Existence of periodic solutions of a p-Laplacian-Neumann problem

  • Raad Awad Hameed1, 2,

    Affiliated with

    • Jiebao Sun1 and

      Affiliated with

      • Boying Wu1Email author

        Affiliated with

        Boundary Value Problems20132013:171

        DOI: 10.1186/1687-2770-2013-171

        Received: 6 March 2013

        Accepted: 7 June 2013

        Published: 23 July 2013

        Abstract

        In this paper, we study a periodic p-Laplacian equation with nonlocal terms and Neumann boundary conditions. We establish the existence of time periodic solutions of the p-Laplacian-Neumann problem by the theory of Leray-Schauder degree.

        1 Introduction

        In this paper, we consider the periodic boundary problem for a p-Laplacian equation of the following form:
        u t div ( | u | p 2 u ) = ( m Φ [ u ] ) u , ( x , t ) Q T , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ1_HTML.gif
        (1.1)
        u n = 0 , ( x , t ) Ω × ( 0 , T ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ2_HTML.gif
        (1.2)
        u ( x , 0 ) = u ( x , T ) , x Ω , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ3_HTML.gif
        (1.3)

        where p > 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq1_HTML.gif, Ω is a bounded domain in R n http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq2_HTML.gif with smooth boundary Ω, n http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq3_HTML.gif denotes the outward normal derivative on Ω, Q T = Ω × ( 0 , T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq4_HTML.gif. This problem is motivated by models which have been proposed for some problems in mathematical biology. The function u represents the spatial densities of the species at ( x , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq5_HTML.gif; the diffusion term div ( | u | p 2 u ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq6_HTML.gif represents the effect of dispersion in the habitat, which models a tendency to avoid crowding, and the speed of the diffusion is slow since p > 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq1_HTML.gif; the term ( m Φ [ u ] ) u http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq7_HTML.gif models the contribution of the population supply due to births and deaths; the Neumann boundary conditions model the trend of the biology population to survive on the boundary. Assumptions of m, Φ [ u ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq8_HTML.gif will be introduced in the next section.

        The model as (1.1) was first studied by Allegretto and Nistri. In [1] they studied the existence of nontrivial nonnegative periodic solutions and optimal control for the following equation:
        u t Δ u = f ( x , t , m , Φ [ u ] , u ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equa_HTML.gif
        with Dirichlet boundary value conditions. Later, many mathematical researchers studied extended forms of this kind of equation. For example, in [27], the authors considered some nonlinear diffusion equations with nonlocal terms such as the porous equation with m > 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq9_HTML.gif, the p-Laplacian equation with p > 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq1_HTML.gif and the doubly degenerate parabolic equation. All these problems are the Dirichlet boundary value conditions, and these boundary conditions describe that the boundary we consider in this model is lethal to the species. Moreover, the methods in these papers are all based on the theory of Leray-Schauder degree. However, there are few results on degenerate periodic parabolic equations with nonlocal terms and Neumann boundary conditions. Recently, in [8], Wang and Yin considered the following periodic Neumann boundary value problem:
        u t Δ u m = ( a Φ [ u ] ) u , ( x , t ) Q T , u n = 0 , ( x , t ) Ω × ( 0 , T ) , u ( x , 0 ) = u ( x , T ) , x Ω , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equb_HTML.gif

        where m > 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq9_HTML.gif. By the parabolic regularized method and the theory of Leray-Schauder degree, they established the existence of nontrivial nonnegative periodic solutions. Also, there are many works about reaction diffusion equations without nonlocal term; one can see [913] and the references therein, and the boundary value condition and research method are different from our work.

