## Boundary Value Problems

Impact Factor 0.819

Open Access

# Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis

Boundary Value Problems20132013:131

DOI: 10.1186/1687-2770-2013-131

Accepted: 2 May 2013

Published: 20 May 2013

## Abstract

In this paper, we discuss the mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. The Schrödinger equation and Heisenberg uncertainty principles are structured within local fractional operators.

### Keywords

Heisenberg uncertainty principle local fractional Fourier operator Schrödinger equation fractal time-space

## 1 Introduction

As it is known, the fractal curves [1, 2] are everywhere continuous but nowhere differentiable; therefore, we cannot use the classical calculus to describe the motions in Cantor time-space [310]. The theory of local fractional calculus [1120], started to be considered as one of the useful tools to handle the fractal and continuously non-differentiable functions. This formalism was applied in describing physical phenomena such as continuum mechanics [21], elasticity [2022], quantum mechanics [23, 24], heat-diffusion and wave phenomena [2530], and other branches of applied mathematics [3133] and nonlinear dynamics [34, 35].

The fractional Heisenberg uncertainty principle and the fractional Schrödinger equation based on fractional Fourier analysis were proposed [3648]. Local fractional Fourier analysis [49], which is a generalization of the Fourier analysis in fractal space, has played an important role in handling non-differentiable functions. The theory of local fractional Fourier analysis is structured in a generalized Hilbert space (fractal space), and some results were obtained [26, 4953]. Also, its applications were investigated in quantum mechanics [23], differentials equations [26, 28] and signals [51].

The main purpose of this paper is to present the mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis and to structure a local fractional version of the Schrödinger equation.

The manuscript is structured as follows. In Section 2, the preliminary results for the local fractional calculus are investigated. The theory of local fractional Fourier analysis is introduced in Section 3. The Heisenberg uncertainty principle in local fractional Fourier analysis is studied in Section 4. Application of quantum mechanics in fractal space is considered in Section 5. Finally, the conclusions are presented in Section 6.

## 2 Mathematical tools

### 2.1 Local fractional continuity of functions

Definition 1 [1820, 2730]

If there is
$|f\left(x\right)-f\left({x}_{0}\right)|<{\epsilon }^{\alpha }$
(2.1)
with $|x-{x}_{0}|<\delta$, for $\epsilon ,\delta >0$ and $\epsilon ,\delta \in \mathbb{R}$. Now $f\left(x\right)$ is called a local fractional continuous at $x={x}_{0}$, denoted by ${lim}_{x\to {x}_{0}}f\left(x\right)=f\left({x}_{0}\right)$. Then $f\left(x\right)$ is called local fractional continuous on the interval $\left(a,b\right)$, denoted by
$f\left(x\right)\in {C}_{\alpha }\left(a,b\right).$
(2.2)
The function $f\left(x\right)$ is said to be local fractional continuous at ${x}_{0}$ from the right if $f\left({x}_{0}\right)$ is defined, and
$\underset{x\to {x}_{0}^{+}}{lim}f\left(x\right)=f\left({x}_{0}^{+}\right).$
The function $f\left(x\right)$ is said to be local fractional continuous at ${x}_{0}$ from the left if $f\left({x}_{0}\right)$ is defined, and
$\underset{x\to {x}_{0}^{-}}{lim}f\left(x\right)=f\left({x}_{0}^{-}\right).$
Suppose that ${lim}_{x\to {x}_{0}^{+}}f\left(x\right)=f\left({x}_{0}^{+}\right)$, ${lim}_{x\to {x}_{0}^{-}}f\left(x\right)=f\left({x}_{0}^{-}\right)$ and $f\left({x}_{0}^{+}\right)=f\left({x}_{0}^{-}\right)$, then we have the following relation:
$\underset{x\to {x}_{0}^{+}}{lim}f\left(x\right)=\underset{x\to {x}_{0}^{-}}{lim}f\left(x\right)=\underset{x\to {x}_{0}}{lim}f\left(x\right).$

For other results of theory of local fractional continuity of functions, see [1820, 2730].

### 2.2 Local fractional derivative and integration

Definition 2 [1820, 2730]

Setting $f\left(x\right)\in {C}_{\alpha }\left(a,b\right)$, a local fractional derivative of $f\left(x\right)$ of order α at $x={x}_{0}$ is defined by
${f}^{\left(\alpha \right)}\left({x}_{0}\right)=\frac{{d}^{\alpha }f\left(x\right)}{d{x}^{\alpha }}{|}_{x={x}_{0}}=\underset{x\to {x}_{0}}{lim}\frac{{\mathrm{\Delta }}^{\alpha }\left(f\left(x\right)-f\left({x}_{0}\right)\right)}{{\left(x-{x}_{0}\right)}^{\alpha }},$
(2.3)

where ${\mathrm{\Delta }}^{\alpha }\left(f\left(x\right)-f\left({x}_{0}\right)\right)\cong \mathrm{\Gamma }\left(1+\alpha \right)\mathrm{\Delta }\left(f\left(x\right)-f\left({x}_{0}\right)\right)$ with a gamma function $\mathrm{\Gamma }\left(1+\alpha \right)$.

Definition 3 [1820, 2730]

Setting$f\left(x\right)\in {C}_{\alpha }\left(a,b\right)$, a local fractional integral of $f\left(x\right)$ of order α in the interval $\left[a,b\right]$ is defined as
${}_{a}I_{b}^{\left(\alpha \right)}f\left(x\right)=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{a}^{b}f\left(t\right){\left(dt\right)}^{\alpha }=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}\underset{\mathrm{\Delta }t\to 0}{lim}\sum _{j=0}^{j=N-1}f\left({t}_{j}\right){\left(\mathrm{\Delta }{t}_{j}\right)}^{\alpha },$
(2.4)

where $\mathrm{\Delta }{t}_{j}={t}_{j+1}-{t}_{j}$, $\mathrm{\Delta }t=max\left\{\mathrm{\Delta }{t}_{1},\mathrm{\Delta }{t}_{2},\mathrm{\Delta }{t}_{j},\dots \right\}$ and $\left[{t}_{j},{t}_{j+1}\right]$, $j=0,\dots ,N-1$, ${t}_{0}=a$, ${t}_{N}=b$, is a partition of the interval $\left[a,b\right]$.

Their fractal geometrical explanation of local fractional derivative and integration can be seen in [22, 26, 5052].

If $f\left(x\right)\in {C}_{\alpha }\left[a,b\right]$, then we have [18, 19]
${|}_{a}{I}_{b}^{\left(\alpha \right)}f\left(x\right)|{\le }_{a}{I}_{b}^{\left(\alpha \right)}|f\left(x\right)|$
(2.5)

with $b-a>0$.

Lemma 1 [18, 19]
${{\left[}_{-\mathrm{\infty }}{I}_{\mathrm{\infty }}^{\left(\alpha \right)}f\left(x\right)g\left(x\right)\right]}^{2}\le {\left[}_{-\mathrm{\infty }}{I}_{\mathrm{\infty }}^{\left(\alpha \right)}|g\left(x\right){|}^{2}\right]{\left[}_{-\mathrm{\infty }}{I}_{\mathrm{\infty }}^{\left(\alpha \right)}|g\left(x\right){|}^{2}g\left(x\right)\right].$
(2.6)

Proof See [18, 19]. □

## 3 Theory of local fractional Fourier analysis

In this section, we investigate local fractional Fourier analysis [4953], which is a generalized Fourier analysis in fractal space. Here we discuss the local fractional Fourier series, the Fourier transform and the generalized Fourier transform in fractal space. We start with a local fractional Fourier series.

