 1 ] with the norm u C n 1 = max { u ( i ) , i = 0 , 1 , , n 1 } , where u ( i ) = sup t [ 0 , 1 ] | u ( i ) ( t ) | . Let L p [ 0 , 1 ] be the usual Lebesgue space on [ 0 , 1 ] with norm p , 1 p < .

For 1 p < , we introduce the Sobolev space
W n , p ( 0 , 1 ) = { u : [ 0 , 1 ] R | u ( i ) A C [ 0 , 1 ] , i = 0 , 1 , , n 1 , u ( n ) L p [ 0 , 1 ] }
with the norm u = u C n 1 + u ( n ) p . Let us consider a special subspace
W r n , p ( 0 , 1 ) = { u W n , p ( 0 , 1 ) : u satisfies ( 1.2 ) } .

Then it is clear that W r n , p ( 0 , 1 ) is closed in W n , p ( 0 , 1 ) and hence is itself a Banach space with the norm u = u C n 1 + u ( n ) p .

Lemma 2.1 ([21])

Let G ( t , s ) be the Green’s function of the differential equation ( 1 ) n m × u ( n ) ( t ) = 0 subject to the boundary conditions (1.2). Then

G ( t , s ) = ( 1 ) n m ( n 1 ) ! { i = 0 m 1 ( n 1 i ) t i ( s ) n i 1 , 0 s t 1 , i = m n 1 ( n 1 i ) t i ( s ) n i 1 , 0 t s 1
and
i t i G ( t , s ) 0 , ( t , s ) [ 0 , 1 ] × [ 0 , 1 ] , i = 0 , 1 , , m .
Lemma 2.2 Let g L p [ 0 , 1 ] . Then the solution of the differential equation
u ( n ) ( t ) = g ( t ) , a.e. t ( 0 , 1 )
subject to the boundary conditions (1.2) satisfies
u ( j ) A j g p , j = 0 , 1 , , n 1 ,
(2.1)
where for p > 1 ( 1 p + 1 q = 1 ),
A j = { ( 1 ) ( n m ) ( n j 1 ) ! [ 0 1 ( i = 0 m j 1 ( n j 1 i ) ( s ) n j 1 i ) q d s ] 1 q , j = 0 , 1 , , m 1 , 1 ( n j 1 ) ! [ q ( n j 1 ) + 1 ] 1 q , j = m , m + 1 , , n 1
(2.2)
and for p = 1 ,
A j = { ( 1 ) n m ( n j 1 ) ! i = 0 m j 1 ( n j 1 i ) ( 1 ) n j 1 i , j = 0 , 1 , , m 1 , 1 ( n j 1 ) ! , j = m , m + 1 , , n 1 .
(2.3)
Proof Firstly, let us show the lemma for case p > 1 . Since
u ( t ) = ( 1 ) n m 0 1 G ( t , s ) g ( s ) d s ,
we have that for j = 0 , 1 , , n 1 ,
u ( j ) ( t ) = ( 1 ) n m 0 1 j t j G ( t , s ) g ( s ) d s = : ( 1 ) n m 0 1 G j ( t , s ) g ( s ) d s ,
where, for j = 0 , 1 , , m 1 ,
G j ( t , s ) = ( 1 ) n m ( n 1 ) ! { i = j m 1 ( n 1 i ) i ! ( i j ) ! t i j ( s ) n i 1 , 0 s t 1 , i = m n 1 ( n 1 i ) i ! ( i j ) ! t i j ( s ) n i 1 , 0 t s 1 = ( 1 ) n m ( n j 1 ) ! { i = 0 m j 1 ( n j 1 i ) t i ( s ) n j 1 i , 0 s t 1 , i = m j n j 1 ( n j 1 i ) t i ( s ) n j 1 i , 0 t s 1
and for j = m , m + 1 , , n 1 ,
G j ( t , s ) = ( 1 ) n m ( n 1 ) ! { 0 , 0 s t 1 , i = j n 1 ( n 1 i ) i ! ( i j ) ! t i j ( s ) n i 1 , 0 t s 1 = ( 1 ) n m ( n j 1 ) ! { 0 , 0 s t 1 , ( t s ) n j 1 , 0 t s 1 .
It follows by Hölder’s inequality that, for each j = 0 , 1 , , n 1 ,
| u ( j ) ( t ) | 0 1 | G j ( t , s ) | | g ( s ) | d s g p G j ( t , ) q g p max t [ 0 , 1 ] G j ( t , ) q , t [ 0 , 1 ]
and consequently, for each j = 0 , 1 , , n 1 ,
u ( j ) g p max t [ 0 , 1 ] G j ( t , ) q , t [ 0 , 1 ] .
(2.4)
But for j = m , m + 1 , , n 1 ,