        In this paper, we consider the periodic solution of p-Laplacian Neumann problem (1.1)-(1.3). In [14], the authors studied equation (1.1) with the Dirichlet boundary value condition. Compared with the Dirichlet boundary value condition in [14], the Neumann boundary value condition causes an additional difficulty in establishing some a priori estimates. On the other hand, different from that in the case of the Dirichlet boundary value condition, the standard regularized problem of problem (1.1)-(1.3) is not well posed, and thus a modified regularized problem for (1.1)-(1.3) is considered. In addition, we will make use of the Moser iterative method to establish the a priori upper bound of the solution of the regularized problem. By the theory of Leray-Schauder degree, we prove that this modified problem admits nontrivial nonnegative periodic solutions. Then, by passing to a limit process, we obtain the existence of nontrivial nonnegative periodic solutions of problem (1.1)-(1.3). In the process of proving the main results, the nonlocal term, which reflects the reality of the model (1.1), will cause a difficulty when we establish a lower bound estimate of the maximum modulus of the solution of the regularized problem. Otherwise, we can use the method of upper and lower solution to prove the existence of periodic solutions. At last, the existence theorem shows that the spatial densities of the species are periodic under the case of nonlinear diffusion.

        This paper is organized as follows. In Section 2, we show some necessary preliminaries including the modified regularized problem. In Section 3, we establish some necessary a priori estimations of the solution of the modified regularized problem. Then we obtain the main results of this paper.

        2 Preliminaries

        In this paper, we assume that

        1. (A1)
          Φ [ ] : L + 2 ( Ω ) R + http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq10_HTML.gif is a bounded continuous functional satisfying
          0 Φ [ u ] K u L 2 ( Ω ) 2 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equc_HTML.gif

          where K > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq11_HTML.gif are constants independent of u, R + = [ 0 , + ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq12_HTML.gif, L + 2 ( Ω ) = { u L 2 ( Ω ) | u 0 , a.e. in  Ω } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq13_HTML.gif;

           
        2. (A2)

          m ( x , t ) C T ( Q ¯ T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq14_HTML.gif and satisfies that { x Ω : 1 T 0 T m ( x , t ) > 0 } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq15_HTML.gif, where C T ( Q ¯ T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq16_HTML.gif denotes the set of functions which are continuous in Ω ¯ × R http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq17_HTML.gif and of T-periodic with respect to t.

           
        From (A2), we can see that there exist x 0 Ω http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq18_HTML.gif, δ > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq19_HTML.gif, m 0 > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq20_HTML.gif such that
        1 T 0 T m ( x , t ) d t m 0 for all  x B ( x 0 , δ ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equd_HTML.gif

        Since equation (1.1) is degenerate at points where u = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq21_HTML.gif, problem (1.1)-(1.3) has no classical solutions in general, so we focus on the discussion of weak solutions in the sense of the following.

        Definition 1 A function u is said to be a weak solution of problem (1.1)-(1.3) if u L p ( 0 , T ; W 1 , p ( Ω ) ) C T ( Q ¯ T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq22_HTML.gif and satisfies
        Q T ( u φ t + | u | p 2 u φ ( m Φ [ u ] ) u φ ) d x d t = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ4_HTML.gif
        (2.1)

        for any φ C 1 ( Q ¯ T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq23_HTML.gif with φ ( x , 0 ) = φ ( x , T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq24_HTML.gif.

        Due to the degeneracy of equation (1.1), we consider the following regularized problem:
        u ε t  div ( ( | u ε | 2 + ε ) p 2 2 u ε ) + ε u ε = ( m Φ [ u ε ] ) u ε + , ( x , t ) Q T , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ5_HTML.gif
        (2.2)
        u ε n = 0 , ( x , t ) Ω × ( 0 , T ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ6_HTML.gif
        (2.3)
        u ε ( x , 0 ) = u ε ( x , T ) , x Ω , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ7_HTML.gif
        (2.4)
        where s + = max { 0 , s } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq25_HTML.gif and ε is a sufficiently small positive constant. The desired solution will be obtained as the limit point of the solutions of problem (2.2)-(2.4). In the following, we introduce a map by the following problem:
        u ε t  div ( ( | u ε | 2 + ε ) p 2 2 u ε ) + ε u ε = f , ( x , t ) Q T , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ8_HTML.gif
        (2.5)
        u ε n = 0 , ( x , t ) Ω × ( 0 , T ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ9_HTML.gif
        (2.6)
        u ε ( x , 0 ) = u ε ( x , T ) , x Ω . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ10_HTML.gif
        (2.7)