### 3.1 Local fractional Fourier series

Definition 4 [18, 19, 4952]

The local fractional trigonometric Fourier series of $f\left(t\right)$ is given by
$f\left(t\right)={a}_{0}+\sum _{i=1}^{\mathrm{\infty }}{a}_{k}{sin}_{\alpha }\left({k}^{\alpha }{\omega }_{0}^{\alpha }{t}^{\alpha }\right)+\sum _{i=1}^{\mathrm{\infty }}{b}_{k}{cos}_{\alpha }\left({k}^{\alpha }{\omega }_{0}^{\alpha }{t}^{\alpha }\right).$
(3.1)
Then the local fractional Fourier coefficients can be computed by
$\left\{\begin{array}{c}{a}_{0}=\frac{1}{{T}^{\alpha }}{\int }_{0}^{T}f\left(t\right){\left(dt\right)}^{\alpha },\hfill \\ {a}_{k}={\left(\frac{2}{T}\right)}^{\alpha }{\int }_{0}^{T}f\left(t\right){sin}_{\alpha }\left({k}^{\alpha }{\omega }_{0}^{\alpha }{t}^{\alpha }\right){\left(dt\right)}^{\alpha },\hfill \\ {b}_{k}={\left(\frac{2}{T}\right)}^{\alpha }{\int }_{0}^{T}f\left(t\right){cos}_{\alpha }\left({k}^{\alpha }{\omega }_{0}^{\alpha }{t}^{\alpha }\right){\left(dt\right)}^{\alpha }.\hfill \end{array}$
(3.2)
The Mittag-Leffler functions expression of the local fractional Fourier series is described by [18, 19, 4952]
$f\left(x\right)=\sum _{k=-\mathrm{\infty }}^{\mathrm{\infty }}{C}_{k}{E}_{\alpha }\left(\frac{{\pi }^{\alpha }{i}^{\alpha }{\left(kx\right)}^{\alpha }}{{l}^{\alpha }}\right),$
(3.3)
where the local fractional Fourier coefficients are
(3.4)

The above is generalized to calculate the local fractional Fourier series.

### 3.2 The Fourier transform in fractal space

Definition 5 [18, 19, 4953]

Suppose that $f\left(x\right)\in {C}_{\alpha }\left(-\mathrm{\infty },\mathrm{\infty }\right)$, the Fourier transform in fractal space, denoted by ${F}_{\alpha }\left\{f\left(x\right)\right\}\equiv {f}_{\omega }^{F,\alpha }\left(\omega \right)$, is written in the form
${F}_{\alpha }\left\{f\left(x\right)\right\}=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{E}_{\alpha }\left(-{i}^{\alpha }{\omega }^{\alpha }{x}^{\alpha }\right)f\left(x\right){\left(dx\right)}^{\alpha },$
(3.5)

where the latter converges.

Definition 6 [18, 19, 4953]

If ${F}_{\alpha }\left\{f\left(x\right)\right\}\equiv {f}_{\omega }^{F,\alpha }\left(\omega \right)$, its inversion formula is written in the form
$f\left(x\right)=\frac{1}{{\left(2\pi \right)}^{\alpha }}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{E}_{\alpha }\left({i}^{\alpha }{\omega }^{\alpha }{x}^{\alpha }\right){f}_{\omega }^{F,\alpha }\left(\omega \right){\left(d\omega \right)}^{\alpha },\phantom{\rule{1em}{0ex}}x>0.$
(3.6)

### 3.3 The generalized Fourier transform in fractal space

Definition 7 [18, 19]

The generalized Fourier transform in fractal space is written in the form
${F}_{\alpha }\left\{f\left(x\right)\right\}=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}f\left(x\right){E}_{\alpha }\left(-{i}^{\alpha }{h}_{0}{x}^{\alpha }{\omega }^{\alpha }\right){\left(dx\right)}^{\alpha },$
(3.7)

where ${h}_{0}=\frac{{\left(2\pi \right)}^{\alpha }}{\mathrm{\Gamma }\left(1+\alpha \right)}$ with $0<\alpha \le 1$.

Definition 8 [18, 19]

The inverse formula of the generalized Fourier transform in fractal space is written in the form [18, 19]
$f\left(x\right)=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{f}_{\omega }^{F,\alpha }\left(\omega \right){E}_{\alpha }\left({i}^{\alpha }{h}_{0}{x}^{\alpha }{\omega }^{\alpha }\right){\left(d\omega \right)}^{\alpha },$
(3.8)

where ${h}_{0}=\frac{{\left(2\pi \right)}^{\alpha }}{\mathrm{\Gamma }\left(1+\alpha \right)}$ with $0<\alpha \le 1$.

### 3.4 Some useful results

The following formula is valid [18, 19].

Theorem 1 [18, 19]
${F}_{\alpha }\left\{{f}^{\left(\alpha \right)}\left(x\right)\right\}={i}^{\alpha }{h}_{0}{\omega }^{\alpha }{F}_{\alpha }\left\{f\left(x\right)\right\}.$
(3.9)

Proof See [18, 19]. □

Theorem 2 [18, 19]

If ${F}_{\alpha }\left\{f\left(x\right)\right\}={f}_{\omega }^{F,\alpha }\left(\omega \right)$, then we have
${\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha }={\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|{f}_{\omega }^{F,\alpha }\left(\omega \right){|}^{2}{\left(d\omega \right)}^{\alpha }.$
(3.10)

Proof See [18, 19]. □

Theorem 3 [18, 19]

If ${F}_{\alpha }\left\{f\left(x\right)\right\}={f}_{\omega }^{F,\alpha }\left(\omega \right)$, then we have
${\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}f\left(x\right)\overline{g\left(x\right)}{\left(dx\right)}^{\alpha }={\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{f}_{\omega }^{F,\alpha }\left(\omega \right)\overline{{g}_{\omega }^{F,\alpha }\left(\omega \right)}{\left(d\omega \right)}^{\alpha }.$
(3.11)

Proof See [18, 19]. □

## 4 Heisenberg uncertainty principles in local fractional Fourier analysis

Theorem 4 Suppose that $f\in {L}_{2,\alpha }\left[\mathrm{\Re }\right]$, ${F}_{\alpha }\left\{f\left(x\right)\right\}={f}_{\omega }^{F,\alpha }\left(\omega \right)$, then we have
$\frac{{\mathrm{\Gamma }}^{2}\left(1+\alpha \right)}{4{h}_{0}^{2}}\le \left[\frac{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[f\left(x\right){x}^{\alpha }\right]}^{2}{\left(dx\right)}^{\alpha }}{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha }}\right]\cdot \left[\frac{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[{f}_{\omega }^{F,\alpha }\left(\omega \right){\omega }^{\alpha }\right]}^{2}{\left(d\omega \right)}^{\alpha }}{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha }}\right],$
(4.1)
with equality only if $f\left(x\right)$ is almost everywhere equal to a constant multiple of
${C}_{0}{E}_{\alpha }\left(\frac{-{x}^{2\alpha }}{K}\right),$
(4.2)

with $K>0$ and a constant ${C}_{0}$.

