$\begin{array}{c}{F}_{i}={[{f}_{i}({\xi}_{0}),{f}_{i}({\xi}_{1}),\dots ,{f}_{i}({\xi}_{N-1}),{f}_{i}({\xi}_{N})]}^{T},\hfill \\ {\mathrm{\Theta}}_{i}={[{\theta}_{i}({\xi}_{0}),{\theta}_{i}({\xi}_{1}),\dots ,{\theta}_{i}({\xi}_{N-1}),{\theta}_{i}({\xi}_{N})]}^{T},\hfill \\ {\tilde{S}}_{i}={[{S}_{i}({\xi}_{0}),{\theta}_{i}({\xi}_{1}),\dots ,{S}_{i}({\xi}_{N-1}),{S}_{i}({\xi}_{N})]}^{T},\hfill \\ {\mathrm{\Phi}}_{i}={[{\varphi}_{i}({\xi}_{0}),{\varphi}_{i}({\xi}_{1}),\dots ,{\varphi}_{i}({\xi}_{N-1}),{\varphi}_{i}({\xi}_{N})]}^{T},\hfill \\ {\mathbf{r}}_{1,i-1}={[{r}_{1,i-1}({\xi}_{0}),{r}_{1,i-1}({\xi}_{1}),\dots ,{r}_{1,i-1}({\xi}_{N-1}),{r}_{1,i-1}({\xi}_{N})]}^{T},\hfill \\ {\mathbf{r}}_{2,i-1}={[{r}_{2,i-1}({\xi}_{0}),{r}_{2,i-1}({\xi}_{1}),\dots ,{r}_{2,i-1}({\xi}_{N-1}),{r}_{2,i-1}({\xi}_{N})]}^{T},\hfill \\ {\mathbf{r}}_{3,i-1}={[{r}_{3,i-1}({\xi}_{0}),{r}_{3,i-1}({\xi}_{1}),\dots ,{r}_{3,i-1}({\xi}_{N-1}),{r}_{3,i-1}({\xi}_{N})]}^{T},\hfill \\ {\mathbf{r}}_{4,i-1}={[{r}_{3,i-1}({\xi}_{0}),{r}_{3,i-1}({\xi}_{1}),\dots ,{r}_{3,i-1}({\xi}_{N-1}),{r}_{3,i-1}({\xi}_{N})]}^{T},\hfill \\ {A}_{11}={\mathbf{D}}^{3}+{\mathbf{a}}_{1,i-1}{\mathbf{D}}^{2}+{\mathbf{a}}_{2,i-1}\mathbf{D}+{\mathbf{a}}_{3,i-1}\mathbf{I},\phantom{\rule{2em}{0ex}}{A}_{12}=[\mathbf{0}],\phantom{\rule{2em}{0ex}}{A}_{13}=[\mathbf{0}],\phantom{\rule{2em}{0ex}}{A}_{14}=[\mathbf{0}],\hfill \\ {A}_{21}={\mathbf{b}}_{2,i-1}\mathbf{I},\phantom{\rule{2em}{0ex}}{A}_{22}={\mathbf{D}}^{2}+{\mathbf{b}}_{1,i-1}\mathbf{D},\phantom{\rule{2em}{0ex}}{A}_{23}={\mathbf{b}}_{3,i-1}{\mathbf{D}}^{2},\phantom{\rule{2em}{0ex}}{A}_{24}={\mathbf{b}}_{4,i-1}\mathbf{D},\hfill \\ {A}_{31}={\mathbf{c}}_{2,i-1}\mathbf{I},\phantom{\rule{2em}{0ex}}{A}_{32}={\mathbf{c}}_{3,i-1}{\mathbf{D}}^{2},\phantom{\rule{2em}{0ex}}{A}_{33}={\mathbf{D}}^{2}+{\mathbf{c}}_{1,i-1}\mathbf{D},\phantom{\rule{2em}{0ex}}{A}_{34}=[\mathbf{0}],\hfill \\ {A}_{41}={\mathbf{d}}_{2,i-1}\mathbf{I},\phantom{\rule{2em}{0ex}}{A}_{42}={\mathbf{d}}_{3,i-1}{\mathbf{D}}^{2},\phantom{\rule{2em}{0ex}}{A}_{44}=[\mathbf{0}],\phantom{\rule{2em}{0ex}}{A}_{43}={\mathbf{D}}^{2}+{\mathbf{d}}_{1,i-1}\mathbf{D}.\hfill \end{array}$