        Then we can define a map u ε = G f http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq26_HTML.gif with G : C T ( Q ¯ T ) C T ( Q ¯ T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq27_HTML.gif. Applying classical estimates (see [15]), we can know that u ε L ( Q T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq28_HTML.gif is bounded by f L ( Q T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq29_HTML.gif and u ε http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq30_HTML.gif is Hölder continuous in Q T http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq31_HTML.gif. Then by the Arzela-Ascoli theorem, the map G is compact. So, the map is a compact continuous map. Let f ( u ) = ( m Φ [ u ε ] ) u ε + http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq32_HTML.gif, where u ε + = max { u ε , 0 } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq33_HTML.gif, we can see that the nonnegative solution of problem (2.2)-(2.4) is also a nonnegative solution solving u ε = G ( ( m Φ [ u ε ] ) u ε + ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq34_HTML.gif. So, we will study the existence of nonnegative fixed points of the map u ε = G ( ( m Φ [ u ε ] ) u ε + ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq34_HTML.gif instead of the nonnegative solutions of problem (2.2)-(2.4).

        3 Proof of the main results

        First, by the same method as in [14], we can obtain the nonnegativity of the solution of problem (2.2)-(2.4).

        Lemma 1 If a nontrivial function u ε C T ( Q ¯ T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq35_HTML.gif solves u ε = G ( ( m Φ [ u ε ] ) u ε + ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq34_HTML.gif, then
        u ε ( x , t ) > 0 for all ( x , t ) Q ¯ T . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Eque_HTML.gif

        In the following, by the Moser iterative technique, we will show the a priori estimate for the upper bound of nonnegative periodic solutions of problem (2.5)-(2.7). Here and below we denote by p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq36_HTML.gif ( 1 p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq37_HTML.gif) the L p ( Ω ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq38_HTML.gif norm.

        Lemma 2 Let λ [ 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq39_HTML.gif, u ε http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq30_HTML.gif be a nonnegative periodic solution solving u ε = G ( λ ( m Φ [ u ε ] ) u ε + ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq40_HTML.gif, then there exists a constant R > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq41_HTML.gif independent of λ, ε such that
        u ε ( t ) < R , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ11_HTML.gif
        (3.1)

        where u ε ( t ) = u ε ( , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq42_HTML.gif.

        Proof Multiplying Eq. (2.5) by u ε m + 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq43_HTML.gif ( m 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq44_HTML.gif) and integrating over Ω, we have
        1 m + 2 d d t u ε ( t ) m + 2 m + 2 + ( m + 1 ) p p ( m + p ) p ( u ε m p + 1 ( t ) ) p p m ( x , t ) L ( Ω × ( 0 , T ) ) u ε ( t ) m + 2 m + 2 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equf_HTML.gif
        and hence
        d d t u ε ( t ) m + 2 m + 2 + C 1 ( m + 1 ) p 2 ( | u ε ( t ) | m p u ε ( t ) ) p p C 2 ( m + 1 ) u ε ( t ) m + 2 m + 2 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ12_HTML.gif
        (3.2)

        where C i http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq45_HTML.gif ( i = 1 , 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq46_HTML.gif) are positive constants independent of u ε http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq30_HTML.gif and m.