Proof Considering the equality
$\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[{f}_{\omega }^{F,\alpha }\left(\omega \right){h}_{0}{\omega }^{\alpha }\right]}^{2}{\left(d\omega \right)}^{\alpha }=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[{f}^{\left(\alpha \right)}\left(x\right)\right]}^{2}{\left(dx\right)}^{\alpha },$
(4.3)
we have
$\begin{array}{r}\left[\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[f\left(x\right){x}^{\alpha }\right]}^{2}{\left(dx\right)}^{\alpha }\right]\left[\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[{f}_{\omega }^{F,\alpha }\left(\omega \right){h}_{0}{\omega }^{\alpha }\right]}^{2}{\left(dx\right)}^{\alpha }\right]\\ \phantom{\rule{1em}{0ex}}=\left[\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[f\left(x\right){x}^{\alpha }\right]}^{2}{\left(dx\right)}^{\alpha }\right]\left[\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[{f}^{\left(\alpha \right)}\left(x\right)\right]}^{2}{\left(dx\right)}^{\alpha }\right]\\ \phantom{\rule{1em}{0ex}}\ge \frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|\overline{f\left(x\right)}{f}^{\left(\alpha \right)}\left(x\right){x}^{\alpha }{|}^{2}{\left(dx\right)}^{\alpha }\\ \phantom{\rule{1em}{0ex}}\ge |\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}\overline{f\left(x\right)}{f}^{\left(\alpha \right)}\left(x\right){x}^{\alpha }{\left(dx\right)}^{\alpha }{|}^{2}.\end{array}$
(4.4)

When $\frac{f\left(x\right){x}^{\alpha }}{K}={f}^{\left(\alpha \right)}\left(x\right)$, then we have $f\left(x\right)={C}_{0}{E}_{\alpha }\left(-\frac{{x}^{2\alpha }}{K}\right)$ with a constant ${C}_{0}$.

Since
${\left(|f\left(x\right){|}^{2}\right)}^{\left(\alpha \right)}={\left(f\left(x\right)\overline{f\left(x\right)}\right)}^{\left(\alpha \right)}={f}^{\left(\alpha \right)}\left(x\right)\overline{f\left(x\right)}+f\left(x\right)\overline{{f}^{\left(\alpha \right)}\left(x\right)}$
(4.5)
and
$|\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{f}^{\left(\alpha \right)}\left(x\right)\overline{f\left(x\right)}{x}^{\alpha }{\left(dx\right)}^{\alpha }|=|\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}f\left(x\right)\overline{{f}^{\left(\alpha \right)}\left(x\right)}{x}^{\alpha }{\left(dx\right)}^{\alpha }|,$
(4.6)
we have
$\begin{array}{r}\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left(|f\left(x\right){|}^{2}\right)}^{\left(\alpha \right)}{x}^{\alpha }{\left(dx\right)}^{\alpha }\\ \phantom{\rule{1em}{0ex}}={\left[\left(|f\left(x\right){|}^{2}\right){x}^{\alpha }\right]}_{-\mathrm{\infty }}^{\mathrm{\infty }}-{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha }\\ \phantom{\rule{1em}{0ex}}=-{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha },\end{array}$
(4.7)

when $\left(|f\left(x\right){|}^{2}\right){x}^{\alpha }\to 0$, $x\to \mathrm{\infty }$.

Hence, there is
$\begin{array}{r}|{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha }|\\ \phantom{\rule{1em}{0ex}}=|\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left(|f\left(x\right){|}^{2}\right)}^{\left(\alpha \right)}{x}^{\alpha }{\left(dx\right)}^{\alpha }|\\ \phantom{\rule{1em}{0ex}}=|\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{f}^{\left(\alpha \right)}\left(x\right)\overline{f\left(x\right)}{x}^{\alpha }{\left(dx\right)}^{\alpha }+\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{x}^{\alpha }f\left(x\right)\overline{{f}^{\left(\alpha \right)}\left(x\right)}{\left(dx\right)}^{\alpha }|\\ \phantom{\rule{1em}{0ex}}\le \frac{2}{\mathrm{\Gamma }\left(1+\alpha \right)}|{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{f}^{\left(\alpha \right)}\left(x\right)\overline{f\left(x\right)}{x}^{\alpha }{\left(dx\right)}^{\alpha }|\end{array}$
(4.8)
such that
$\begin{array}{r}|\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left(|f\left(x\right){|}^{2}\right)}^{\left(\alpha \right)}{x}^{\alpha }{\left(dx\right)}^{\alpha }{|}^{2}\\ \phantom{\rule{1em}{0ex}}=|{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha }{|}^{2}\\ \phantom{\rule{1em}{0ex}}={\mathrm{\Gamma }}^{2}\left(1+\alpha \right)|\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha }{|}^{2}\\ \phantom{\rule{1em}{0ex}}\le 4{\left(\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{f}^{\left(\alpha \right)}\left(x\right)\overline{f\left(x\right)}{x}^{\alpha }{\left(dx\right)}^{\alpha }\right)}^{2}\\ \phantom{\rule{1em}{0ex}}\le 4{\left(\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|\overline{f\left(x\right)}{f}^{\left(\alpha \right)}\left(x\right){x}^{\alpha }|{\left(dx\right)}^{\alpha }\right)}^{2}\\ \phantom{\rule{1em}{0ex}}\le 4\left[\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[f\left(x\right){x}^{\alpha }\right]}^{2}{\left(dx\right)}^{\alpha }\right]\left[\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[{f}_{\omega }^{F,\alpha }\left(\omega \right){h}_{0}{\omega }^{\alpha }\right]}^{2}{\left(d\omega \right)}^{\alpha }\right].\end{array}$
(4.9)
Therefore, we deduce to
$\begin{array}{r}{\mathrm{\Gamma }}^{2}\left(1+\alpha \right)|\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha }{|}^{2}\\ \phantom{\rule{1em}{0ex}}\le 4\left[\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[f\left(x\right){x}^{\alpha }\right]}^{2}{\left(dx\right)}^{\alpha }\right]\left[\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[{f}_{\omega }^{F,\alpha }\left(\omega \right){h}_{0}{\omega }^{\alpha }\right]}^{2}{\left(d\omega \right)}^{\alpha }\right]\\ \phantom{\rule{1em}{0ex}}=4{h}_{0}^{2}\left[\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[f\left(x\right){x}^{\alpha }\right]}^{2}{\left(dx\right)}^{\alpha }\right]\left[\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[{f}_{\omega }^{F,\alpha }\left(\omega \right){\omega }^{\alpha }\right]}^{2}{\left(d\omega \right)}^{\alpha }\right].\end{array}$
(4.10)

Hence, this result is obtained. □

As a direct result, we have two equivalent forms as follows.

Theorem 5 Suppose that $f\in {L}_{2,\alpha }\left[\mathrm{\Re }\right]$ and ${f}^{\left(\alpha \right)}\left(x\right)=\frac{{d}^{\alpha }f\left(x\right)}{d{x}^{\alpha }}$, then we have
$\frac{{\mathrm{\Gamma }}^{2}\left(1+\alpha \right)}{4}\le \left[\frac{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[f\left(x\right){x}^{\alpha }\right]}^{2}{\left(dx\right)}^{\alpha }}{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha }}\right]\cdot \left[\frac{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[{f}^{\left(\alpha \right)}\left(x\right)\right]}^{2}{\left(dx\right)}^{\alpha }}{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha }}\right],$
(4.11)

with equality only if $f\left(x\right)$ is almost everywhere equal to a constant multiple of ${C}_{0}{E}_{\alpha }\left(\frac{-{x}^{2\alpha }}{K}\right)$, with $K>0$ and a constant ${C}_{0}$.