max t [ 0 , 1 ] G j ( t , ) q q = max t [ 0 , 1 ] 0 1 | G j ( t , s ) | q d s = max t [ 0 , 1 ] 0 t | G j ( t , s ) | q d s + max t [ 0 , 1 ] t 1 | G j ( t , s ) | q d s = max t [ 0 , 1 ] t 1 | ( 1 ) n m ( n j 1 ) ! [ ( t s ) n j 1 ] | q d s = 1 [ ( n j 1 ) ! ] q max t [ 0 , 1 ] t 1 ( s t ) q ( n j 1 ) d s = 1 [ ( n j 1 ) ! ] q max t [ 0 , 1 ] ( 1 t ) q ( n j 1 ) + 1 q ( n j 1 ) + 1 = 1 [ ( n j 1 ) ! ] q [ q ( n j 1 ) + 1 ] = A j q .
It follows by (2.4) that for j = m , m + 1 , , n 1 ,
u ( j ) A j g p .
For j = 0 , 1 , , m 1 , by Lemma 2.1, G j ( t , s ) is nondecreasing in t, and thus
max t [ 0 , 1 ] G j ( t , ) q q = max t [ 0 , 1 ] 0 1 [ G j ( t , s ) ] q d s 0 1 [ max t [ 0 , 1 ] G j ( t , s ) ] q d s = 0 1 [ G j ( 1 , s ) ] q d s = 0 1 [ ( 1 ) n m ( n j 1 ) ! i = 0 m j 1 ( n j 1 i ) ( s ) n j 1 i ] q d s = A j q .
Hence, by (2.4) we have for j = 0 , 1 , , m 1 ,
u ( j ) A j g p .
In summary,
u ( j ) A j g p , j = 0 , 1 , , n 1 .
Next, we show the lemma for the case p = 1 . It is easy to see that for j = m , m + 1 , , n 1 ,
| u ( j ) ( t ) | 0 1 | G j ( t , s ) | | g ( s ) | d s = t 1 | ( 1 ) n m ( n j 1 ) ! [ ( t s ) n j 1 ] | | g ( s ) | d s = 1 ( n j 1 ) ! t 1 ( s t ) n j 1 | g ( s ) | d s ( 1 t ) n j 1 ( n j 1 ) ! t 1 | g ( s ) | d s 1 ( n j 1 ) ! g 1 = A j g 1 , t [ 0 , 1 ]
and thus for j = m , m + 1 , , n 1 ,
u ( j ) A j g 1 .
Also by Lemma 2.1, we have for j = 0 , 1 , , m ,
G j ( t , s ) 0 , ( t , s ) [ 0 , 1 ] × [ 0 , 1 ] ,
so that for each j = 0 , 1 , , m 1 , G j ( t , s ) is nondecreasing in t, it follows that
| u ( j ) ( t ) | 0 1 | G j ( t , s ) | | g ( s ) | d s 0 1 max t [ 0 , 1 ] G j ( t , s ) | g ( s ) | d s = 0 1 G j ( 1 , s ) | g ( s ) | d s = 0 1 [ ( 1 ) n m ( n j 1 ) ! i = 0 m j 1 ( n j 1 i ) ( s ) n j 1 i ] | g ( s ) | d s .
(2.5)
Let
ϕ ( t ) = ( 1 ) n m ( n j 1 ) ! i = 0 m j 1 ( n j 1 i ) ( t ) n j 1 i , t [ 0 , 1 ] .
Then
ϕ ( n m ) ( t ) = ( 1 ) n m ( n j 1 ) ! i = 0 m j 1 ( n j 1 i ) ( 1 ) n j 1 i ( n j 1 i ) ( n j 1 i 1 ) ( n j 1 i n + m + 1 ) t m j 1 i = ( 1 ) n m ( n j 1 ) ! i = 0 m j 1 ( n j 1 ) ! i ! ( m j 1 i ) ! ( 1 ) n j 1 i t m j 1 i = 1 ( m j 1 ) ! i = 0 m j 1 ( m j 1 ) ! i ! ( m j 1 i ) ! ( t ) m j 1 i = 1 ( m j 1 ) ! ( 1 t ) m j 1 0 , t [ 0 , 1 ] .
Since
ϕ ( k ) ( 0 ) = 0 , k = n m 1 , n m 2 , , 2 , 1 ,
we have for each k = n m 1 , n m 2 , , 2 , 1 ,
ϕ ( k ) ( t ) 0 , t [ 0 , 1 ] ,
in particular
ϕ ( t ) 0 , t [ 0 , 1 ] ,
so that ϕ ( t ) is nondecreasing on [ 0 , 1 ] . Hence by (2.5), we have
| u ( j ) ( t ) | 0 1 [ ( 1 ) n m ( n j 1 ) ! i = 0 m j 1 ( n j 1 i ) ( 1 ) n j 1 i ] | g ( s ) | d s = ( 1 ) n m ( n j 1 ) ! i = 0 m j 1 ( n j 1 i ) ( 1 ) n j 1 i 0 1 | g ( s ) | d s = A j g 1 .
Thus for j = 0 , 1 , , m 1 ,
u ( j ) A j g 1 .
In summary,
u ( j ) A j g 1 , j = 0 , 1 , , n 1 .

