A note on blow-up of solutions for the nonlocal quasilinear parabolic equation with positive initial energy

  • Zhong Bo Fang1Email author,

    Affiliated with

    • Lu Sun1 and

      Affiliated with

      • Changjun Li1

        Affiliated with

        Boundary Value Problems20132013:181

        DOI: 10.1186/1687-2770-2013-181

        Received: 2 March 2013

        Accepted: 23 July 2013

        Published: 8 August 2013

        Abstract

        In this short note, we consider a nonlocal quasilinear parabolic equation in a bounded domain with the Neumann-Robin boundary condition. We establish a blow-up result for a certain solution with positive initial energy.

        1 Introduction

        We consider the initial boundary value problem for a nonlocal quasilinear parabolic equation
        u t = Δ p u + | u | q 1 u 1 m ( Ω ) Ω | u | q 1 u d x , x Ω , t > 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ1_HTML.gif
        (1.1)
        with Neumann-Robin boundary and initial conditions
        | u | p 2 u n = 0 , x Ω , t > 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ2_HTML.gif
        (1.2)
        u ( x , 0 ) = u 0 ( x ) , x Ω , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ3_HTML.gif
        (1.3)

        where Ω R N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq1_HTML.gif ( N 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq2_HTML.gif) is a bounded domain with a smooth boundary, m ( Ω ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq3_HTML.gif denotes the Lebesgue measure of the domain Ω, Δ p u = div ( | u | p 2 u ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq4_HTML.gif with p 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq5_HTML.gif, q > p 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq6_HTML.gif, u 0 ( x ) L ( Ω ) W 1 , p ( Ω ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq7_HTML.gif, u 0 ( x ) 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq8_HTML.gif, and Ω u 0 d x = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq9_HTML.gif. It is easy to check that the integral of u over Ω is conserved. Meanwhile, since u ( x , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq10_HTML.gif is not required to be nonnegative, we use | u | q 1 u http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq11_HTML.gif instead of u q http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq12_HTML.gif in equation (1.1).

        Equation (1.1) arises naturally from the fluid mechanics, biology, and population dynamics. In particular, it is a possible model for the diffusion system of some biological species with a human-controlled distribution, in which u ( x , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq10_HTML.gif, div ( | u | p 2 u ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq13_HTML.gif, | u | q 1 u http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq11_HTML.gif, and 1 m ( Ω ) Ω | u | q 1 u d x http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq14_HTML.gif represent the density of the species, the mutation, which we may view as the spread of the characteristic, the growth source of the species, and the human-controlled distribution at position x and time t, respectively. The arising of a nonlocal term denotes the evolution of the species at a point of space, which depends not only on nearby density, but also on the mean value of the total amount of species due to the effects of spatial inhomogeneity, see [13]. This equation can be also used to describe the slow diffusion of concentration of non-Newton flow in a porous medium or the temperature of some combustible substance (cf. [46]). In addition, when p = q = 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq15_HTML.gif in (1.1), equation (1.1) becomes
        u t = Δ u + u 2 1 m ( Ω ) Ω u 2 d x , x Ω , t > 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equa_HTML.gif

        which is one of the simplest equations with nonlocal terms and a homogeneous Neumann boundary condition, and the quantity Ω u ( x , t ) d x http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq16_HTML.gif is conserved. This equation is also related to the Navier-Stokes equation on an infinite slab, which is explained in [7].

        In recent years, blow-up theory for solutions of the initial boundary value problem of parabolic equations with local or nonlocal term has been rapidly developed, and there have been many delicate results. Especially, for the relations between initial energy and blow-up solution, see [814]. As for researches on the initial boundary value problem of semilinear parabolic equations, we refer the readers to [812]. For instances, Hu and Yin [8] considered the nonlocal semilinear equation
        u t = Δ u + | u | q 1 u 1 m ( Ω ) Ω | u | q 1 u d x , x Ω , t > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ4_HTML.gif
        (1.4)
        with a homogeneous Neumann boundary condition
        u n = 0 , x Ω , t > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ5_HTML.gif
        (1.5)
        and established a result of local existence for the negative initial energy by using a convexity argument. Soufi [9] investigated a similar problem and established a relation between the finite time blow-up of solutions and the negativity of initial energy for 1 < q 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq17_HTML.gif by using a gamma-convergence argument. They also conjectured that the relation might hold for all q > 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq18_HTML.gif, and a positive answer to which was given by Jazar in [10]. Lately, by using the energy method, Gao [11] established a relation between the finite time blow-up of solutions and the positivity of initial energy of problem (1.4)-(1.5). In addition, Niculescu and Rovenţa [12] considered a more general initial boundary value problem of nonlocal semilinear parabolic equation given by
        u t = Δ u + f ( | u | ) 1 m ( Ω ) Ω f ( | u | ) d x , x Ω , t > 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equb_HTML.gif
        with homogeneous Neumann boundary condition (1.5), and established a blow-up result, when f ( | u | ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq19_HTML.gif belongs to a large class of nonlinearities and the initial energy was non-positive by using the convexity method. For the initial boundary value problem of quasilinear parabolic equations, Liu and Wang [13] studied the local p-Laplacian equation
        u t = Δ p u + f ( u ) , x Ω , t > 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equc_HTML.gif
        with homogeneous Dirichlet boundary condition, and built a relation between the finite time blow-up of solutions and the positivity of initial energy. Recently, Niculescu and Rovenţa [14] considered the nonlocal quasilinear equation
        u t = Δ p u + f ( | u | ) 1 m ( Ω ) Ω f ( | u | ) d x , x Ω , t > 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equd_HTML.gif

        with the Neumann-Robin boundary condition (1.2), and established a relation between the finite time blow-up solutions and the negative initial energy, when p 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq20_HTML.gif and f belongs to a large class of nonlinearities by virtue of a convexity argument.