Proof Applying Theorem 4, we have
$\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[{f}^{\left(\alpha \right)}\left(x\right)\right]}^{2}{\left(dx\right)}^{\alpha }=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[{f}_{\omega }^{F,\alpha }\left(\omega \right){h}_{0}{\omega }^{\alpha }\right]}^{2}{\left(d\omega \right)}^{\alpha }$
(4.12)
such that
$\frac{{\mathrm{\Gamma }}^{2}\left(1+\alpha \right)}{4}\le \left[\frac{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[f\left(x\right){x}^{\alpha }\right]}^{2}{\left(dx\right)}^{\alpha }}{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha }}\right]\cdot \left[\frac{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left[{f}^{\left(\alpha \right)}\left(x\right)\right]}^{2}{\left(dx\right)}^{\alpha }}{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|f\left(x\right){|}^{2}{\left(dx\right)}^{\alpha }}\right].$
(4.13)

Hence, Theorem 5 is obtained. □

The above results [37, 38] are different from the results in fractional Fourier transform [36, 37] based on the fractional calculus theory.

## 5 The mathematical aspect of fractal quantum mechanics

### 5.1 Local fractional Schrödinger equation

We structure the non-differential phase of a fractal plane wave as a complex phase factor using the relations
$\begin{array}{rl}{\psi }_{\alpha }& =A{E}_{\alpha }\left({i}^{\alpha }\left({\overline{k}}^{\alpha }{\overline{r}}^{\alpha }-{\omega }^{\alpha }{t}^{\alpha }\right)\right)\\ =A{E}_{\alpha }\left(\frac{{i}^{\alpha }}{{h}_{\alpha }}\left({\overline{P}}_{\alpha }{\overline{r}}^{\alpha }-{E}_{\alpha }{t}^{\alpha }\right)\right),\end{array}$
(5.1)
where the Planck-Einstein and De Broglie relations are in fractal space
$\left\{\begin{array}{c}{E}_{\alpha }={h}_{\alpha }{\omega }^{\alpha },\hfill \\ {P}_{\alpha }={h}_{\alpha }{k}^{\alpha }.\hfill \end{array}$
(5.2)
We can realize the local fractional partial derivative with respect to fractal space
$\begin{array}{rl}{\mathrm{\nabla }}^{\alpha }{\psi }_{\alpha }& =\frac{{i}^{\alpha }}{{h}_{\alpha }}{P}_{\alpha }A{E}_{\alpha }\left(\frac{{i}^{\alpha }}{{h}_{\alpha }}\left({\overline{P}}_{\alpha }{\overline{r}}^{\alpha }-{E}_{\alpha }{t}^{\alpha }\right)\right)\\ =\frac{{i}^{\alpha }}{{h}_{\alpha }}{P}_{\alpha }{\psi }_{\alpha }\end{array}$
(5.3)
and fractal time
$\begin{array}{rl}\frac{{\partial }^{\alpha }{\psi }_{\alpha }}{\partial {t}^{\alpha }}& =-\frac{{i}^{\alpha }}{{h}_{\alpha }}{E}_{\alpha }A{E}_{\alpha }\left(\frac{{i}^{\alpha }}{{h}_{\alpha }}\left({\overline{P}}_{\alpha }{\overline{r}}^{\alpha }-{E}_{\alpha }{t}^{\alpha }\right)\right)\\ =-\frac{{i}^{\alpha }}{{h}_{\alpha }}{E}_{\alpha }{\psi }_{\alpha },\end{array}$
(5.4)

where ${\mathrm{\nabla }}^{\alpha }=\frac{{\partial }^{\alpha }}{\partial {x}^{\alpha }}{i}^{\alpha }+\frac{{\partial }^{\alpha }}{\partial {y}^{\alpha }}{j}^{\alpha }+\frac{{\partial }^{\alpha }}{\partial {z}^{\alpha }}{k}^{\alpha }$ [26] with ${\overline{r}}^{\alpha }={x}^{\alpha }{i}^{\alpha }+{y}^{\alpha }{j}^{\alpha }+{z}^{\alpha }{k}^{\alpha }$ [26].

From (5.3) we have
$-{i}^{\alpha }{h}_{\alpha }{\mathrm{\nabla }}^{\alpha }{\psi }_{\alpha }={P}_{\alpha }{\psi }_{\alpha }$
(5.5)
such that
$-\frac{{h}_{\alpha }^{2}}{2m}{\mathrm{\nabla }}^{2\alpha }{\psi }_{\alpha }=\frac{1}{2m}{\overline{P}}_{\alpha }\cdot {\overline{P}}_{\alpha }{\psi }_{\alpha },$
(5.6)

where ${\mathrm{\nabla }}^{2\alpha }=\frac{{\partial }^{2\alpha }}{\partial {x}^{2\alpha }}+\frac{{\partial }^{2\alpha }}{\partial {y}^{2\alpha }}+\frac{{\partial }^{2\alpha }}{\partial {z}^{2\alpha }}$ with ${\overline{r}}^{\alpha }={x}^{\alpha }{i}^{\alpha }+{y}^{\alpha }{j}^{\alpha }+{z}^{\alpha }{k}^{\alpha }$.

From (5.4) we have
${i}^{\alpha }{h}_{\alpha }\frac{{\partial }^{\alpha }{\psi }_{\alpha }}{\partial {t}^{\alpha }}={E}_{\alpha }{\psi }_{\alpha }.$
(5.7)
We have the energy equation
$\begin{array}{rl}{E}_{\alpha }& =\frac{1}{2m}{\overline{P}}_{\alpha }\cdot {\overline{P}}_{\alpha }+{V}_{\alpha }\\ ={H}_{\alpha }\end{array}$
(5.8)
such that
${E}_{\alpha }{\psi }_{\alpha }={H}_{\alpha }{\psi }_{\alpha },$
(5.9)
and
${E}_{\alpha }{\psi }_{\alpha }=-\frac{{h}_{\alpha }^{2}}{2m}{\mathrm{\nabla }}^{2\alpha }{\psi }_{\alpha }+{V}_{\alpha }{\psi }_{\alpha },$

where ${H}_{\alpha }$ is the local fractional Hamiltonian in fractal mechanics.

Hence, we have that
${i}^{\alpha }{h}_{\alpha }\frac{{\partial }^{\alpha }{\psi }_{\alpha }}{\partial {t}^{\alpha }}=-\frac{{h}_{\alpha }^{2}}{2m}{\mathrm{\nabla }}^{2\alpha }{\psi }_{\alpha }+{V}_{\alpha }{\psi }_{\alpha }.$
(5.10)
Therefore, we can deduce that the local fractional energy operator is
${\overline{E}}_{\alpha }={i}^{\alpha }{h}_{\alpha }\frac{{\partial }^{\alpha }}{\partial {t}^{\alpha }}$
(5.11)
and that the local fractional momentum operator is
${\overline{P}}_{\alpha }={i}^{\alpha }{h}_{\alpha }{\mathrm{\nabla }}^{\alpha }.$
(5.12)
Therefore, we get the local fractional Schrödinger equation in the form of local fractional energy and momentum operators
${H}_{\alpha }{\psi }_{\alpha }=\frac{1}{2m}{\overline{P}}_{\alpha }\cdot {\overline{P}}_{\alpha }{\psi }_{\alpha }+{V}_{\alpha }{\psi }_{\alpha },$
(5.13)
where the local fractional Hamiltonian is
${H}_{\alpha }=\frac{1}{2m}{\overline{P}}_{\alpha }\cdot {\overline{P}}_{\alpha }+{V}_{\alpha }.$
(5.14)
We also deduce that the general time-independent local fractional Schrödinger equation is written in the form
${i}^{\alpha }{h}_{\alpha }\frac{{\partial }^{\alpha }{\psi }_{\alpha }}{\partial {t}^{\alpha }}={H}_{\alpha }{\psi }_{\alpha },$
(5.15)
which is related to the following equation:
$\frac{{\partial }^{\alpha }{S}_{\alpha }\left({q}_{i},t\right)}{\partial {t}^{\alpha }}={H}_{\alpha }\left({q}_{i},\frac{{\partial }^{\alpha }{S}_{\alpha }}{\partial {q}_{i}^{\alpha }},t\right),$
(5.16)

where ${S}_{\alpha }$ is non-differential action, ${H}_{\alpha }$ is the local fractional Hamiltonian function, and ${q}_{i}^{\alpha }$ ($i=1,2,3$) are generalized fractal coordinates.