 □

Lemma 2.3 ([17] Leray-Schauder continuation theorem)

Let X be a real Banach space and let Ω be a bounded open neighbourhood of 0 in X. Let T : Ω ¯ X be a completely continuous operator such that for all λ ( 0 , 1 ) , and u Ω , u λ T u . Then the operator equation
u = T u

has a solution u Ω ¯ .

3 Main results

Now we are ready to establish our existence theorems of solutions for n th-order right focal boundary value problems (1.1), (1.2). The Leray-Schauder continuation theorem plays key roles in the proofs.

Theorem 3.1 Let f : [ 0 , 1 ] × R n R satisfy L p -Carathéodory’s conditions. Suppose that
  1. (i)
    there exist functions α j ( t ) , β j ( t ) , γ ( t ) L p [ 0 , 1 ] , j = 0 , 1 , , n 1 , and a constant σ > 1 such that
    | f ( t , u 0 , u 1 , , u n 1 ) | j = 0 n 1 α j ( t ) | u j | + j = 0 n 1 β j ( t ) | u j | σ + γ ( t )
    (3.1)
     
for a.e. t [ 0 , 1 ] and all ( u 0 , u 1 , , u n 1 ) R n ;(ii)
a : = 1 j = 0 n 1 A j α j p > 0 ,
(3.2)
where the constants A j , j = 0 , 1 , , n 1 are given in Lemma 2.2;(iii)
a σ σ 1 ( σ σ 1 σ σ 1 1 σ ) + b 1 σ 1 γ p < 0 ,
(3.3)

where b : = j = 0 n 1 A j σ β j p .

Then BVP (1.1), (1.2) has at least one solution in W n , p ( 0 , 1 ) .

