Approximation of eigenvalues of discontinuous Sturm-Liouville problems with eigenparameter in all boundary conditions

  • Mohammed M Tharwat1Email author,

    Affiliated with

    • Ali H Bhrawy1, 2 and

      Affiliated with

      • Abdulaziz S Alofi1

        Affiliated with

        Boundary Value Problems20132013:132

        DOI: 10.1186/1687-2770-2013-132

        Received: 12 March 2013

        Accepted: 4 May 2013

        Published: 20 May 2013

        Abstract

        In this paper, we apply a sinc-Gaussian technique to compute approximate values of the eigenvalues of Sturm-Liouville problems which contain an eigenparameter appearing linearly in two boundary conditions, in addition to an internal point of discontinuity. The error of this method decays exponentially in terms of the number of involved samples. Therefore the accuracy of the new technique is higher than that of the classical sinc method. Numerical worked examples with tables and illustrative figures are given at the end of the paper.

        MSC:34L16, 94A20, 65L15.

        Keywords

        sampling theory Sturm-Liouville problems transmission conditions sinc-Gaussian sinc method truncation and amplitude errors

        1 Introduction

        By a sampling theorem we mean a representation of a certain function in terms of its values at a discrete set of points. In communication theory, it means a reconstruction of a signal (information) in terms of a discrete set of data. This has several applications, especially in the transmission of information. If the signal is band-limited, the sampling process can be done via the celebrated Whittaker-Kotel’nikov-Shannon (WKS) sampling theorem [13]. By a band-limited signal with band width τ, τ > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq1_HTML.gif, we mean a function in the Paley-Wiener space
        B τ : = { f  entire , | f ( λ ) | C e τ | λ | , R | f ( λ ) | 2 d λ } . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ1_HTML.gif
        (1.1)
        The WKS sampling theorem is a fundamental result in information theory. It states that any f B τ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq2_HTML.gif can be reconstructed from its sampled values f ( x k ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq3_HTML.gif, where x k = k π / τ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq4_HTML.gif and k Z http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq5_HTML.gif, by the formula
        f ( x ) = k Z f ( x k ) sinc ( τ x / π k ) , x R , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ2_HTML.gif
        (1.2)
        where
        sinc ( x ) : = { sin π x π x , x R { 0 } , 1 , x = 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ3_HTML.gif
        (1.3)
        and the series converges absolutely and uniformly on any finite interval of ℝ. Expansion (1.2) is used in several approximation problems which are known as sinc methods; see, e.g., [47]. In particular the sinc-method is used to approximate eigenvalues of boundary value problems; see, for example, [814]. The sinc-method has a slow rate of decay at infinity, which is as slow as O ( | x 1 | ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq6_HTML.gif. There are several attempts to improve the rate of decay. One of the interesting ways is to multiply the sinc-function in (1.2) by a kernel function; see, e.g., [1517]. Let h ( 0 , π / τ ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq7_HTML.gif and γ ( 0 , π h τ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq8_HTML.gif. Assume that Φ B γ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq9_HTML.gif such that Φ ( 0 ) = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq10_HTML.gif, then for f B τ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq2_HTML.gif we have the expansion, [18]
        f ( x ) = n = f ( n h ) sinc ( h 1 π x n π ) Φ ( h 1 x n ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ4_HTML.gif
        (1.4)
        The speed of convergence of the series in (1.4) is determined by the decay of | Φ ( x ) | http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq11_HTML.gif. But the decay of an entire function of exponential type cannot be as fast as e c | x | http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq12_HTML.gif as | x | http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq13_HTML.gif, for some positive c [18]. In [19], Qian has introduced the following regularized sampling formula. For h ( 0 , π / τ ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq7_HTML.gif, N N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq14_HTML.gif and r > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq15_HTML.gif, Qian defined the operator [19]
        ( G h , N f ) ( x ) = n Z N ( x ) f ( n h ) S n ( h 1 π x ) G ( x n h 2 r h ) , x R , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ5_HTML.gif
        (1.5)
        where G ( t ) : = exp ( t 2 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq16_HTML.gif, which is called the Gaussian function, S n ( h 1 π x ) : = sinc ( h 1 π x n π ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq17_HTML.gif, Z N ( x ) : = { n Z : | [ h 1 x ] n | N } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq18_HTML.gif and [ x ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq19_HTML.gif denotes the integer part of x R http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq20_HTML.gif; see also [20, 21]. Qian also derived the following error bound. If f B τ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq21_HTML.gif, h ( 0 , π / τ ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq7_HTML.gif and a : = min { r ( π h τ ) , ( N 2 ) / r } 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq22_HTML.gif, then [19, 20]
        | f ( x ) ( G h , N f ) ( x ) | 2 τ π f 2 π 2 a 2 ( 2 π a + e 3 / 2 r 2 ) e a 2 / 2 , x R . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ6_HTML.gif
        (1.6)
        In [18] Schmeisser and Stenger extended the operator (1.5) to the complex domain ℂ. For τ > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq23_HTML.gif, h ( 0 , π / τ ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq7_HTML.gif and ω : = ( π h τ ) / 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq24_HTML.gif, they defined the operator [18]
        ( G h , N f ) ( z ) : = n Z N ( z ) f ( n h ) S n ( π z h ) G ( ω ( z n h ) N h ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ7_HTML.gif
        (1.7)
        where Z N ( z ) : = { n Z : | [ h 1 z + 1 / 2 ] n | N } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq25_HTML.gif and N N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq14_HTML.gif. Note that the summation limits in (1.7) depend on the real part of z. Schmeisser and Stenger [18] proved that if f is an entire function such that
        | f ( ξ + i η ) | ϕ ( | ξ | ) e τ | η | , ξ , η R , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ8_HTML.gif
        (1.8)
        where ϕ is a non-decreasing, non-negative function on [ 0 , ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq26_HTML.gif and τ 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq27_HTML.gif, then for h ( 0 , π / τ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq28_HTML.gif, ω : = ( π h τ ) / 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq29_HTML.gif, N N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq14_HTML.gif, | z | < N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq30_HTML.gif, we have
        | f ( z ) ( G h , N f ) ( z ) | 2 | sin ( h 1 π z ) | ϕ ( | z | + h ( N + 1 ) ) e ω N π ω N β N ( h 1 z ) , z C , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ9_HTML.gif
        (1.9)
        where
        β N ( t ) : = cosh ( 2 ω t ) + 2 e ω t 2 / N π ω N [ 1 ( t / N ) 2 ] + 1 2 [ e 2 ω t e 2 π ( N t ) 1 + e 2 ω t e 2 π ( N + t ) 1 ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ10_HTML.gif
        (1.10)
        The amplitude error arises when the exact values f ( n h ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq31_HTML.gif of (1.7) are replaced by the approximations f ˜ ( n h ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq32_HTML.gif. We assume that f ˜ ( n h ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq32_HTML.gif are close to f ( n h ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq31_HTML.gif, i.e., there is ε > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq33_HTML.gif sufficiently small such that
        sup n Z n ( z ) | f ( n h ) f ˜ ( n h ) | < ε . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ11_HTML.gif
        (1.11)
        Let h ( 0 , π / τ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq34_HTML.gif, ω : = ( π h τ ) / 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq29_HTML.gif and N N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq14_HTML.gif be fixed numbers. The authors in [22] proved that if (1.11) holds, then for | z | < N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq35_HTML.gif, we have
        | ( G h , N f ) ( z ) ( G h , N f ˜ ) ( z ) | A ε , N ( z ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ12_HTML.gif
        (1.12)
        where
        A ε , N ( z ) = 2 ε e ω / 4 N ( 1 + N / ω π ) exp ( ( ω + π ) h 1 | z | ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ13_HTML.gif
        (1.13)
        It is well known that many topics in mathematical physics require the investigation of the eigenvalues and eigenfunctions of Sturm-Liouville type boundary value problems. Therefore, the Sturmian theory is one of the most actual and extensively developing fields of theoretical and applied mathematics. Particularly, in recent years, highly important results in this field have been obtained for the case when the eigenparameter appears not only in the differential equation but also in the boundary conditions. The literature on such results is voluminous, and we refer to [2327] and corresponding bibliography cited therein. In particular, [24, 26, 28, 29] contain many references to problems in physics and mechanics. Our task is to use formula (1.7) to compute the eigenvalues numerically of the differential equation
        y ( x , μ ) + q ( x ) y ( x , μ ) = μ 2 y ( x , μ ) , x [ 1 , 0 ) ( 0 , 1 ] , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ14_HTML.gif
        (1.14)
        with boundary conditions
        L 1 ( y ) : = ( α 1 μ 2 α 1 ) y ( 1 , μ ) ( α 2 μ 2 α 2 ) y ( 1 , μ ) = 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ15_HTML.gif
        (1.15)
        L 2 ( y ) : = ( β 1 μ 2 + β 1 ) y ( 1 , μ ) ( β 2 μ 2 + β 2 ) y ( 1 , μ ) = 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ16_HTML.gif
        (1.16)
        and transmission conditions
        L 3 ( y ) : = γ 1 y ( 0 , μ ) δ 1 y ( 0 + , μ ) = 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ17_HTML.gif
        (1.17)
        L 4 ( y ) : = γ 2 y ( 0 , μ ) δ 2 y ( 0 + , μ ) = 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ18_HTML.gif
        (1.18)
        where μ is a complex spectral parameter; q ( x ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq36_HTML.gif is a given real-valued function, which is continuous in [ 1 , 0 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq37_HTML.gif and ( 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq38_HTML.gif and has a finite limit q ( 0 ± ) = lim x 0 ± q ( x ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq39_HTML.gif; γ i http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq40_HTML.gif, δ i http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq41_HTML.gif, α i http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq42_HTML.gif, β i http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq43_HTML.gif, α i http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq44_HTML.gif, β i http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq45_HTML.gif ( i = 1 , 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq46_HTML.gif) are real numbers; γ i 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq47_HTML.gif, δ i 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq48_HTML.gif ( i = 1 , 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq46_HTML.gif); γ 1 γ 2 = δ 1 δ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq49_HTML.gif and
        det ( α 1 α 1 α 2 α 2 ) > 0 , det ( β 1 β 1 β 2 β 2 ) > 0 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ19_HTML.gif
        (1.19)