### 5.2 Solutions of the local fractional Schrödinger equation

#### 5.2.1 General solutions of the local fractional Schrödinger equation

The general solution of the local fractional Schrödinger equation can be seen in the following. For discrete k, the sum is a superposition of fractal plane waves:
$\begin{array}{rl}{\psi }_{\alpha }\left(r,t\right)& =\sum _{n=1}^{\mathrm{\infty }}{A}_{n}{E}_{\alpha }\left({i}^{\alpha }\left({k}_{n}^{\alpha }{r}^{\alpha }-{\omega }_{n}^{\alpha }{t}^{\alpha }\right)\right)\\ =\sum _{n=1}^{\mathrm{\infty }}{A}_{n}{E}_{\alpha }\left(\frac{{i}^{\alpha }}{{h}_{\alpha }}\left({\overline{P}}_{\alpha }{\overline{r}}^{\alpha }-{E}_{\alpha }{t}^{\alpha }\right)\right)\\ =\sum _{n=1}^{\mathrm{\infty }}{A}_{n}{E}_{\alpha }\left(\frac{{i}^{\alpha }}{{h}_{\alpha }}\left({\overline{P}}_{\alpha }{\overline{r}}^{\alpha }-\frac{{\overline{P}}_{\alpha }^{2}}{2m}{t}^{\alpha }\right)\right)\end{array}$
(5.17)
and
${E}_{\alpha }=\frac{{P}_{\alpha }^{2}}{2m}.$
(5.18)
If we consider ${\overline{P}}_{\alpha }={p}_{x\alpha }{i}^{\alpha }+{p}_{y\alpha }{j}^{\alpha }+{p}_{z\alpha }{k}^{\alpha }\equiv {p}_{x\alpha }{i}^{\alpha }$ and ${\overline{r}}^{\alpha }={x}^{\alpha }{i}^{\alpha }+{z}^{\alpha }{j}^{\alpha }+{z}^{\alpha }{k}^{\alpha }$, we have fractal plane waves:
$\begin{array}{rl}{\psi }_{\alpha }\left(x,t\right)& ={\psi }_{\alpha }\left({P}_{x\alpha },t\right)\\ =\sum _{n=1}^{\mathrm{\infty }}{A}_{n}{E}_{\alpha }\left(\frac{{i}^{\alpha }}{{h}_{\alpha }}\left({p}_{x\alpha }{x}^{\alpha }-\frac{{p}_{x\alpha }^{2}}{2m}{t}^{\alpha }\right)\right).\end{array}$
(5.19)

#### 5.2.2 Fractal complex wave functions

The meaning of this description can be seen in the following. Similar to the classical wave mechanics, we prepare N atoms independently, in the same state, so that when each of them is measured, they are described by the same wave function. Then the result of a position measurement is described as the fractal probability density, and we wish it is not the same for all. The set of impacts is distributed in space with the probability density
${\varphi }_{\alpha }\left(\overline{P}\left(r\right),t\right)=|{\psi }_{\alpha }\left(r,t\right){|}^{2}.$
(5.20)
In view of (5.20), we have
${\varphi }_{\alpha }\left(x,t\right)=|{\psi }_{\alpha }\left(x,t\right){|}^{2}.$
(5.21)
The set of N measurements is characterized by an expectation value ${〈r〉}_{\alpha }$ and a root mean square dispersion ${\left(\mathrm{\Delta }r\right)}^{\alpha }$,
${〈r〉}_{\alpha }=\frac{1}{{\mathrm{\Gamma }}^{3}\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{r}^{\alpha }|{\psi }_{\alpha }\left(r,t\right){|}^{2}{\left(dr\right)}^{\alpha }.$
(5.22)
Similarly, the square of the dispersion ${\left(\mathrm{\Delta }r\right)}^{2\alpha }$ is defined by
$\begin{array}{rl}{\left(\mathrm{\Delta }r\right)}^{2\alpha }& ={〈{x}^{2}〉}_{\alpha }-{\left({〈x〉}_{\alpha }\right)}^{2}\\ ={〈{\left({x}^{\alpha }-{〈x〉}_{\alpha }\right)}^{2}〉}_{\alpha }\\ =\frac{1}{{\mathrm{\Gamma }}^{3}\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left({r}^{\alpha }-{〈r〉}_{\alpha }\right)}^{2}|{\psi }_{\alpha }\left(r,t\right){|}^{2}{\left(dr\right)}^{\alpha }.\end{array}$
(5.23)
If the physical interpretation of a particle in fractal space is that the probability
$dP\left(r\right)=\frac{1}{{\mathrm{\Gamma }}^{3}\left(1+\alpha \right)}|{\psi }_{\alpha }\left(r,t\right){|}^{2}{\left(dr\right)}^{3\alpha },$
(5.24)
the integral of this quantity over all fractal space is
$\begin{array}{rl}P\left(r\right)& =\frac{1}{{\mathrm{\Gamma }}^{3}\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|{\psi }_{\alpha }\left(r,t\right){|}^{2}{\left(dr\right)}^{3\alpha }\\ =1.\end{array}$
(5.25)
For (5.18) we have
$\begin{array}{rl}{\psi }_{\alpha }\left(r,t\right)& =\sum _{n=1}^{\mathrm{\infty }}{A}_{n}{E}_{\alpha }\left({i}^{\alpha }\left({k}_{n}^{\alpha }{r}^{\alpha }-{\omega }_{n}^{\alpha }{t}^{\alpha }\right)\right)\\ =\sum _{n=1}^{\mathrm{\infty }}{A}_{n}{E}_{\alpha }\left(\frac{{i}^{\alpha }}{{h}_{\alpha }}\left({\overline{P}}_{\alpha }{\overline{r}}^{\alpha }-{E}_{\alpha }{t}^{\alpha }\right)\right)\\ =\sum _{n=1}^{\mathrm{\infty }}{A}_{n}{E}_{\alpha }\left(\frac{{i}^{\alpha }}{{h}_{\alpha }}\left({\overline{P}}_{\alpha }{\overline{r}}^{\alpha }-\frac{{\overline{P}}_{\alpha }^{2}}{2m}{t}^{\alpha }\right)\right)\end{array}$
(5.26)
such that
$1=\frac{1}{{\mathrm{\Gamma }}^{3}\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|{\psi }_{\alpha }\left(r,t\right){|}^{2}{\left(dr\right)}^{3\alpha }.$
(5.27)