Proof We define a linear mapping L : W r n , p ( 0 , 1 ) W n , p ( 0 , 1 ) L p [ 0 , 1 ] , by setting for u W r n , p ( 0 , 1 ) ,
( L u ) ( t ) = u ( n ) ( t ) .
We also define a nonlinear mapping N : W r n , p ( 0 , 1 ) L p [ 0 , 1 ] by setting for y W r n , p ( 0 , 1 ) ,
( N u ) ( t ) = f ( t , u ( t ) , u ( t ) , , u ( n 1 ) ( t ) ) .
Then, we note that N is a bounded continuous mapping by Lebesgue’s dominated convergence theorem. It is easy to see that the linear mapping L : W r n , p ( 0 , 1 ) L p [ 0 , 1 ] is a one-to-one mapping. Also, let the linear mapping K : L p [ 0 , 1 ] W r n , p ( 0 , 1 ) for u L p [ 0 , 1 ] be defined by
( K u ) ( t ) = ( 1 ) n m 0 1 G ( t , s ) u ( s ) d s ,

where G ( t , s ) is the Green’s function of BVP in Lemma 2.1.

Then K satisfies that for u L p [ 0 , 1 ] , K u W r n , p ( 0 , 1 ) and L K u = u , and also for u W r n , p ( 0 , 1 ) , K L u = u . Furthermore, it follows easily by using Arzelà-Ascoli theorem that K N : W r n , p ( 0 , 1 ) W r n , p ( 0 , 1 ) is a completely continuous operator.

Here we also note that u W r n , p ( 0 , 1 ) is a solution of BVP (1.1), (1.2) if and only if u W r n , p ( 0 , 1 ) is a solution of the operator equation
L u = N u
which is equivalent to the operator equation
u = K N u .
We now apply the Leray-Schauder continuation theorem to the operator equation u = K N u . To do this, it is sufficient to verify that the set of all possible solutions of the family of equations
u ( n ) ( t ) = λ f ( t , u ( t ) , u ( t ) , , u ( n 1 ) ( t ) ) , 0 < t < 1
(3.4)
with boundary conditions
{ u ( i ) ( 0 ) = 0 , i = 0 , 1 , , m 1 , u ( i ) ( 1 ) = 0 , i = m , m + 1 , , n 1
(3.5)

is, a priori, bounded in W r n , p ( 0 , 1 ) by a constant independent of λ ( 0 , 1 ) .

Suppose u ( t ) W r n , p ( 0 , 1 ) is a solution of BVP (3.4), (3.5) for some λ ( 0 , 1 ) . Then from (3.4), (3.1) and (2.2) in Lemma 2.2, we obtain
u ( n ) p = λ f ( t , u ( t ) , u ( t ) , , u ( n 1 ) ( t ) ) p f ( t , u ( t ) , u ( t ) , , u ( n 1 ) ( t ) ) p j = 0 n 1 α j u ( j ) p + j = 0 n 1 β j ( u ( j ) ) σ p + γ p j = 0 n 1 α j p u ( j ) + j = 0 n 1 β j p u ( j ) σ + γ p j = 0 n 1 A j α j p u ( n ) p + j = 0 n 1 A j σ β j p u ( n ) p σ + γ p = ( 1 a ) u ( n ) p + b u ( n ) p σ + γ p .
Consequently we obtain
b u ( n ) p σ a u ( n ) p + γ p 0 .
(3.6)

Now we have two cases to consider:

Case 1. b = 0 . In this case (3.6) becomes a u ( n ) p + γ p 0 , i.e. u ( n ) p γ p a . Thus from (2.1) in Lemma 2.2, we have that there exists a constant M > 0 which is independent of λ ( 0 , 1 ) such that
u = max { u ( j ) , j = 0 , 1 , , n 1 } + u ( n ) p max { A j , j = 0 , 1 , , n 1 } u ( n ) p + u ( n ) p ( 1 + max { A j , j = 0 , 1 , , n 1 } ) γ p a = : M .
(3.7)
Now, let
Ω = { u W r n , p ( 0 , 1 ) : u < M + 1 } .

Then estimate (3.7) show that λ K N has no fixed point on Ω. Hence KN has a fixed point in Ω ¯ by the Leray-Schauder continuation theorem.