        The eigenvalue problem (1.14)-(1.18) when ( α 1 , α 2 ) ( 0 , 0 ) ( β 1 , β 2 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq50_HTML.gif is a Sturm-Liouville problem which contains an eigenparameter μ in two boundary conditions, in addition to an internal point of discontinuity. In [30], Tharwat proved that the eigenvalue problem (1.14)-(1.18) has a denumerable set of real and simple eigenvalues using techniques similar to those established in [23, 24, 31], where also sampling theorems have been established. Tharwat et al., in [14], computed the eigenvalues of the problem (1.14)-(1.18) by using the sinc method. In the sinc method, the basic idea is as follows: The eigenvalues are characterized as the zeros of an analytic function F ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq51_HTML.gif which can be written in the form F ( μ ) = K ( μ ) + U ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq52_HTML.gif, where K ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq53_HTML.gif (known part) is the function for the case q 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq54_HTML.gif. The ingenuity of the approach is in trying to choose the function F ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq51_HTML.gif so that U ( μ ) B τ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq55_HTML.gif (unknown part) and can be approximated by the WKS sampling theorem if its values at some equally spaced points are known; see [814].

        Our goal in this paper is to improve the results presented in Tharwat et al. [14] with the least conditions. In this paper we use the sinc-Gaussian sampling formula (1.7) to compute eigenvalues of (1.14)-(1.18) numerically. As is expected, the new method reduced the error bounds remarkably; see the examples at the end of this paper. Also here, we use the same idea but the unknown part U ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq56_HTML.gif is an entire function of exponential type and satisfies (1.8), that is, U ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq56_HTML.gif is not necessary L 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq57_HTML.gif-function. Then we approximate the U ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq56_HTML.gif using (1.7) and obtain better results. We would like to mention that the papers in computing eigenvalues by the sinc-Gaussian method are few; see [22, 32, 33]. In Section 2 we derive the sinc-Gaussian technique to compute the eigenvalues of (1.14)-(1.18) with error estimates. The last section involves some illustrative examples.