#### 5.2.3 Probabilistic interpretation of fractal complex wave function of one variable

In (5.22), we have
${\varphi }_{\alpha }\left(x,t\right)=|{\psi }_{\alpha }\left(x,t\right){|}^{2}$
(5.28)
and
$P\left(x\right)=1$
(5.29)
such that
$\begin{array}{r}\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }\\ \phantom{\rule{1em}{0ex}}=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-L}^{L}|A{E}_{\alpha }\left(\frac{{i}^{\alpha }}{{h}_{\alpha }}\left({p}_{x\alpha }{x}^{\alpha }-\frac{{p}_{x\alpha }^{2}}{2m}{t}^{\alpha }\right)\right){|}^{2}{\left(dx\right)}^{\alpha }\\ \phantom{\rule{1em}{0ex}}=\frac{2{A}^{2}{L}^{\alpha }}{\mathrm{\Gamma }\left(1+\alpha \right)}\\ \phantom{\rule{1em}{0ex}}=1,\end{array}$
(5.30)
where
${\psi }_{\alpha }\left(x,t\right)=\left\{\begin{array}{cc}A{E}_{\alpha }\left(\frac{{i}^{\alpha }}{{h}_{\alpha }}\left({p}_{x\alpha }{x}^{\alpha }-\frac{{p}_{x\alpha }^{2}}{2m}{t}^{\alpha }\right)\right),\hfill & x\in L,\hfill \\ 0,\hfill & x\notin L.\hfill \end{array}$
(5.31)
We have an expectation value ${〈x〉}_{\alpha }$ and a root mean square dispersion ${\left(\mathrm{\Delta }x\right)}^{\alpha }$,
${〈x〉}_{\alpha }=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{x}^{\alpha }|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }$
(5.32)
and
$\begin{array}{rl}{\left(\mathrm{\Delta }x\right)}^{2\alpha }& ={〈{x}^{2}〉}_{\alpha }-{\left({〈x〉}_{\alpha }\right)}^{2}\\ ={〈{\left({x}^{\alpha }-{〈x〉}_{\alpha }\right)}^{2}〉}_{\alpha }\\ =\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left({x}^{\alpha }-{〈x〉}_{\alpha }\right)}^{2}|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }.\end{array}$
(5.33)
For a given fractal mechanical operatorA, we have an expectation value ${〈A〉}_{\alpha }$ and a root mean square dispersion ${\left(\mathrm{\Delta }A\right)}^{\alpha }$,
${〈A〉}_{\alpha }=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}A|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }$
(5.34)
and
$\begin{array}{rl}{\left(\mathrm{\Delta }A\right)}^{2\alpha }& ={〈{\left(A-{〈A〉}_{\alpha }\right)}^{2}〉}_{\alpha }\\ ={〈{A}^{2}〉}_{\alpha }-{\left({〈A〉}_{\alpha }\right)}^{2}\\ =\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{\left(A-{〈A〉}_{\alpha }\right)}^{2}|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }.\end{array}$
(5.35)

### 5.3 The Heisenberg uncertainty principle in fractal quantum mechanics

Suppose that
$\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }=1,$
(5.36)
we have a fractal positional operator expectation value
${〈x〉}_{\alpha }=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{i}^{\alpha }{x}^{\alpha }|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }=0$
(5.37)
and a root mean square dispersion of positional operator
${\left(\mathrm{\Delta }x\right)}^{2\alpha }=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{i}^{2\alpha }{x}^{2\alpha }|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }.$
(5.38)
Similar to the fractal positional operator, we have a fractal momentum operator expectation value
${〈{P}_{x}〉}_{\alpha }={〈{i}^{\alpha }{h}_{\alpha }\frac{{\partial }^{\alpha }}{\partial {x}^{\alpha }}〉}_{\alpha }=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{i}^{\alpha }{h}_{\alpha }\frac{{\partial }^{\alpha }}{\partial {x}^{\alpha }}|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }=0$
(5.39)
and a root mean square dispersion of positional operator
${\left(\mathrm{\Delta }{P}_{x}\right)}^{2\alpha }=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{i}^{2\alpha }{h}_{\alpha }^{2}\frac{{\partial }^{2\alpha }}{\partial {x}^{2\alpha }}|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }.$
(5.40)
Considering
${\left(\mathrm{\Delta }x\right)}^{2\alpha }=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{i}^{2\alpha }{x}^{2\alpha }|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha },$
(5.41)
${\left(\mathrm{\Delta }{P}_{x}\right)}^{2\alpha }=\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{i}^{2\alpha }{h}_{\alpha }^{2}\frac{{\partial }^{2\alpha }}{\partial {x}^{2\alpha }}|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha },$
(5.42)
and
$\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }=1,$
(5.43)
by using Theorem 5, we have that
$\frac{{\mathrm{\Gamma }}^{2}\left(1+\alpha \right)}{4}\le \left[\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{x}^{2\alpha }|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }\right]\left[\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}\frac{{\partial }^{2\alpha }}{\partial {x}^{2\alpha }}|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }\right]$
such that
$\frac{{\mathrm{\Gamma }}^{2}\left(1+\alpha \right)}{4}\le {\left(\mathrm{\Delta }x\right)}^{2\alpha }\frac{{\left(\mathrm{\Delta }{P}_{x}\right)}^{2\alpha }}{{h}_{\alpha }^{2}}.$
(5.44)
Hence, we have that
$\frac{{\mathrm{\Gamma }}^{2}\left(1+\alpha \right){h}_{\alpha }^{2}}{4}\le {\left(\mathrm{\Delta }x\right)}^{2\alpha }{\left(\mathrm{\Delta }{P}_{x}\right)}^{2\alpha }$
(5.45)
such that
$\frac{\mathrm{\Gamma }\left(1+\alpha \right){h}_{\alpha }}{2}\le {\left(\mathrm{\Delta }x\right)}^{\alpha }{\left(\mathrm{\Delta }{P}_{x}\right)}^{\alpha },$
(5.46)
where
${\left(\mathrm{\Delta }x\right)}^{\alpha }=\sqrt{{\left(\mathrm{\Delta }x\right)}^{2\alpha }}=\sqrt{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{i}^{2\alpha }{x}^{2\alpha }|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }}$
(5.47)
and
${\left(\mathrm{\Delta }{P}_{x}\right)}^{\alpha }=\sqrt{{\left(\mathrm{\Delta }{P}_{x}\right)}^{2\alpha }}=\sqrt{\frac{1}{\mathrm{\Gamma }\left(1+\alpha \right)}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }}{i}^{2\alpha }{h}_{\alpha }^{2}\frac{{\partial }^{2\alpha }}{\partial {x}^{2\alpha }}|{\psi }_{\alpha }\left(x,t\right){|}^{2}{\left(dx\right)}^{\alpha }}.$
(5.48)
Suppose that
${h}_{\alpha }={\left(\frac{h}{2\pi }\right)}^{\alpha },$
(5.49)
then we have
$\frac{\mathrm{\Gamma }\left(1+\alpha \right){\left(\frac{h}{2\pi }\right)}^{\alpha }}{2}\le {\left(\mathrm{\Delta }x\right)}^{\alpha }{\left(\mathrm{\Delta }{P}_{x}\right)}^{\alpha }$
(5.50)
and
${i}^{\alpha }{\left(\frac{h}{2\pi }\right)}^{\alpha }\frac{{\partial }^{\alpha }{\psi }_{\alpha }}{\partial {t}^{\alpha }}=-\frac{{\left(\frac{h}{2\pi }\right)}^{2\alpha }}{2m}{\mathrm{\nabla }}^{2\alpha }{\psi }_{\alpha }+{V}_{\alpha }{\psi }_{\alpha },$
(5.51)

where ${\mathrm{\nabla }}^{2\alpha }=\frac{{\partial }^{2\alpha }}{\partial {x}^{2\alpha }}+\frac{{\partial }^{2\alpha }}{\partial {y}^{2\alpha }}+\frac{{\partial }^{2\alpha }}{\partial {z}^{2\alpha }}$ [24].