Case 2. b > 0 . When γ p = 0 in (3.1), it is easy to see that BVP (1.1), (1.2) has the trivial solution u 0 . Thus assume γ p > 0 and let h ( t ) = b t σ a t + γ p , t 0 . Then from (3.6), h ( u ( n ) p ) 0 . It is easy to see that h ( t ) = 0 has a unique positive solution ( a b σ ) 1 σ 1 , say ρ . By (3.3), we have h ( ρ ) < 0 and thus h ( t ) = 0 has a minimum positive solution, say ρ ¯ which is less than ρ and independent of λ ( 0 , 1 ) . Hence it follows that if u ( n ) p ρ , then
u ( n ) p ρ ¯ < ρ .
(3.8)
From (2.1) in Lemma 2.2, we get
u = max { u ( j ) , j = 0 , 1 , , n 1 } + u ( n ) p ( 1 + max { A j , j = 0 , 1 , , n 1 } ) u ( n ) p .
(3.9)
Now, we let
Ω = { u W r n , p ( 0 , 1 ) : u < M + 1 , u ( n ) p < ρ } ,

where M = ( 1 + max { A j , j = 0 , 1 , , n 1 } ) ρ . Then estimates (3.8) and (3.9) show that λ K N has no fixed point on Ω. Consequently, KN has a fixed point in Ω ¯ by the Leray-Schauder continuation theorem. This completes the proof of the theorem. □

Corollary 3.1 Let conditions (i) and (ii) of Theorem 3.1 hold. If b = 0 or b > 0 is small enough, then BVP (1.1), (1.2) has at least one solution in W n , p ( 0 , 1 ) .

Corollary 3.2 Let conditions (i) and (ii) of Theorem 3.1 hold. If γ p > 0 is small enough, then BVP (1.1), (1.2) has at least one solution in W n , p ( 0 , 1 ) .

Remark 3.1 Theorem 3.1-3.4 in [16] are special cases of above Theorem 3.1.

Next, we give some results on the uniqueness of solutions for BVP (1.1), (1.2).

Theorem 3.2 Let f : [ 0 , 1 ] × R n R satisfy L p -Carathéodory’s conditions. Suppose that
  1. (i)
    there exist functions α j ( t ) , β j ( t ) L p [ 0 , 1 ] , j = 0 , 1 , , n 1 , and a constant σ > 1 such that
    https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-60/MediaObjects/13661_2012_Article_172_Equ17_HTML.gif
    (3.10)
     
for a.e. t [ 0 , 1 ] and all ( u 0 , u 1 , , u n 1 ) , ( v 0 , v 1 , , v n 1 ) R n ;(ii)
a : = 1 j = 0 n 1 A j α j p > 0 ,
(3.11)
where the constants A j , j = 0 , 1 , , n 1 are given in Lemma 2.2;(iii)
a σ σ 1 ( σ σ 1 σ σ 1 1 σ ) + b 1 σ 1 f ( t , 0 , , 0 ) p < 0 ,
(3.12)

where b : = j = 0 n 1 A j σ β j p .

Then BVP (1.1), (1.2) has at least one solution u ( t ) W n , p ( 0 , 1 ) and in particular has at most one solution u ( t ) W n , p ( 0 , 1 ) with u ( n ) p < 1 2 ( a b ) 1 σ 1 .

Proof We note that assumption (3.10) implies
| f ( t , u 0 , u 1 , , u n 1 ) | j = 0 n 1 α j ( x ) | u j | + j = 0 n 1 β j ( x ) | u j | σ + | f ( t , 0 , , 0 ) |

for a.e. x [ 0 , 1 ] and all ( u 0 , u 1 , , u n 1 ) R n . Accordingly from Theorem 3.1, BVP (1.1), (1.2) has at least one solution in W n , p ( 0 , 1 ) .