        Assume that u ε ( t ) 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq47_HTML.gif and set
        u k ( t ) = | u ε ( t ) | m k p u ε ( t ) , α k = p ( m k + 2 ) m k + p , m k = p k p p 1 ( k = 1 , 2 , ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equg_HTML.gif
        then α k < p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq48_HTML.gif, m k = p k 1 + m k 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq49_HTML.gif. For convenience, we denote by C a positive constant independent of k and m, which may take different values. From (3.2) we obtain
        d d t u k ( t ) α k α k + C ( m + 1 ) p 2 u k ( t ) p p C ( m + 1 ) u k ( t ) α k α k . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ13_HTML.gif
        (3.3)
        By using the Gagliardo-Nirenberg inequality, we have
        u k ( t ) α k C u k ( t ) p θ k u k ( t ) 1 1 θ k , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ14_HTML.gif
        (3.4)
        with
        θ k = ( p 1 ) m k + p m k + 2 N ( p 1 ) N + p ( 0 , 1 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equh_HTML.gif
        By inequalities (3.3), (3.4) and the fact that u k ( t ) 1 = u k 1 ( t ) α k 1 α k 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq50_HTML.gif, we obtain the following differential inequality:
        d d t u k ( t ) α k α k C ( m k + 1 ) p 2 u k ( t ) α k p θ k u k ( t ) 1 p ( θ k 1 ) θ k + C ( m k + 1 ) u k ( t ) α k α k C u k ( t ) α k p θ k u k 1 ( t ) α k 1 θ k 1 θ k α k 1 p + C ( m k + 1 ) u k ( t ) α k α k . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equi_HTML.gif
        Let
        λ k = max { 1 , sup t u k ( t ) α k } , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equj_HTML.gif
        we have
        d d t u k ( t ) α k α k ( m k + 1 ) ( p 2 ) u k ( t ) α k α k ( m k + 1 ) m k + 2 { C u k ( t ) α k p θ k α k ( m k + 1 ) m k + 2 λ k 1 θ k 1 θ k α k 1 p + C ( m k + 1 ) p 1 u k ( t ) α k α k m k + 2 } . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ15_HTML.gif
        (3.5)
        For Young’s inequality
        a b ε a p + ε q p b q , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equk_HTML.gif
        where p > 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq51_HTML.gif, q > 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq52_HTML.gif, a > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq53_HTML.gif, b > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq54_HTML.gif, ε > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq55_HTML.gif and 1 p + 1 q = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq56_HTML.gif, we set
        a = u k ( t ) α k α k m k + 2 , b = ( m k + 1 ) p 1 , ε = 1 2 λ k 1 θ k 1 θ k α k 1 p , p = l k = p ( m + 2 ) θ k α k m k 1 = ( m k + 2 ) ( m k + p ) ( p 1 ) N + p ) N ( ( p 1 ) m k + p ) m k 1 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equl_HTML.gif
        then we have
        ( m k + 1 ) p 1 u k ( t ) α k α k m k + 2 1 2 u k ( t ) α k p θ k α k ( m k + 1 ) m k + 2 λ k 1 θ k 1 θ k α k 1 p + C ( m k + 1 ) p 1 l k l k 1 λ k 1 1 θ k θ k α k 1 p 1 l k 1 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ16_HTML.gif
        (3.6)
        Here we have used the fact that p = l k > r > 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq57_HTML.gif for some r independent of k. In fact, it is easy to verify that
        lim k l k = + . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equm_HTML.gif
        Denoting
        a k = ( p 1 ) l k l k 1 , b k = 1 θ k θ k p α k 1 l k 1 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equn_HTML.gif
        and combining (3.6), (3.5), we obtain
        d d t u k ( t ) α k α k ( m k + 1 ) ( p 2 ) u k ( t ) α k α k ( m k + 1 ) m k + 2 { C 2 u k ( t ) α k p θ k α k ( m k + 1 ) m k + 2 λ k 1 θ k 1 θ k α k 1 p + C ( m k + 1 ) a k λ k 1 b k } , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ17_HTML.gif
        (3.7)
        that is,
        ( m k + 1 ) p 2 ( m k + 1 ) d d t u k ( t ) α k α k m k + 2 C 2 u k ( t ) α k p θ k α k ( m k + 1 ) m k + 2 λ k 1 θ k 1 θ k α k 1 p + C ( m k + 1 ) a k λ k 1 b k . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ18_HTML.gif
        (3.8)
        From the periodicity of u k ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq58_HTML.gif, we know that there exists t 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq59_HTML.gif at which u k ( t ) α k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq60_HTML.gif reaches its maximum and thus the left-hand side of (3.8) vanishes. Then we obtain
        u k ( t ) α k { C [ ( m k + 1 ) p 1 + ( m k + 1 ) a k λ k 1 b k λ k 1 1 θ k θ k α k 1 p ] } 1 α k , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equo_HTML.gif
        where
        α k = p θ k α k ( m k + 1 ) m k + 2 = l k α k m k + 2 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equp_HTML.gif
        Therefore we conclude that
        u k ( t ) α k { C ( m k + 1 ) a k λ k 1 b k + 1 θ k θ k α k 1 p } 1 C k = { C ( m k + 1 ) a k } m k + 2 l k α k λ ( 1 θ k ) ( m k + 2 ) α k 1 p ( l k 1 ) θ k α k . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equq_HTML.gif
        Since m k + 2 ( l k 1 ) θ k = α k p θ k α k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq61_HTML.gif and m k + 2 l k α k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq62_HTML.gif and a k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq63_HTML.gif are bounded, we have
        u k ( t ) α k C p k a λ k 1 ( 1 θ k ) α k 1 p p θ k α k , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equr_HTML.gif
        where a http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq64_HTML.gif is a positive constant independent of k. As α k = p ( m k + 2 ) m k + p < p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq65_HTML.gif implies that ( 1 θ k ) α k 1 p p θ k α k ( 1 θ k ) α k 1 p p p θ k p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq66_HTML.gif and λ k 1 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq67_HTML.gif, we get
        u k ( t ) α k C A k λ k 1 p , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equs_HTML.gif
        or
        ln u k ( t ) α k ln λ k ln C + k ln A + p ln λ k 1 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equt_HTML.gif
        where A = p a > 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq68_HTML.gif. Thus
        ln u k ( t ) α k ln C i = 0 k 2 p i + p k 1 ln l 1 + ln A ( j = 0 k 2 ( k j ) p j ) p k 1 1 p 1 ln C + p k 1 ln l 1 + f ( k ) ln A , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equu_HTML.gif
        or
        u ε ( t ) m k + 2 { C p k 1 1 p 1 l 1 p k 1 A f ( k ) } p m k + p , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equv_HTML.gif
        where
        f ( k ) = k ( k + 1 ) p p k 1 + 2 p k ( p 1 ) 2 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equw_HTML.gif
        Letting k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq69_HTML.gif, we obtain
        u ε ( t ) C l 1 p 1 C ( max { 1 , sup t u ε ( t ) 2 } ) p 1 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ19_HTML.gif
        (3.9)
        On the other hand, it follows from (3.2) with m = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq70_HTML.gif that
        d d t u ε ( t ) 2 2 + C 1 u ε ( t ) p p C 2 u ε ( t ) 2 2 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ20_HTML.gif
        (3.10)
        By Hölder’s inequality and Sobolev’s theorem, we have
        u ε ( t ) 2 | Ω | 1 2 1 p u ε ( t ) p C | Ω | 1 2 1 p u ε ( t ) p . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ21_HTML.gif
        (3.11)
        Combined with (3.10), it yields
        d d t u ε ( t ) 2 2 + C 1 u ε ( t ) 2 p C 2 u ε ( t ) 2 2 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equx_HTML.gif
        By Young’s inequality, it follows that
        d d t u ε ( t ) 2 2 + C 1 u ε ( t ) 2 p C 2 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ22_HTML.gif
        (3.12)
        where C i http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq45_HTML.gif ( i = 1 , 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq46_HTML.gif) are constants independent of u. Taking the periodicity of u into account, we infer from (3.12) that
        u ε ( t ) 2 C , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equy_HTML.gif