        2 Treatment of the eigenvalue problem (1.14)-(1.18)

        In this section we derive approximate values of the eigenvalues of the eigenvalue problem (1.14)-(1.18). Recall that the problem (1.14)-(1.18) has a denumerable set of real and simple eigenvalues, cf. [30]. Let
        y ( x , μ ) = { y 1 ( x , μ ) , x [ 1 , 0 ) , y 2 ( x , μ ) , x ( 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equa_HTML.gif
        denote the solution of (1.14) satisfying the following initial conditions:
        ( y 1 ( 1 , μ ) y 2 ( 0 + , μ ) y 1 ( 1 , μ ) y 2 ( 0 + , μ ) ) = ( μ 2 α 2 α 2 γ 1 δ 1 y 1 ( 0 , μ ) μ 2 α 1 α 1 γ 2 δ 2 y 1 ( 0 , μ ) ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ20_HTML.gif
        (2.1)
        Since y ( , μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq58_HTML.gif satisfies (1.15), (1.17) and (1.18), then the eigenvalues of problem (1.14)-(1.18) are the zeros of the characteristic determinant, cf. [30],
        Ω ( μ ) : = ( β 1 μ 2 + β 1 ) y 2 ( 1 , μ ) ( β 2 μ 2 + β 2 ) y 2 ( 1 , μ ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ21_HTML.gif
        (2.2)
        According to [30], see also [3440], the function Ω ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq59_HTML.gif is an entire function of μ where zeros are real and simple. We aim to approximate Ω ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq60_HTML.gif and hence its zeros, i.e., the eigenvalues, by using (1.7). The idea is to split Ω ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq60_HTML.gif into two parts, one is known and the other is unknown, but is an entire function of exponential type and satisfies (1.8). Then we approximate the unknown part using (1.7) to get the approximate Ω ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq60_HTML.gif and then compute the approximate zeros. By using the method of variation of constants, we can see that the solution y ( , μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq58_HTML.gif satisfies the Volterra integral equations, cf. [30],
        y 1 ( x , μ ) = ( α 2 + μ 2 α 2 ) cos [ μ ( x + 1 ) ] ( α 1 + μ 2 α 1 ) 1 μ sin [ μ ( x + 1 ) ] + ( T 1 y 1 ) ( x , μ ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ22_HTML.gif
        (2.3)
        y 2 ( x , μ ) = γ 1 δ 1 y 1 ( 0 , μ ) cos [ μ x ] + γ 2 δ 2 y 1 ( 0 , μ ) sin [ μ x ] μ + ( T 2 y 2 ) ( x , μ ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ23_HTML.gif
        (2.4)
        where T 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq61_HTML.gif and T 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq62_HTML.gif are the Volterra operators
        ( T 1 y 1 ) ( x , μ ) : = 1 x sin [ μ ( x t ) ] μ q ( t ) y 1 ( t , μ ) d t , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ24_HTML.gif
        (2.5)
        ( T 2 y 2 ) ( x , μ ) : = 0 x sin [ μ ( x t ) ] μ q ( t ) y 2 ( t , μ ) d t . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ25_HTML.gif
        (2.6)
        Differentiating (2.3) and (2.4), we obtain
        y 1 ( x , μ ) = ( α 2 + μ 2 α 2 ) μ sin [ μ ( x + 1 ) ] ( α 1 + μ 2 α 1 ) cos [ μ ( x + 1 ) ] + ( T ˜ 1 y 1 ) ( x , μ ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ26_HTML.gif
        (2.7)
        y 2 ( x , μ ) = γ 1 δ 1 μ y 1 ( 0 , μ ) sin [ μ x ] + γ 2 δ 2 y 1 ( 0 , μ ) cos [ μ x ] + ( T ˜ 2 y 2 ) ( x , μ ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ27_HTML.gif
        (2.8)
        where T ˜ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq63_HTML.gif and T ˜ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq64_HTML.gif are the Volterra-type integral operators
        ( T ˜ 1 y 1 ) ( x , μ ) : = 1 x cos [ μ ( x t ) ] q ( t ) y 1 ( t , μ ) d t , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ28_HTML.gif
        (2.9)
        ( T ˜ 2 y 2 ) ( x , μ ) : = 0 x cos [ μ ( x t ) ] q ( t ) y 2 ( t , μ ) d t . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ29_HTML.gif
        (2.10)
        Define ϑ i ( , μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq65_HTML.gif and ϑ ˜ i ( , μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq66_HTML.gif, i = 1 , 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq46_HTML.gif, to be
        ϑ i ( x , μ ) : = T i y i ( x , μ ) , ϑ ˜ i ( x , μ ) : = T ˜ i y i ( x , μ ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ30_HTML.gif
        (2.11)
        In the following, we make use of the known estimates [41]
        | cos z | e | z | , | sin z z | c 0 1 + | z | e | z | , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ31_HTML.gif
        (2.12)
        where c 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq67_HTML.gif is some constant (we may take c 0 1.72 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq68_HTML.gif cf. [41]). For convenience, we define the constants
        q 1 : = 1 0 | q ( t ) | d t , q 2 : = 0 1 | q ( t ) | d t , c 1 : = max ( | α 1 | , | α 2 | , | α 1 | , | α 2 | ) , c 2 : = exp ( c 0 q 1 ) , c 3 : = 1 + c 0 c 2 q 1 , c 4 : = ( 1 + c 0 ) [ | γ 1 | | δ 1 | c 3 + | γ 2 | | δ 2 | c 0 ( 1 + c 3 q 1 ) ] , c 5 : = exp ( c 0 q 2 ) , c 6 : = 1 + c 0 q 2 c 5 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ32_HTML.gif
        (2.13)
        As in [14], we split Ω ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq60_HTML.gif into two parts via
        Ω ( μ ) : = K ( μ ) + U ( μ ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ33_HTML.gif