Now, suppose that u 1 ( t ) , u 2 ( t ) are two solutions of BVP (1.1), (1.2) with u i ( n 1 ) < 1 2 ( a b ) 1 σ 1 , i = 1 , 2 . Let w ( t ) = u 1 ( t ) u 2 ( t ) . Then w ( t ) satisfies the boundary condition (1.2) and
| w ( n ) ( t ) | j = 0 n 1 α j ( t ) | w ( j ) ( t ) | + j = 0 n 1 β j ( t ) | w ( j ) ( t ) | σ .
Similarly to the proof of Theorem 3.1, we can show easily that
w ( n ) p ( 1 a ) w ( n ) p + b w ( n ) p σ ,
which gives
b w ( n ) p σ a w ( n ) p 0 .
(3.13)

Now consider two cases. If b = 0 , then w ( n ) p = 0 from (3.13). Since w A 0 w ( n ) p , we have w ( t ) 0 on [ 0 , 1 ] , i.e., u 1 ( t ) u 2 ( t ) on [ 0 , 1 ] .

If b > 0 , let h ( t ) = b t σ a t . Then h ( w ( n ) p ) 0 from (3.13). It follows that h ( 0 ) = h ( ( a b ) 1 σ 1 ) = 0 and h ( t ) < 0 on ( 0 , ( a b ) 1 σ 1 ) . Since w ( n ) p u 1 ( n ) p + u 2 ( n ) p < ( a b ) 1 σ 1 , we get w ( n ) p = 0 . Consequently, u 1 ( t ) u 2 ( t ) on [ 0 , 1 ] . This completes the proof of the theorem. □

Corollary 3.3 Let conditions (i) and (ii) of Theorem 3.2 hold. If b = 0 , then BVP (1.1), (1.2) has exactly one solution in W n , p ( 0 , 1 ) .

Finally, we give two examples to which our results can be applicable.

Example 3.1 Consider the boundary value problem
{ u = 1 16 t 1 4 + t 1 3 u 1 3 ( u ) 2 3 + 1 10 ( u ) 2 , a.e. t ( 0 , 1 ) , u ( 0 ) = u ( 1 ) = u ( 1 ) = 0 .
Let f ( t , u 0 , u 1 , u 2 ) = 1 16 t 1 4 + t 1 3 u 0 1 3 u 1 2 3 + 1 10 u 2 2 . Then it is easy to see that f satisfies L 2 -Carathéodory’s conditions. By the inequality A 1 p B 1 q A p + B q for any A , B > 0 with p , q > 0 and 1 p + 1 q = 1 , we get
| f ( t , u 0 , u 1 , u 2 ) | 1 16 t 1 4 + 1 3 t 1 3 | u 0 | + 2 3 t 1 3 | u 1 | + 1 10 u 2 2 .
Let α 0 ( t ) = 1 3 t 1 3 , α 1 ( t ) = 2 3 t 1 3 , α 2 ( t ) = 0 , β 0 ( t ) = β 1 ( t ) = 0 , β 2 ( t ) = 1 10 , γ ( t ) = 1 16 t 1 4 , σ = 2 . Then we have
| f ( t , u 0 , u 1 , u 2 ) | j = 0 2 α j ( t ) | u j | + j = 0 2 β j ( t ) | u j | σ + γ ( t ) .
It is easy to compute that
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-60/MediaObjects/13661_2012_Article_172_Equas_HTML.gif
Consequently, we have
a = 1 j = 0 2 A j α j p = 1 3 15 30 > 0 , b = j = 0 2 A j σ β j 2 = 1 10 ,
and
a σ σ 1 ( σ σ 1 σ σ 1 1 σ ) + b 1 σ 1 γ 2 = ( 1 3 15 30 ) 2 1 4 + 2 160 < 0 .

Thus by Theorem 3.1, the above boundary value problem has at least one solution in W 3 , 2 ( 0 , 1 ) .