The above equation (5.50) differs from the results presented in [36, 37]. Also, Eq. (5.51) is different from the ones reported in [3840, 54, 55].

Below we define the local fractional energy operator
${\overline{E}}_{\alpha }={i}^{\alpha }{\left(\frac{h}{2\pi }\right)}^{\alpha }\frac{{\partial }^{\alpha }}{\partial {t}^{\alpha }}$
(5.52)
and the local fractional momentum operator
${\overline{P}}_{\alpha }={i}^{\alpha }{\left(\frac{h}{2\pi }\right)}^{\alpha }{\mathrm{\nabla }}^{\alpha },$
(5.53)

where ${\mathrm{\nabla }}^{\alpha }=\frac{{\partial }^{\alpha }}{\partial {x}^{\alpha }}{i}^{\alpha }+\frac{{\partial }^{\alpha }}{\partial {y}^{\alpha }}{j}^{\alpha }+\frac{{\partial }^{\alpha }}{\partial {z}^{\alpha }}{k}^{\alpha }$ [26].

Thus, we get the Planck-Einstein and de Broglie relations are in fractal space as
$\left\{\begin{array}{c}{E}_{\alpha }={\left(\frac{h}{2\pi }\right)}^{\alpha }{\omega }^{\alpha },\hfill \\ {P}_{\alpha }={\left(\frac{h}{2\pi }\right)}^{\alpha }{k}^{\alpha },\hfill \end{array}$
(5.54)

where h is Planck’s constant.

## 6 Conclusions

In this manuscript, the uncertainty principle in local fractional Fourier analysis is suggested. Since the local fractional calculus can be applied to deal with the non-differentiable functions defined on any fractional space, the local fractional Fourier transform is important to deal with fractal signal functions. The results on uncertainty principles could play an important role in time-frequency analysis in fractal space. From Eq. (A.7) we conclude that there is a semi-group property for the Mittag-Leffler function on fractal sets. Meanwhile, uncertainty principles derived from local fractional Fourier analysis are classical uncertainty principles in the case of $\alpha \phantom{\rule{0.25em}{0ex}}=1$. We reported the structure the local fractional Schrödinger equation derived from Planck-Einstein and de Broglie relations in fractal time space.

## Appendix

We have [13, 20]
${\gamma }^{\alpha }\left[F,a,b\right]+{\gamma }^{\alpha }\left[F,b,c\right]={\gamma }^{\alpha }\left[F,a,c\right]$
(A.1)
such that
${S}_{F}^{\alpha }\left(y\right)-{S}_{F}^{\alpha }\left(x\right)={\gamma }^{\alpha }\left[F,x,y\right]=\frac{{\left(y-x\right)}^{\alpha }}{\mathrm{\Gamma }\left(1+\alpha \right)},$
(A.2)
where ${S}_{F}^{\alpha }\left(y\right)$ is a fractal integral staircase function. We have the relation [1820]
${H}^{\alpha }\left(F\cap \left(\gamma ,0\right)\right)\phantom{\rule{0.25em}{0ex}}=-{\gamma }^{\alpha }$
(A.3)
such that
${S}_{F}^{\alpha }\left(y\right)-{S}_{F}^{\alpha }\left(x\right)={\gamma }^{\alpha }\left[F,x,y\right]={H}^{\alpha }\left(F\cap \left(x,y\right)\right)=\frac{{\left(y-x\right)}^{\alpha }}{\mathrm{\Gamma }\left(1+\alpha \right)}.$
(A.4)
Inversely we obtain
${S}_{F}^{\alpha }\left(x\right)-{S}_{F}^{\alpha }\left(y\right)={\gamma }^{\alpha }\left[F,y,x\right]={H}^{\alpha }\left(F\cap \left(y,x\right)\right)=-\frac{{\left(y-x\right)}^{\alpha }}{\mathrm{\Gamma }\left(1+\alpha \right)}.$
(A.5)

Hence, both ${S}_{F}^{\alpha }\left(x\right)=\frac{{x}^{\alpha }}{\mathrm{\Gamma }\left(1+\alpha \right)}$ and ${S}_{F}^{\alpha }\left(y\right)=\frac{{y}^{\alpha }}{\mathrm{\Gamma }\left(1+\alpha \right)}$ are seen in [20, 21].

In view of Eq. (A.4), we easily obtain that
${E}_{\alpha }\left({i}^{\alpha }{x}^{\alpha }\right)={cos}_{\alpha }{x}^{\alpha }+{i}^{\alpha }{sin}_{\alpha }{x}^{\alpha }$
(A.6)
and
${E}_{\alpha }\left({x}^{\alpha }+{y}^{\alpha }\right)={E}_{\alpha }\left({\left(x+y\right)}^{\alpha }\right)={E}_{\alpha }\left({x}^{\alpha }\right){E}_{\alpha }\left({y}^{\alpha }\right),$
(A.7)

where ${E}_{\alpha }\left({x}^{\alpha }\right)={\sum }_{k=0}^{\mathrm{\infty }}\frac{{x}^{\alpha k}}{\mathrm{\Gamma }\left(1+k\alpha \right)}$, ${sin}_{\alpha }{x}^{\alpha }={\sum }_{k=0}^{\mathrm{\infty }}\frac{{\left(-1\right)}^{k}{x}^{\left(2k+1\right)\alpha }}{\mathrm{\Gamma }\left[1+\left(2k+1\right)\alpha \right]}$, ${cos}_{\alpha }{x}^{\alpha }={\sum }_{k=0}^{\mathrm{\infty }}\frac{{\left(-1\right)}^{k}{x}^{2\alpha k}}{\mathrm{\Gamma }\left(1+2\alpha k\right)}$ and ${i}^{\alpha }$ is a fractal unit of imaginary number [1820, 53].

## Declarations

### Acknowledgements

Dedicated to Professor Hari M Srivastava.

The authors would like to thank to the referees for their very useful comments and remarks.

## Authors’ Affiliations

(1)
Department of Mathematics and Mechanics, China University of Mining and Technology
(2)
Institute of Software Science, Zhengzhou Normal University
(3)
Institute of Applied Mathematics, Qujing Normal University
(4)
Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University
(5)
Institute of Space Sciences
(6)
Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University
(7)
Department of Electrical Engineering, Institute of Engineering of Polytechnic of Porto