        which together with (3.9) implies (3.1). The proof is completed. □

        Corollary 1 There exists a positive constant R independent of ε such that
        deg ( I G ( ( m Φ [ u ε ] ) u ε + ) , B R , 0 ) = 1 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equz_HTML.gif

        where B R http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq71_HTML.gif is a ball centered at the origin with radius R in L ( Q T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq72_HTML.gif.

        Proof It follows from Lemma 2 that there exists a positive constant R independent of ε such that
        u ε G ( λ ( m Φ [ u ε ] ) u ε + ) , u ε B R , λ [ 0 , 1 ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equaa_HTML.gif
        Hence the degree is well defined on B R http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq71_HTML.gif. From the homotopy invariance of the Leray-Schauder degree, we can see that
        deg ( I G ( ( m Φ [ u ε ] ) u ε + ) , B R , 0 ) = deg ( I G ( 0 ) , B R , 0 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ23_HTML.gif
        (3.13)

        From the existence and uniqueness of the solution of u ε = G ( 0 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq73_HTML.gif, we have deg ( I G ( 0 ) , B R , 0 ) = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq74_HTML.gif. That is, deg ( I G ( ( m Φ [ u ε ] ) u ε + ) , B R , 0 ) = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq75_HTML.gif. The proof is completed. □

        Lemma 3 There exist constants r 0 > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq76_HTML.gif and ε 0 > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq77_HTML.gif such that for any r < r 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq78_HTML.gif, ε < ε 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq79_HTML.gif, G ( ( m Φ [ u ε ] ) u ε + ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq80_HTML.gif admits no nontrivial solution u ε http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq30_HTML.gif satisfying
        0 < u ε L ( Q T ) r , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equab_HTML.gif

        where r is a positive constant independent of ε.