Example 3.2 Consider the boundary value problem
{ u = 1 32 t 1 4 + 3 8 t 1 3 sin ( 4 u + u ) + 2 8 g ( u ) , a.e. t ( 0 , 1 ) , u ( 0 ) = u ( 1 ) = u ( 1 ) = 0 ,
where
g ( u 2 ) = { u 2 2 1 , u 2 2 , 1 2 u 2 2 , 0 u 2 2 , 1 2 u 2 2 , 2 u 2 0 , u 2 2 1 , u 2 2 .
Let f ( t , u 0 , u 1 , u 2 ) = 1 32 t 1 4 + 3 8 t 1 3 sin ( 4 u 0 + u 1 ) + 2 8 g ( u ) . Then it is easy to see that f satisfies L 2 -Carathéodory’s conditions and
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-60/MediaObjects/13661_2012_Article_172_Equax_HTML.gif
Let α 0 ( t ) = 3 2 t 1 3 , α 1 ( t ) = 3 8 t 1 3 , α 2 ( t ) = 1 4 , β 0 ( t ) = β 1 ( t ) = 0 , β 2 ( t ) = 2 16 . Then it is easy to compute that
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2012-60/MediaObjects/13661_2012_Article_172_Equay_HTML.gif
Consequently, we have
a = 1 j = 0 2 A j α j p = 1 3 5 20 3 8 1 4 > 1 8 > 0 , b = 2 16 .
Since f ( t , 0 , 0 , 0 ) 2 = 1 32 t 1 4 2 = 2 32 and σ = 2 , we have
a σ σ 1 ( σ σ 1 σ σ 1 1 σ ) + b 1 σ 1 f ( t , 0 , 0 , 0 ) 2 < ( 1 8 ) 2 ( 1 4 1 2 ) + 2 16 2 32 = 0 .

Thus by Theorem 3.2, the above boundary value problem has at least one solution u ( t ) W 3 , 2 ( 0 , 1 ) and in particular has at most one solution u ( t ) W 3 , 2 ( 0 , 1 ) with u 2 < 1 2 ( a b ) 1 σ 1 = 4 2 a .

Also, since from the equation of the boundary value problem we have
u 2 1 32 t 1 3 2 + 3 8 t 1 3 2 + 2 8 u 2 2 32 + 3 8 + 2 8 u 2 ,
it follows that
u 2 2 32 + 3 8 1 2 8 0.518 < 2 2 < 4 2 a .

Hence above boundary value problem has a unique solution u ( t ) W 3 , 2 ( 0 , 1 ) .

Declarations

Acknowledgement

SKC was supported by Yeungnam University Research Grants 2012. YSO was supported by Daegu University Research Grants 2010.

Authors’ Affiliations

(1)
Department of Mathematics, Beihua University
(2)
Department of Mathematics, Yeungnam University
(3)
Department of Mathematics Education, Daegu University