        (2.14)
        where K ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq69_HTML.gif is the known part
        K ( μ ) : = ( β 1 μ 2 + β 1 ) [ ( μ 2 α 2 α 2 ) ( γ 1 δ 1 cos 2 μ γ 2 δ 2 sin 2 μ ) ( μ 2 α 1 α 1 ) ( γ 1 δ 1 + γ 2 δ 2 ) cos μ sin μ μ ] + ( β 2 μ 2 + β 2 ) [ ( μ 2 α 2 α 2 ) ( γ 1 δ 1 + γ 2 δ 2 ) μ cos μ sin μ + ( μ 2 α 1 α 1 ) ( γ 2 δ 2 cos 2 μ γ 1 δ 1 sin 2 μ ) ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ34_HTML.gif
        (2.15)
        and U ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq70_HTML.gif is the unknown one
        U ( μ ) : = γ 1 δ 1 [ ( β 1 μ 2 + β 1 ) cos μ + ( β 2 μ 2 + β 2 ) μ sin μ ] ϑ 1 ( 0 , μ ) + ( β 1 μ 2 + β 1 ) ϑ 2 ( 1 , μ ) + γ 2 δ 2 [ ( β 1 μ 2 + β 1 ) sin μ μ ( β 2 μ 2 + β 2 ) cos μ ] ϑ ˜ 1 ( 0 , μ ) ( β 2 μ 2 + β 2 ) ϑ ˜ 2 ( 1 , μ ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ35_HTML.gif
        (2.16)
        Then the function U ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq70_HTML.gif is entire in μ for each x [ 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq71_HTML.gif for which, cf. [14],
        | U ( μ ) | ϕ ( | μ | ) e 2 | μ | , μ C , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ36_HTML.gif
        (2.17)
        where
        ϕ ( | μ | ) : = M ( 1 + | μ | 2 ) 2 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ37_HTML.gif
        (2.18)
        and
        M : = c 1 c ( 1 + c 0 ) 2 q 1 [ c 0 c 2 | γ 1 | | δ 1 | + c 3 | γ 2 | | δ 2 | ] + c 1 c 4 c q 2 ( c 6 + c 0 c 5 ) , c : = max { | β 1 | , | β 2 | , | β 1 | , | β 2 | } . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ38_HTML.gif
        (2.19)
        Then U ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq70_HTML.gif is an entire function of exponential type τ = 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq72_HTML.gif. In the following, we let μ R http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq73_HTML.gif since all eigenvalues are real. Now we approximate the function U ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq70_HTML.gif using the operator (1.7) where h ( 0 , π / 2 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq74_HTML.gif and ω : = ( π 2 h ) / 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq75_HTML.gif and then, from (1.9), we obtain
        | U ( μ ) ( G h , N U ) ( μ ) | T h , N ( μ ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ39_HTML.gif
        (2.20)
        where
        T h , N ( μ ) : = 2 | sin ( h 1 π μ ) | ϕ ( | μ | + h ( N + 1 ) ) e ω N π ω N β N ( 0 ) , μ R . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ40_HTML.gif
        (2.21)
        The samples U ( n h ) = Ω ( n h ) K ( n h ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq76_HTML.gif, n Z N ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq77_HTML.gif cannot be computed explicitly in the general case. We approximate these samples numerically by solving the initial-value problems defined by (1.14) and (2.1) to obtain the approximate values U ˜ ( n h ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq78_HTML.gif, n Z N ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq77_HTML.gif, i.e., U ˜ ( n h ) = Ω ˜ ( n h ) K ( n h ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq79_HTML.gif. Here we use a computer algebra system, Mathematica, to obtain the approximate solutions with the required accuracy. However, a separate study for the effect of different numerical schemes and the computational costs would be interesting. Accordingly, we have the explicit expansion
        ( G h , N U ˜ ) ( μ ) : = n Z N ( μ ) U ˜ ( n h ) S n ( π μ h ) G ( ω ( μ n h ) N h ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ41_HTML.gif
        (2.22)
        Therefore we get, cf. (1.12),
        | ( G h , N U ) ( μ ) ( G h , N U ˜ ) ( μ ) | A ε , N ( 0 ) , μ R . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ42_HTML.gif
        (2.23)
        Now let Ω ˜ N ( μ ) : = K ( μ ) + ( G h , N U ˜ ) ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq80_HTML.gif. From (2.20) and (2.23) we obtain
        | Ω ( μ ) Ω ˜ N ( μ ) | T h , N ( μ ) + A ε , N ( 0 ) , μ R . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ43_HTML.gif
        (2.24)
        Let μ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq81_HTML.gif be an eigenvalue and μ N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq82_HTML.gif be its desired approximation, i.e., Ω ( μ ) = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq83_HTML.gif and Ω ˜ N ( μ N ) = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq84_HTML.gif. From (2.24) we have | Ω ˜ N ( μ ) | T h , N ( μ ) + A ε , N ( 0 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq85_HTML.gif. Define the curves
        a ± ( μ ) = Ω ˜ N ( μ ) ± T h , N ( μ ) + A ε , N ( 0 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ44_HTML.gif
        (2.25)
        The curves a + ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq86_HTML.gif, a ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq87_HTML.gif trap the curve of Ω ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq60_HTML.gif for suitably large N. Hence the closure interval is determined by solving a ± ( μ ) = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq88_HTML.gif, which gives an interval
        I ε , N : = [ a , a + ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equb_HTML.gif