        Proof By contradiction, let u ε http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq30_HTML.gif be a nontrivial solution of u ε = G ( ( m Φ [ u ε ] ) u ε + ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq34_HTML.gif satisfying 0 < u ε L ( Q T ) r http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq81_HTML.gif. For any given ϕ ( x ) C 0 ( Ω ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq82_HTML.gif, multiplying (2.5) by ϕ 2 u ε http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq83_HTML.gif and integrating over Q T = B δ ( x 0 ) × ( 0 , T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq84_HTML.gif, we obtain
        Q T ϕ 2 u ε u ε t d t d x + Q T ( ( | u ε | 2 + ε ) p 2 2 u ε ( ϕ 2 u ε ) ) d t d x = Q T ϕ 2 ( m ε Φ [ u ε ] ) d t d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ24_HTML.gif
        (3.14)
        By the periodicity of u ε http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq30_HTML.gif, the first term on the left-hand side in (3.14) is zero. As in the proof of Lemma 2.2 of [14], the second term on the left-hand side in (3.14) can be rewritten as
        Q T ( ( | u ε | 2 + ε ) p 2 2 u ε ( ϕ 2 u ε ) ) d t d x = Q T ( ( | u ε | 2 + ε ) p 2 2 | ϕ | 2 ) d t d x Q T ( ( | u ε | 2 + ε ) p 2 2 u ε 2 | ( ϕ u ε ) | 2 ) d t d x , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equac_HTML.gif
        and thus
        Q T ( ( | u ε | 2 + ε ) p 2 2 u ε ( ϕ 2 u ε ) ) d t d x Q T ( ( | u ε | 2 + ε ) p 2 2 | ϕ | 2 ) d t d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ25_HTML.gif
        (3.15)
        Combining (3.15) with (3.14), we obtain
        Q T ϕ 2 ( m ε Φ [ u ε ] ) d t d x Q T ( ( | u ε | 2 + ε ) p 2 2 | ϕ | 2 ) d t d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ26_HTML.gif
        (3.16)
        Let μ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq85_HTML.gif be the first eigenvalue of the p-Laplacian equation on Ω with zero boundary conditions and ϕ 1 ( x ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq86_HTML.gif be the corresponding eigenfunction. We have
        Ω | ϕ 1 | p d x = μ 1 Ω | ϕ 1 | p d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equad_HTML.gif
        And also we know that ϕ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq87_HTML.gif can be strictly positive in the subfield B δ ( x 0 ) Ω http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq88_HTML.gif. Taking ϕ = ϕ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq89_HTML.gif, we have
        Q T ( ϕ 2 ( m ε Φ [ u ε ] ) ) d t d x Q T ( ( | u ε | 2 + ε ) p 2 2 | ϕ 1 | 2 ) d x d t ( Q T ( | u ε | 2 + ε ) p 2 d x d t ) p 2 p ( Q T | ϕ 1 | p d x d t ) 2 p ( Q T 2 p 2 ( | u ε | p + ε p 2 ) d x d t ) p 2 p ( T μ 1 B δ ( x 0 ) | ϕ 1 | p d x ) 2 p . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ27_HTML.gif
        (3.17)
        Multiplying (2.5) by u ε http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq30_HTML.gif and integrating over Q T http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq90_HTML.gif, from the assumption 0 < u ε L ( Q T ) r http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq81_HTML.gif, we have
        Q T | u ε | p d x d t Q T u ε 2 ( m ε Φ [ u ε ] ) d x d t MTr 2 | Ω | , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ28_HTML.gif
        (3.18)
        where M = max ( x , t ) Q T m ( x , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq91_HTML.gif and | Ω | http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq92_HTML.gif denotes the Lebesgue measure of the domain Ω. Combining (3.18) with (3.17), we obtain
        Q T ( ϕ 2 ( m ε Φ [ u ε ] ) ) d t d x 2 p 2 p T μ 1 2 p | Ω | p 2 p ( Mr 2 + ε 2 p ) ( B δ ( x 0 ) | ϕ 1 | p d x ) 2 p . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ29_HTML.gif
        (3.19)
        In addition, the assumptions (A1), (A2) give
        Q T ϕ 1 2 ( m ε Φ [ u ε ] ) d x d t Q T ϕ 1 2 ( m ε K u L 2 2 ) d x d t B δ ( x 0 ) ϕ 1 2 0 T ( m ε K u L 2 2 ) d t d x T ( m 0 ε K r 2 | Ω | ) B δ ( x 0 ) ϕ 1 2 d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ30_HTML.gif
        (3.20)
        The above two inequalities imply that
        m 0 ε K r 2 | Ω | 2 p 2 p μ 1 2 p | Ω | p 2 p ( Mr 2 + ε 2 p ) ( B δ ( x 0 ) | ϕ 1 | p d x ) 2 p B δ ( x 0 ) ϕ 1 2 d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ31_HTML.gif
        (3.21)