References

  1. Agarwal RP: Focal Boundary Value Problems for Differential and Difference Equations. Kluwer, Dordrecht; 1998.MATHView Article
  2. Agarwal RP, Usmani RA: Iterative methods for solving right focal point boundary value problems. J. Comput. Appl. Math. 1986, 14: 371-390. 10.1016/0377-0427(86)90074-9MATHMathSciNetView Article
  3. Agarwal RP, Usmani RA: Monotone convergence of iterative methods for right focal point boundary value problems. J. Math. Anal. Appl. 1988, 130: 451-459. 10.1016/0022-247X(88)90320-4MATHMathSciNetView Article
  4. Anderson DR, Davis JM: Multiple solutions and eigenvalues for third-order right focal boundary value problems. J. Math. Anal. Appl. 2002, 267: 135-157. 10.1006/jmaa.2001.7756MATHMathSciNetView Article
  5. Anderson DR: Green’s function for a third-order generalized right focal problem. J. Math. Anal. Appl. 2003, 288: 1-14. 10.1016/S0022-247X(03)00132-XMATHMathSciNetView Article
  6. Cheung WS, Wong PJY: Fixed-sign solutions for a system of singular focal boundary value problems. J. Math. Anal. Appl. 2007, 329: 851-869. 10.1016/j.jmaa.2006.06.054MATHMathSciNetView Article
  7. Ehme J, Hankerson D: Existence of solutions for right focal boundary value problems. Nonlinear Anal. 1992, 18: 191-197. 10.1016/0362-546X(92)90093-TMATHMathSciNetView Article
  8. Ehme J: Uniqueness and existence for n th-order right focal boundary value problems. Appl. Math. Lett. 2000, 13: 7-11.MATHMathSciNetView Article
  9. Ehme J, Lanz A: Uniqueness implies existence of solutions for nonlinear focal-like boundary value problem. Appl. Math. Lett. 2009, 22: 1325-1329. 10.1016/j.aml.2009.03.004MATHMathSciNetView Article
  10. Goecke DM, Henderson J: Uniqueness of solutions of right focal problems for third order differential equations. Nonlinear Anal. 1984, 8: 253-259. 10.1016/0362-546X(84)90047-6MATHMathSciNetView Article
  11. Graef JR, Henderson J, Wong PJY, Yang B: Three solutions of an n th order three-point focal type boundary value problem. Nonlinear Anal. 2008, 69: 3386-3404. 10.1016/j.na.2007.09.024MATHMathSciNetView Article
  12. Henderson J: Existence of solutions of right focal point boundary value problems for ordinary differential equations. Nonlinear Anal. 1981, 5: 989-1002. 10.1016/0362-546X(81)90058-4MATHMathSciNetView Article
  13. Henderson J: Uniqueness of solutions of right focal point boundary value problems for ordinary differential equations. J. Differ. Equ. 1998, 41: 218-227.View Article
  14. Henderson J: Right focal point boundary value problems for ordinary differential equations and variational equations. J. Math. Anal. Appl. 1984, 98: 363-377. 10.1016/0022-247X(84)90255-5MATHMathSciNetView Article
  15. Henderson J, Yin W:Singular ( k , n k ) boundary value problems between conjugate and right focal. J. Comput. Appl. Math. 1998, 88: 57-69. 10.1016/S0377-0427(97)00207-0MATHMathSciNetView Article
  16. Hopkins B, Kosmatov N: Third-order boundary value problems with sign-changing solutions. Nonlinear Anal. 2007, 67: 126-137. 10.1016/j.na.2006.05.003MATHMathSciNetView Article
  17. Ladde GS, Lakshmikantham V, Vatsala AS: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman Advanced Publishing, Boston; 1985.MATH
  18. Lin Y, Pei M: Positive solution for two-point semipositone right focal eigenvalue problem. Bound. Value Probl. 2007., 2007:
  19. Liu Z, Debnath L, Kang SM: Existence of monotone positive solutions to a third order two-point generalized right focal boundary value problem. Comput. Math. Appl. 2008, 55: 356-367. 10.1016/j.camwa.2007.03.021MATHMathSciNetView Article
  20. Ma R: Multiple positive solutions for a semipositone fourth-order boundary value problem. Hiroshima Math. J. 2003, 33: 217-227.MATHMathSciNet
  21. Wong PJY, Agarwal RP: Multiple positive solutions of two-point right focal boundary value problems. Math. Comput. Model. 1998, 28: 41-49.MATHMathSciNetView Article
  22. Wong PJY: Constant-sign solutions for a system of third-order generalized right focal problems. Nonlinear Anal. 2005, 63: 2153-2163. 10.1016/j.na.2005.02.084View Article
  23. Wong PJY: Multiple fixed-sign solutions for a system of generalized right focal problems with deviating arguments. J. Math. Anal. Appl. 2006, 323: 100-118. 10.1016/j.jmaa.2005.10.016MATHMathSciNetView Article
  24. Wong PJY: Eigenvalues of a system of generalized right focal problems with deviating arguments. J. Comput. Appl. Math. 2008, 218: 459-472. 10.1016/j.cam.2007.06.008MATHMathSciNetView Article
  25. Zhou C, Ma D: Existence and iteration of positive solutions for a generalized right-focal boundary value problem with p -Laplacian operator. J. Math. Anal. Appl. 2006, 324: 409-424. 10.1016/j.jmaa.2005.10.086MATHMathSciNetView Article

Copyright

© Pei et al.; licensee Springer 2012

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.