        It is worthwhile to mention that the simplicity of the eigenvalues guarantees the existence of approximate eigenvalues, i.e., the μ N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq82_HTML.gif’s for which Ω ˜ N ( μ N ) = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq84_HTML.gif. Next we estimate the error | μ μ N | http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq89_HTML.gif for the eigenvalue μ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq90_HTML.gif.

        Theorem 2.1 Let μ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq81_HTML.gif be an eigenvalue of (1.14)-(1.18) and μ N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq82_HTML.gif be its approximation. Then, for μ R http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq73_HTML.gif, we have the following estimate:
        | μ μ N | < T h , N ( μ N ) + A ε , N ( 0 ) inf ζ I ε , N | Ω ( ζ ) | , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ45_HTML.gif
        (2.26)

        where the interval I ε , N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq91_HTML.gif is defined above.

        Proof Replacing μ by μ N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq82_HTML.gif in (2.24), we obtain
        | Ω ( μ N ) Ω ( μ ) | < T h , N ( μ N ) + A ε , N ( 0 ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ46_HTML.gif
        (2.27)
        where we have used Ω ˜ N ( μ N ) = Ω ( μ ) = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq92_HTML.gif. Using the mean value theorem yields that for some ζ J ε , N : = [ min ( μ , μ N ) , max ( μ , μ N ) ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq93_HTML.gif,
        | ( μ μ N ) Ω ( ζ ) | T h , N ( μ N ) + A ε , N ( 0 ) , ζ J ε , N I ε , N . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ47_HTML.gif
        (2.28)

        Since μ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq90_HTML.gif is simple and N is sufficiently large, then inf ζ I ε , N | Ω ( ζ ) | > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq94_HTML.gif, and we get (2.26). □

        3 Examples

        This section includes two examples illustrating the sinc-Gaussian method. All examples are computed in [14] with the classical sinc-method. It is clearly seen that the sinc-Gaussian method gives remarkably better results. We indicate in these two examples the effect of the amplitude error in the method by determining enclosure intervals for different values of ε. We also indicate the effect of N and h by several choices. We would like to mention that Mathematica has been used to obtain the exact values for these examples where eigenvalues cannot computed concretely. Mathematica is also used in rounding the exact eigenvalues, which are square roots. Each example is exhibited via figures that accurately illustrate the procedure near to some of the approximated eigenvalues. More explanations are given below.

        Example 1 Consider the boundary value problem
        y ( x , μ ) + q ( x ) y ( x , μ ) = μ 2 y ( x , μ ) , x [ 1 , 0 ) ( 0 , 1 ] , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ48_HTML.gif
        (3.1)
        μ 2 y ( 1 , μ ) + y ( 1 , μ ) = 0 , μ 2 y ( 1 , μ ) y ( 1 , μ ) = 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ49_HTML.gif
        (3.2)
        y ( 0 , μ ) y ( 0 + , μ ) = 0 , y ( 0 , μ ) y ( 0 + , μ ) = 0 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ50_HTML.gif
        (3.3)
        Here β 1 = β 2 = α 1 = α 2 = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq95_HTML.gif, β 1 = β 2 = α 1 = α 2 = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq96_HTML.gif, γ 1 = δ 1 = 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq97_HTML.gif, γ 2 = δ 2 = 1 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq98_HTML.gif and
        q ( x ) = { 1 , x [ 1 , 0 ) , 2 , x ( 0 , 1 ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ51_HTML.gif
        (3.4)
        The characteristic function is
        Ω ( μ ) = 1 1 + μ 2 2 + μ 2 [ sin 1 + μ 2 ( 2 + μ 2 ( μ 4 μ 2 1 ) cos 2 + μ 2 μ 2 ( 3 + 2 μ 2 ) sin 2 + μ 2 ) 1 + μ 2 cos 1 + μ 2 ( 2 μ 2 2 + μ 2 cos 2 + μ 2 + ( μ 4 μ 2 2 ) sin 2 + μ 2 ) ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ52_HTML.gif
        (3.5)
        The function K ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq69_HTML.gif will be
        K ( μ ) = μ ( 1 + μ 2 ) sin 2 μ . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ53_HTML.gif
        (3.6)
        As is clearly seen, eigenvalues cannot be computed explicitly. Tables 1, 2, 3 indicate the application of our technique to this problem and the effect of ε. By exact we mean the zeros of Ω ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq60_HTML.gif computed by Mathematica.
        Table 1

        The approximation μ k , N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq99_HTML.gif and the exact solution μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq100_HTML.gif for different choices of h and N

         

        μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq101_HTML.gif

        μ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq102_HTML.gif

        μ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq103_HTML.gif

        μ 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq104_HTML.gif

        μ 4 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq105_HTML.gif

        Exact μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq101_HTML.gif

        0.579603114810978

        1.7849838948888357

        3.238647349751419

        4.770562335590527

        μ k , N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq106_HTML.gif

        h = 0.5, ω = 1.0708

        N = 10

        0.5795964187714981

        1.7849867099956038

        3.2386476744424746

        4.770562422264749

        N = 20

        0.5796031144857375

        1.7849838950724857

        3.2386473497857042

        4.770562335603019

        h = 0.1, ω = 1.4708

        N = 10

        0.5796031130499404

        1.7849838962430518

        3.2386473440949666

        4.770562334447039

        N = 20

        0.579603114810984

        1.7849838948888386

        3.2386473497514174

        4.770562335590528

        Table 2

        Absolute error | μ k μ k , N | http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq107_HTML.gif

         

        μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq101_HTML.gif

        μ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq102_HTML.gif

        μ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq103_HTML.gif

        μ 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq104_HTML.gif

        μ 4 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq105_HTML.gif

        h = 0.5

        N = 10

        6.69604 × 10−6

        2.81511 × 10−6

        3.24691 × 10−7

        8.66742 × 10−8

        N = 20

        3.25241 × 10−10

        1.8365 × 10−10

        3.4285 × 10−11

        1.24922 × 10−11

        h = 0.1

        N = 10

        1.76104 × 10−9

        1.35422 × 10−9

        5.65645 × 10−9

        1.14349 × 10−9

        N = 20

        5.9952 × 10−15

        2.88658 × 10−15

        1.77636 × 10−15

        8.88178 × 10−16

        Table 3

        For N = 20 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq108_HTML.gif and h = 0.1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq109_HTML.gif , the exact solutions μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq110_HTML.gif are all inside the interval [ a , a + ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq111_HTML.gif for different values of ε

         

        μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq101_HTML.gif

        μ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq102_HTML.gif

        μ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq103_HTML.gif

        μ 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq104_HTML.gif

        μ 4 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq105_HTML.gif

        Exact μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq101_HTML.gif

        0.579603114810978

        1.7849838948888357

        3.238647349751419

        4.770562335590527

        I ε , N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq112_HTML.gif, ε = 10−2

        [0.5346366,0.6204846]

        [1.7756360,1.7941072]

        [3.23662663,3.2406609]

        [4.7698996,4.7712244]

        I ε , N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq112_HTML.gif, ε = 10−5