        Obviously, we can choose suitably small ε 0 > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq93_HTML.gif and r 0 > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq94_HTML.gif such that for any ε ε 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq95_HTML.gif, r r 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq96_HTML.gif, the inequality (3.21) does not hold. It is a contradiction. The proof is completed. □

        Corollary 2 There exists a small positive constant r which is independent of ε and satisfies r < R http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq97_HTML.gif such that
        deg ( I G ( ( m Φ [ u ε ] ) u ε + ) , B r , 0 ) = 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equae_HTML.gif

        where B r http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq98_HTML.gif is a ball centered at the origin with radius r in L ( Q T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq72_HTML.gif.

        Proof Similar to Lemma 3, we can see that there exists a positive constant 0 < r < R http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq99_HTML.gif independent of ε such that
        u ε G ( λ ( m Φ [ u ε ] ) u ε + + 1 λ ) , u ε B r , λ [ 0 , 1 ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equaf_HTML.gif
        Hence the degree is well defined on B r http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq98_HTML.gif. From the homotopy invariance of the Leray-Schauder degree, we can see that
        deg ( I G ( ( m Φ [ u ε ] ) u ε + ) , B r , 0 ) = deg ( I G ( 1 ) , B r , 0 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equ32_HTML.gif
        (3.22)
        Lemma 3 shows that u ε = G ( 1 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq100_HTML.gif admits no nontrivial solution in B r http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq98_HTML.gif and it is also easy to see that u ε = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq101_HTML.gif is not a solution of u ε = G ( 1 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq100_HTML.gif. So, we have deg ( I G ( 1 ) , B r , 0 ) = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq102_HTML.gif, that is,
        deg ( I G ( ( m Φ [ u ε ] ) u ε + ) , B r , 0 ) = 0 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equag_HTML.gif

        The proof is completed. □

        Theorem 1 If assumptions (A1) and (A2) hold, then problem (1.1)-(1.3) admits a nontrivial nonnegative periodic solution u.

        Proof Using Corollary 1 and Corollary 2, we know that
        deg ( I G ( f ( ) ) , Σ , 0 ) = 1 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equah_HTML.gif
        where Σ = B R B r http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq103_HTML.gif, B ξ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq104_HTML.gif is a ball centered at the origin with radius ξ in L ( Q T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq72_HTML.gif, R and r are positive constants and R > r http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq105_HTML.gif. By the theory of the Leray-Schauder degree and Lemma 1, we can conclude that problem (2.2)-(2.4) admits a nontrivial nonnegative periodic solution  u ε http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq30_HTML.gif. By Lemma 3 and a similar method to that in [14], we can obtain
        u ε L p ( Q T ) C , u ε t L 2 ( Q T ) C . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_Equai_HTML.gif

        Combining with the regularity results [16] a similar argument to that in [17], we can prove that the limit function of u ε http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-171/MediaObjects/13661_2013_Article_423_IEq30_HTML.gif is a nonnegative nontrivial periodic solution of problem (1.1)-(1.3). □

        Declarations

        Acknowledgements

        This work is partially supported by the National Science Foundation of China (11271100, 11126222), the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2011006), the Natural Sciences Foundation of Heilongjiang Province (QC2011C020) and also the 985 project of Harbin Institute of Technology.