## References

1. Mandelbrot BB: The Fractal Geometry of Nature. Freeman, New York; 1982.
2. Falconer KJ: Fractal Geometry-Mathematical Foundations and Application. Wiley, New York; 1997.
3. Zeilinger A, Svozil K: Measuring the dimension of space-time. Phys. Rev. Lett. 1985, 54(24):2553–2555. 10.1103/PhysRevLett.54.2553
4. Nottale L: Fractals and the quantum theory of space-time. Int. J. Mod. Phys. A 1989, 4(19):5047–5117. 10.1142/S0217751X89002156
5. Saleh AA: On the dimension of micro space-time. Chaos Solitons Fractals 1996, 7(6):873–875. 10.1016/0960-0779(96)00022-7
6. Maziashvili, M: Space-time uncertainty relation and operational definition of dimension. (2007) arXiv:0709.0898
7. Caruso F, Oguri V: The cosmic microwave background spectrum and an upper limit for fractal space dimensionality. Astrophys. J. 2009, 694(1):151–156. 10.1088/0004-637X/694/1/151
8. Calcagni G: Geometry and field theory in multi-fractional spacetime. J. High Energy Phys. 2012, 65(1):1–65.
9. Kong HY, He JH: A novel friction law. Therm. Sci. 2012, 16(5):1529–1533. 10.2298/TSCI1205529K
10. Kong HY, He JH: The fractal harmonic law and its application to swimming suit. Therm. Sci. 2012, 16(5):1467–1471. 10.2298/TSCI1205467K
11. Kolwankar KM, Gangal AD: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 1996, 6(4):505–513. 10.1063/1.166197
12. Jumarie G: Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl. Math. Lett. 2009, 22: 378–385. 10.1016/j.aml.2008.06.003
13. Parvate A, Gangal AD: Calculus on fractal subsets of real line - I: formulation. Fractals 2009, 17(1):53–81. 10.1142/S0218348X09004181
14. Chen W: Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals 2006, 28: 923–929. 10.1016/j.chaos.2005.08.199
15. Adda FB, Cresson J: About non-differentiable functions. J. Math. Anal. Appl. 2001, 263: 721–737. 10.1006/jmaa.2001.7656
16. Balankin AS, Elizarraraz BE: Map of fluid flow in fractal porous medium into fractal continuum flow. Phys. Rev. E 2012., 85(5): Article ID 056314Google Scholar
17. He JH: A new fractal derivation. Therm. Sci. 2011, 15: 145–147.Google Scholar
18. Yang XJ: Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4: 1–225.Google Scholar
19. Yang XJ: Local Fractional Functional Analysis and Its Applications. Asian Academic Publisher, Hong Kong; 2011.Google Scholar
20. Yang XJ: Advanced Local Fractional Calculus and Its Applications. World Science Publisher, New York; 2012.Google Scholar
21. Carpinteri A, Chiaia B, Cornetti P: Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Eng. 2001, 191: 3–19. 10.1016/S0045-7825(01)00241-9
22. Carpinteri A, Cornetti P: A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos Solitons Fractals 2002, 13(1):85–94. 10.1016/S0960-0779(00)00238-1
23. Yang XJ: The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems. Prespacetime J. 2012, 3(9):913–923.Google Scholar
24. Kolwankar KM, Gangal AD: Local fractional Fokker-Planck equation. Phys. Rev. Lett. 1998, 80: 214–217. 10.1103/PhysRevLett.80.214
25. Wu GC, Wu KT: Variational approach for fractional diffusion-wave equations on Cantor sets. Chin. Phys. Lett. 2012., 29(6): Article ID 060505Google Scholar
26. Zhong WP, Gao F, Shen XM: Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral. Adv. Mater. Res. 2012, 461: 306–310.
27. Yang XJ, Baleanu D: Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 2012. doi:10.2298/TSCI121124216YGoogle Scholar
28. Hu MS, Agarwal RP, Yang XJ: Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstr. Appl. Anal. 2012., 2012: Article ID 567401Google Scholar
29. Yang, XJ, Baleanu, D, Zhong, WP: Approximation solution to diffusion equation on Cantor time-space. Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. (2013, in press)Google Scholar
30. Hu MS, Baleanu D, Yang XJ: One-phase problems for discontinuous heat transfer in fractal media. Math. Probl. Eng. 2013., 2013: Article ID 358473Google Scholar
31. Babakhani A, Gejji VD: On calculus of local fractional derivatives. J. Math. Anal. Appl. 2002, 270(1):66–79. 10.1016/S0022-247X(02)00048-3
32. Chen Y, Yan Y, Zhang K: On the local fractional derivative. J. Math. Anal. Appl. 2010, 362: 17–33. 10.1016/j.jmaa.2009.08.014
33. Kim TS: Differentiability of fractal curves. Commun. Korean Math. Soc. 2005, 20(4):827–835.
34. Parvate A, Gangal AD: Fractal differential equations and fractal-time dynamical systems. Pramana J. Phys. 2005, 64(3):389–409. 10.1007/BF02704566
35. Yang XJ, Liao MK, Wang JN: A novel approach to processing fractal dynamical systems using the Yang-Fourier transforms. Adv. Electr. Eng. Syst. 2012, 1(3):135–139.Google Scholar
36. Namias V: The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 1980, 25(3):241–265. 10.1093/imamat/25.3.241
37. Mustard D: Uncertainty principles invariant under the fractional Fourier transform. J. Aust. Math. Soc. 1991, 33(2):180–191. 10.1017/S0334270000006986
38. Bhatti M: Fractional Schrödinger wave equation and fractional uncertainty principle. Int. J. Contemp. Math. Sci. 2007, 19(2):943–950.
39. Laskin N: Fractional quantum mechanics. Phys. Rev. E 2000, 62: 3135–3145. 10.1103/PhysRevE.62.3135
40. Laskin N: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268: 298–305. 10.1016/S0375-9601(00)00201-2
41. Laskin N: Fractional Schrödinger equation. Phys. Rev. E 2002., 66: Article ID 056108Google Scholar
42. Muslih SI, Agrawal OP, Baleanu D: A fractional Schrödinger equation and its solution. Int. J. Theor. Phys. 2010, 49(8):1746–1752. 10.1007/s10773-010-0354-x
43. Adda FB, Cresson J: Quantum derivatives and the Schrödinger equation. Chaos Solitons Fractals 2004, 19: 1323–1334. 10.1016/S0960-0779(03)00339-4
44. Tofighi A: Probability structure of time fractional Schrödinger equation. Acta Phys. Pol. 2009, 116(2):114–118.
45. Naber M: Time fractional Schrödinger equation. J. Math. Phys. 2004, 45(8):3325–3339.
46. Dong JP, Xu MY: Some solutions to the space fractional Schrödinger equation using momentum representation method. J. Math. Phys. 2007., 48: Article ID 072105Google Scholar
47. Rozmej P, Bandrowski B: On fractional Schrödinger equation. Comput. Methods Sci. Technol. 2010, 16(2):191–194.
48. Iomin A: Fractional-time Schrödinger equation: fractional dynamics on a comb. Chaos Solitons Fractals 2011, 44: 348–352. 10.1016/j.chaos.2011.03.005
49. Liao MK, Yang XJ, Yan Q: A new viewpoint to Fourier analysis in fractal space. In Advances in Applied Mathematics and Approximation Theory. Edited by: Anastassiou GA, Duman O. Springer, New York; 2013:399–411. Chapter 26Google Scholar
50. Guo Y: Local fractional Z transform in fractal space. Adv. Digit. Multimed. 2012, 1(2):96–102.Google Scholar
51. Yang XJ, Liao MK, Chen JW: A novel approach to processing fractal signals using the Yang-Fourier transforms. Proc. Eng. 2012, 29: 2950–2954.
52. Yang XJ: Theory and applications of local fractional Fourier analysis. Adv. Mech. Eng. Appl. 2012, 1(4):70–85.Google Scholar
53. He JH: Asymptotic methods for solitary solutions and compactons. Abstr. Appl. Anal. 2012., 2012: Article ID 916793Google Scholar
54. He JH: Frontier of modern textile engineering and short remarks on some topics in physics. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11(7):555–563.
55. Yang CD: Trajectory interpretation of the uncertainty principle in 1D systems using complex Bohmian mechanics. Phys. Lett. A 2008, 372(41):6240–6253. 10.1016/j.physleta.2008.08.050