        [0.5795603,0.5796458]

        [1.7849746,1.7849931]

        [3.2386453,3.2386493]

        [4.7705616,4.7705630]

        Figures 1 and 2 illustrate the enclosure intervals dominating μ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq113_HTML.gif for N = 20 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq108_HTML.gif, h = 0.1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq109_HTML.gif and ε = 10 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq114_HTML.gif, ε = 10 5 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq115_HTML.gif, respectively. The middle curve represents Ω ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq60_HTML.gif, while the upper and lower curves represent the curves of a + ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq86_HTML.gif, a ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq87_HTML.gif, respectively. We notice that when ε = 10 5 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq115_HTML.gif, all two curves are almost identical. Similarly, Figures 3 and 4 illustrate the enclosure intervals dominating μ 4 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq116_HTML.gif for h = 0.1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq109_HTML.gif, N = 20 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq108_HTML.gif and ε = 10 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq114_HTML.gif, ε = 10 5 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq115_HTML.gif, respectively.
        http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Fig1_HTML.jpg
        Figure 1

        The enclosure interval dominating μ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq117_HTML.gif for h = 0.1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq118_HTML.gif , N = 20 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq119_HTML.gif and ε = 10 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq120_HTML.gif .

        http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Fig2_HTML.jpg
        Figure 2

        The enclosure interval dominating μ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq117_HTML.gif for h = 0.1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq118_HTML.gif , N = 20 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq119_HTML.gif and ε = 10 5 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq121_HTML.gif .

        http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Fig3_HTML.jpg
        Figure 3

        The enclosure interval dominating μ 4 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq122_HTML.gif for h = 0.1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq118_HTML.gif , N = 20 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq119_HTML.gif and ε = 10 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq120_HTML.gif .

        http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Fig4_HTML.jpg
        Figure 4

        The enclosure interval dominating μ 4 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq122_HTML.gif for h = 0.1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq118_HTML.gif , N = 20 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq119_HTML.gif and ε = 10 5 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq121_HTML.gif .

        Example 2 Consider the boundary value problem
        y ( x , μ ) + q ( x ) y ( x , μ ) = μ 2 y ( x , μ ) , x [ 1 , 0 ) ( 0 , 1 ] , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ54_HTML.gif
        (3.7)
        y ( 1 , μ ) + μ 2 y ( 1 , μ ) = 0 , y ( 1 , μ ) + μ 2 y ( 1 , μ ) = 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ55_HTML.gif
        (3.8)
        y ( 0 , μ ) y ( 0 + , μ ) = 0 , y ( 0 , μ ) y ( 0 + , μ ) = 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ56_HTML.gif
        (3.9)
        where α 1 = β 1 = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq123_HTML.gif, α 2 = β 2 = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq124_HTML.gif, β 1 = β 2 = α 2 = α 1 = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq125_HTML.gif, γ 1 = δ 1 = 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq126_HTML.gif, γ 2 = δ 2 = 1 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq127_HTML.gif and
        q ( x ) = { 2 , x [ 1 , 0 ) , x , x ( 0 , 1 ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ57_HTML.gif
        (3.10)
        The function K ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq69_HTML.gif will be
        K ( μ ) = ( 1 + μ 6 ) sin 2 μ μ . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ58_HTML.gif
        (3.11)
        The characteristic determinant of the problem is
        Ω ( μ ) = π 2 + μ 2 ( ( Bi [ 1 μ 2 ] + μ 2 Bi [ 1 μ 2 ] ) × ( Ai [ μ 2 ] ( μ 2 2 + μ 2 cos [ 2 + μ 2 ] + sin [ 2 + μ 2 ] ) + Ai [ μ 2 ] ( 2 + μ 2 cos [ 2 + μ 2 ] + μ 2 ( 2 + μ 2 ) sin [ 2 + μ 2 ] ) ) + ( Ai [ 1 μ 2 ] + μ 2 Ai [ 1 μ 2 ] ) × ( Bi [ μ 2 ] ( μ 2 2 + μ 2 cos [ 2 + μ 2 ] + sin [ 2 + μ 2 ] ) + Bi [ μ 2 ] ( 2 + μ 2 cos [ 2 + μ 2 ] + μ 2 ( 2 + μ 2 ) sin [ 2 + μ 2 ] ) ) ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Equ59_HTML.gif
        (3.12)
        where Ai [ z ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq128_HTML.gif and Bi [ z ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq129_HTML.gif are Airy functions, and Ai [ z ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq130_HTML.gif and Bi [ z ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq131_HTML.gif are derivatives of Airy functions. As in the above example, the three tables (Tables 4, 5, 6) indicate the application of our technique to this problem and the effect of ε.
        Table 4

        The approximation μ k , N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq99_HTML.gif and the exact solution μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq100_HTML.gif for different choices of h and N

         

        μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq101_HTML.gif

        μ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq102_HTML.gif

        μ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq103_HTML.gif

        μ 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq104_HTML.gif

        μ 4 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq105_HTML.gif

        Exact μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq101_HTML.gif

        0.587187167726

        1.67733212404

        3.0531892794846156

        4.648369480494567

        μ k , N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq99_HTML.gif

        h = 0.8, ω = 0.770796

        N = 25

        0.58719581492

        1.677332017694

        3.053189335065

        4.648369489163

        N = 40

        0.587187168173

        1.677332124046

        3.053189279486

        4.648369480494

        h = 0.3, ω = 1.2708

        N = 25

        0.587187167726

        1.677332124049

        3.05318927948

        4.64836948049

        N = 40

        0.587187167726

        1.677332124049

        3.0531892794846154

        4.648369480494567

        Table 5

        Absolute error | μ k μ k , N | http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq107_HTML.gif

         

        μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq101_HTML.gif

        μ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq102_HTML.gif

        μ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq103_HTML.gif

        μ 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq104_HTML.gif

        μ 4 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq105_HTML.gif

        h = 0.8

        N = 25

        8.6472 × 10−6

        1.06355 × 10−7

        5.55809 × 10−8

        8.66884 × 10−9

        N = 40

        4.47627 × 10−10

        2.99827 × 10−12

        2.33413 × 10−12

        3.41061 × 10−13

        h = 0.3

        N = 25

        1.12133 × 10−13

        6.83897 × 10−14

        3.55271 × 10−15

        4.440895 × 10−15

        N = 40

        5.55112 × 10−16

        2.22045 × 10−16

        1.965 × 10−16

        5.56 × 10−16

        Table 6

        For N = 40 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq132_HTML.gif and h = 0.3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq133_HTML.gif , the exact solutions μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq110_HTML.gif are all inside the interval [ a , a + ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq111_HTML.gif for different values of ε

         

        μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq101_HTML.gif

        μ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq102_HTML.gif

        μ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq103_HTML.gif

        μ 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq104_HTML.gif

        μ 4 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq105_HTML.gif

        Exact μ k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq101_HTML.gif

        0.5871871677260395

        1.677332124049779

        3.05318927948461569256

        4.6483694804945678959

        I ε , N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq134_HTML.gif, ε = 10−2

        [0.5356541,0.6313038]

        [1.6721084,1.6824381]

        [3.0527867,3.0535913]

        [4.6483196,4.6484193]

        I ε , N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq112_HTML.gif, ε = 10−5

        [0.5871398,0.5872345]

        [1.6773269,1.6773372]

        [3.0531888,3.0531896]

        [4.64836943,4.64836953]

        Here Figures {5, 6}, {7, 8} illustrate the enclosure intervals dominating μ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq135_HTML.gif and μ 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq136_HTML.gif for h = 0.3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq133_HTML.gif, N = 40 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq132_HTML.gif and ε = 10 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq114_HTML.gif, ε = 10 5 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq115_HTML.gif, respectively.
        http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Fig5_HTML.jpg
        Figure 5

        The enclosure interval dominating μ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq137_HTML.gif for h = 0.3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq138_HTML.gif , N = 40 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq139_HTML.gif and ε = 10 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq120_HTML.gif .

        http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Fig6_HTML.jpg
        Figure 6

        The enclosure interval dominating μ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq137_HTML.gif for h = 0.3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq138_HTML.gif , N = 40 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq139_HTML.gif and ε = 10 5 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq121_HTML.gif .

        http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Fig7_HTML.jpg
        Figure 7

        The enclosure interval dominating μ 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq140_HTML.gif for h = 0.3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq138_HTML.gif , N = 40 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq139_HTML.gif and ε = 10 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq120_HTML.gif .

        http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_Fig8_HTML.jpg
        Figure 8

        The enclosure interval dominating μ 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq140_HTML.gif for h = 0.3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq138_HTML.gif , N = 40 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq139_HTML.gif and ε = 10 5 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq121_HTML.gif .

        4 Conclusion

        With a simple analysis, and with values of solutions of initial value problems computed at a few values of the eigenparameter, we have computed the eigenvalues of discontinuous Sturm-Liouville problems which contain an eigenparameter appearing linearly in two boundary conditions, with a certain estimated error. The method proposed is a shooting procedure, i.e., the problem is reformulated as two initial value ones, due to the interior discontinuity, of size two and a miss-distance is defined at the right end of the interval of integration whose roots are the eigenvalues to be computed. The unknown part U ( μ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-132/MediaObjects/13661_2013_Article_386_IEq70_HTML.gif of the miss-distance can be written in terms of a function which is an entire function of exponential type. Therefore, we propose to approximate such term by means of a truncated cardinal series with sampling values approximated by solving numerically corresponding suitable initial value problems. Finally, in Section 3 we introduced two instructive examples. The computations show that, as compared to the classical sampling expansion in [14], the variant with the Gaussian multiplier provides a strikingly high improvement of the accuracy.

        Declarations

        Acknowledgements

        This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (130-065-D1433). The authors, therefore, acknowledge with thanks DSR technical and financial support.

        Authors’ Affiliations

        (1)
        Department of Mathematics, Faculty of Science, King Abdulaziz University
        (2)
        Permanent address: Department of Mathematics, Faculty of Science, Beni-Suef University