        Authors’ Affiliations

        (1)
        Department of Mathematics, Harbin Institute of Technology
        (2)
        Department of Mathematics, College of Education, Tikrit University

        References

        1. Allegretto W, Nistri P: Existence and optimal control for periodic parabolic equations with nonlocal term. IMA J. Math. Control Inf. 1999, 16(1):43-58. 10.1093/imamci/16.1.43MATHMathSciNetView Article
        2. Huang R, Wang Y, Ke Y: Existence of the non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms. Discrete Contin. Dyn. Syst. 2005, 5(4):1005-1014.MATHMathSciNetView Article
        3. Ke Y, Huang R, Sun J: Periodic solutions for a degenerate parabolic equation. Appl. Math. Lett. 2009, 22: 910-915. 10.1016/j.aml.2008.06.047MATHMathSciNetView Article
        4. Lieberman GM: Time-periodic solutions of quasilinear parabolic differential equations I. Dirichlet boundary conditions. J. Math. Anal. Appl. 2001, 264(2):617-638. 10.1006/jmaa.2000.7145MATHMathSciNetView Article
        5. Li J, Sun J, Wu B: Periodic doubly degenerate parabolic equation with nonlocal terms. Comput. Math. Appl. 2010, 60: 490-500. 10.1016/j.camwa.2010.04.046MATHMathSciNetView Article
        6. Liu Z: Periodic solutions for double degenerate quasilinear parabolic equations. Nonlinear Anal. TMA 2002, 51(7):1245-1257. 10.1016/S0362-546X(01)00893-8MATHView Article
        7. Zhou J, Mu C: Time periodic solutions of porous medium equation. Math. Methods Appl. Sci. 2010. 10.1002/mma.1307
        8. Wang YF, Yin JX: Periodic solutions for a class of degenerate parabolic equations with Neumann boundary conditions. Nonlinear Anal., Real World Appl. 2011, 12: 2069-2076. 10.1016/j.nonrwa.2010.12.022MATHMathSciNetView Article
        9. Sun JB, Yin JX, Wang YF: Asymptotic bounds of solutions for a periodic doubly degenerate parabolic equation. Nonlinear Anal. 2011, 74(6):2415-2424. 10.1016/j.na.2010.11.044MATHMathSciNetView Article
        10. Pang PYH, Wang YF, Yin JX: Periodic solutions for a class of reaction-diffusion equations with p -Laplacian. Nonlinear Anal., Real World Appl. 2010, 11(1):323-331. 10.1016/j.nonrwa.2008.11.006MATHMathSciNetView Article
        11. Wang YF, Wu ZQ, Yin JX: Periodic solutions of evolution p -Laplacian equations with weakly nonlinear sources. Int. J. Math. Game Theory Algebr. 2000, 10(1):67-77.MATHMathSciNet
        12. Georgiev S: Periodic solutions to the nonlinear parabolic equation. Int. J. Evol. Equ. 2010, 5(1):53-66.MATHMathSciNet
        13. Klimov VS: Periodic solutions of parabolic inclusions and the averaging method. Differ. Uravn. (Minsk) 2010, 46(12):1722-1730.MATHMathSciNet
        14. Zhou Q, Ke YY, Wang YF, Yin JX: Periodic p -Laplacian with nonlocal terms. Nonlinear Anal. 2007, 66: 442-453. 10.1016/j.na.2005.11.038MATHMathSciNetView Article
        15. Ladyzhenskaja OA, Solonnikov VA, Ural’ceva NN Transl. Math. Monogr. 23. In Linear and Quasilinear Equations of Parabolic Type. Am. Math. Soc., Providence; 1968.
        16. Dibenedetto E: Degenerate Parabolic Equations. Springer, New York; 1993.MATHView Article
        17. Wu ZQ, Zhao JN, Yin JX, Li HL: Nonlinear Diffusion Equation. World Scientific, Singapore; 2001.View Article

        Copyright

        © Hameed et al.; licensee Springer 2013

        This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.