        References

        1. Kotel’nikov V: On the carrying capacity of the ‘ether’ and wire in telecommunications. 55. In Material for the First All-Union Conference on Questions of Communications. Izd. Red. Upr. Svyazi RKKA, Moscow; 1933:55–64.
        2. Shannon CE: Communications in the presence of noise. Proc. IRE 1949, 37: 10–21.MathSciNetView Article
        3. Whittaker ET: On the functions which are represented by the expansion of the interpolation theory. Proc. R. Soc. Edinb., Sect. A 1915, 35: 181–194.View Article
        4. Stenger F: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 1981, 23: 156–224.MathSciNet
        5. Lund J, Bowers K: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia; 1992.View ArticleMATH
        6. Stenger F: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York; 1993.View ArticleMATH
        7. Kowalski M, Sikorski K, Stenger F: Selected Topics in Approximation and Computation. Oxford University Press, New York; 1995.MATH
        8. Boumenir A: Higher approximation of eigenvalues by sampling. BIT Numer. Math. 2000, 40: 215–225. 10.1023/A:1022334806027MathSciNetView ArticleMATH
        9. Boumenir A: Sampling and eigenvalues of non-self-adjoint Sturm-Liouville problems. SIAM J. Sci. Comput. 2001, 23: 219–229. 10.1137/S1064827500374078MathSciNetView ArticleMATH
        10. Annaby MH, Tharwat MM: On computing eigenvalues of second-order linear pencils. IMA J. Numer. Anal. 2007, 27: 366–380.MathSciNetView ArticleMATH
        11. Annaby MH, Tharwat MM: Sinc-based computations of eigenvalues of Dirac systems. BIT Numer. Math. 2007, 47: 699–713. 10.1007/s10543-007-0154-8MathSciNetView ArticleMATH
        12. Annaby MH, Tharwat MM: On the computation of the eigenvalues of Dirac systems. Calcolo 2012, 49: 221–240. 10.1007/s10092-011-0052-yMathSciNetView ArticleMATH
        13. Tharwat MM, Bhrawy AH, Yildirim A: Numerical computation of eigenvalues of discontinuous Dirac system using Sinc method with error analysis. Int. J. Comput. Math. 2012, 89: 2061–2080. 10.1080/00207160.2012.700112MathSciNetView ArticleMATH
        14. Tharwat MM, Bhrawy AH, Yildirim A: Numerical computation of eigenvalues of discontinuous Sturm-Liouville problems with parameter dependent boundary conditions using Sinc method. Numer. Algorithms 2013, 63: 27–48. 10.1007/s11075-012-9609-3MathSciNetView ArticleMATH
        15. Gervais R, Rahman QI, Schmeisser G: A bandlimited function simulating a duration-limited one. In Approximation Theory and Functional Analysis. Edited by: Butzer PL, Stens RL. Birkhäuser, Basel; 1984:355–362.
        16. Butzer PL, Stens RL: A modification of the Whittaker-Kotel’nikov-Shannon sampling series. Aequ. Math. 1985, 28: 305–311. 10.1007/BF02189424MathSciNetView ArticleMATH
        17. Stens RL: Sampling by generalized kernels. In Sampling Theory in Fourier and Signal Analysis: Advanced Topics. Edited by: Higgins JR, Stens RL. Oxford University Press, Oxford; 1999:130–157.
        18. Schmeisser G, Stenger F: Sinc approximation with a Gaussian multiplier. Sampl. Theory Signal. Image Process, Int. J. 2007, 6: 199–221.MathSciNetMATH
        19. Qian L: On the regularized Whittaker-Kotel’nikov-Shannon sampling formula. Proc. Am. Math. Soc. 2002, 131: 1169–1176.View Article
        20. Qian L, Creamer DB: A modification of the sampling series with a Gaussian multiplie. Sampl. Theory Signal. Image Process, Int. J. 2006, 5: 1–20.MathSciNetMATH
        21. Qian L, Creamer DB: Localized sampling in the presence of noise. Appl. Math. Lett. 2006, 19: 351–355. 10.1016/j.aml.2005.05.013MathSciNetView ArticleMATH
        22. Annaby MH, Asharabi RM: Computing eigenvalues of boundary value problems using sinc-Gaussian method. Sampl. Theory Signal. Image Process, Int. J. 2008, 7: 293–312.MathSciNetMATH
        23. Walter J: Regular eigenvalue problems with eigenvalue parameter in the boundary condition. Math. Z. 1973, 133: 301–312. 10.1007/BF01177870MathSciNetView ArticleMATH
        24. Fulton CT: Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. R. Soc. Edinb., Sect. A 1977, 77: 293–308. 10.1017/S030821050002521XMathSciNetView ArticleMATH
        25. Hinton DB: An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition. Q. J. Math. 1979, 30: 33–42. 10.1093/qmath/30.1.33MathSciNetView ArticleMATH
        26. Shkalikov AA: Boundary value problems for ordinary differential equations with a parameter in boundary conditions. Tr. Semin. Im. I.G. Petrovskogo 1983, 9: 190–229. (in Russian)MathSciNetMATH
        27. Binding PA, Browne PJ, Watson BA: Strum-Liouville problems with boundary conditions rationally dependent on the eigenparameter II. J. Comput. Appl. Math. 2002, 148: 147–169. 10.1016/S0377-0427(02)00579-4MathSciNetView ArticleMATH
        28. Likov AV, Mikhailov YA: The Theory of Heat and Mass Transfer. Qosenergaizdat, Moscow-Leningrad; 1963. (in Russian)
        29. Tikhonov AN, Samarskii AA: Equations of Mathematical Physics. Macmillan Co., New York; 1963.MATH
        30. Tharwat MM: Discontinuous Sturm-Liouville problems and associated sampling theories. Abstr. Appl. Anal. 2011. doi:10.1155/2011/610232
        31. Titchmarsh EC: Eigenfunction Expansions Associated with Second Order Differential Equations. Part I. Clarendon, Oxford; 1962.MATH
        32. Bhrawy AH, Tharwat MM, Al-Fhaid A: Numerical algorithms for computing eigenvalues of discontinuous Dirac system using sinc-Gaussian method. Abstr. Appl. Anal. 2012. doi:10.1155/2012/925134
        33. Annaby MH, Tharwat MM: A sinc-Gaussian technique for computing eigenvalues of second-order linear pencils. Appl. Numer. Math. 2013, 63: 129–137.MathSciNetView ArticleMATH
        34. Annaby MH, Tharwat MM: On sampling theory and eigenvalue problems with an eigenparameter in the boundary conditions. SUT J. Math. 2006, 42: 157–176.MathSciNetMATH
        35. Annaby MH, Tharwat MM: On sampling and Dirac systems with eigenparameter in the boundary conditions. J. Appl. Math. Comput. 2011, 36: 291–317. 10.1007/s12190-010-0404-9MathSciNetView ArticleMATH
        36. Kandemir M, Mukhtarov OS: Discontinuous Sturm Liouville problems containing eigenparameter in the boundary conditions. Acta Math. Sin. 2006, 34: 1519–1528.
        37. Mukhtarov OS, Kadakal M, Altinisik N: Eigenvalues and eigenfunctions of discontinuous Sturm-Liouville problems with eigenparameter in the boundary conditions. Indian J. Pure Appl. Math. 2003, 34: 501–516.MathSciNetMATH
        38. Tharwat MM, Bhrawy AH: Computation of eigenvalues of discontinuous Dirac system using Hermite interpolation technique. Adv. Differ. Equ. 2012. doi:10.1186/1687–1847–2012–59
        39. Tharwat MM, Yildirim A, Bhrawy AH: Sampling of discontinuous Dirac systems. Numer. Funct. Anal. Optim. 2013, 34: 323–348. 10.1080/01630563.2012.693565MathSciNetView ArticleMATH
        40. Tharwat MM: On sampling theories and discontinuous Dirac systems with eigenparameter in the boundary conditions. Bound. Value Probl. 2013. doi:10.1186/1687–2770–2013–65
        41. Chadan K, Sabatier PC: Inverse Problems in Quantum Scattering Theory. 2nd edition. Springer, Berlin; 1989.View ArticleMATH

        Copyright

        © Tharwat et al.; licensee Springer. 2013

        This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.