        In those works mentioned above, most problems assumed that the initial energy was negative or non-positive to ensure the occurrence of blow-up. But, to the best of our knowledge, the positive initial energy can also ensure the occurrence of blow-up in local or nonlocal problems. It is difficult to determine whether the solutions of the initial boundary value problem of nonlocal equation (1.1) will blow up in finite time, since the comparison principle, which is the most effective tool to show blow-up of solutions, is invalid. The aim of our work is to find a relation between the finite time blow-up of solutions and the positive initial energy of problem (1.1)-(1.3) by the improved convexity method.

        2 Preliminaries and the main result

        Since p > 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq21_HTML.gif, equation (1.1) is degenerate on { ( x , t ) | u = 0 } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq22_HTML.gif, there is no classical solution in general. Hence, it is reasonable to find a weak solution of problem (1.1)-(1.3). To this end, we first give the following definition of the weak solution of problem (1.1)-(1.3).

        Definition 1 If a function u ( x , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq10_HTML.gif satisfies the following conditions:
        ( 1 ) u L ( Q T ) L p ( 0 , T ; W 1 , p ( Ω ) ) , u t L 2 ( Q T ) , ( 2 ) Q T [ u ϕ t | u | p 2 u ϕ + ( | u | q 1 u 1 m ( Ω ) Ω | u | q 1 u d x ) ϕ ] d x d t = Ω u ( x , t ) ϕ ( x , t ) d x Ω u ( x , 0 ) ϕ ( x , 0 ) d x for every  t ( 0 , T ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Eque_HTML.gif

        where ϕ C 1 ( Ω ¯ × [ 0 , T ] ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq23_HTML.gif and Q T = Ω × ( 0 , T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq24_HTML.gif, then u ( x , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq10_HTML.gif is called a weak solution of problem (1.1)-(1.3).

        Remark 1 The existence of local nonnegative solutions in time to problem (1.1)-(1.3) can be obtained by using a fixed point theorem or a parabolic regular theory to get a suitable estimate in a standard limiting process, see [6, 15, 16]. The proof is standard, and so it is omitted here. Moreover, for convenience, we may assume that the appropriate weak solution is smooth, and no longer consider approximation problem.

        Let W ( Ω ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq25_HTML.gif denote a subspace of W 1 , p ( Ω ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq26_HTML.gif, and we assume that the functions u in W ( Ω ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq25_HTML.gif satisfy Ω u d x = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq27_HTML.gif. We also define a norm on W ( Ω ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq25_HTML.gif by
        u = ( Ω | u | p d x ) 1 p . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equf_HTML.gif
        It is easy to see that this norm is equivalent to the classical norm on W 1 , p ( Ω ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq26_HTML.gif by using the Poincaré inequality. Set B be the optimal constant of the embedding inequality
        u q + 1 B u p , u W ( Ω ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ6_HTML.gif
        (2.1)
        which is equivalent to
        B 1 = inf u W ( Ω ) , u 0 u p u q + 1 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equg_HTML.gif
        where
        1 < q + , when  N p ; 1 < q ( p 1 ) N + p N p , when  N > p . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equh_HTML.gif
        We also define α 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq28_HTML.gif, E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq29_HTML.gif, and E ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq30_HTML.gif as
        α 1 = B q + 1 q p + 1 , E 1 = ( 1 p 1 q + 1 ) B p ( q + 1 ) q p + 1 for  q > p 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ7_HTML.gif
        (2.2)
        and
        E ( t ) = Ω [ 1 p | u | p 1 q + 1 | u | q + 1 ] d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ8_HTML.gif
        (2.3)

        We now introduce our main result on the blow-up solutions with the positive initial energy below.

        Theorem 1 (Sufficient condition for blow-up)

        Set p 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq20_HTML.gif, p 1 < q + http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq31_HTML.gif, when N p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq32_HTML.gif and p 1 < q ( p 1 ) N + p N p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq33_HTML.gif, when N > p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq34_HTML.gif. Suppose that u ( , t ) W ( Ω ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq35_HTML.gif is a solution of (1.1)-(1.3), and the initial datum u 0 ( x ) W ( Ω ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq36_HTML.gif is chosen to ensure that E ( 0 ) < E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq37_HTML.gif and u 0 p > α 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq38_HTML.gif. Then the solution u ( x , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq10_HTML.gif blows up in a finite time.

        Remark 2 Choose Ω = ( π 2 , π 2 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq39_HTML.gif, p = 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq40_HTML.gif and q = 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq41_HTML.gif; one can easily verify that u 0 ( x ) = sin x http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq42_HTML.gif satisfies u 0 ( x ) W ( Ω ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq36_HTML.gif, E ( 0 ) < E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq37_HTML.gif and u 0 p > α 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq38_HTML.gif, therefore, conditions in Theorem 1 are valid.

        Remark 3 Our result improves the results of Gao [11] and Niculescu and Rovenţa [14].

        3 The proof of Theorem 1

        To prove our main result, we first establish the following three lemmas obtained by applying the idea of Liu and Wang in [13], where a different type of problem was discussed.

        Lemma 1 E ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq30_HTML.gif defined in (2.3) is non-increasing in t.

        Proof A direct computation with the integration by parts yields
        d d t E ( t ) = Ω u t ( Δ p u + | u | q 1 u ) d x = Ω u t 2 d x 1 m ( Ω ) Ω | u | q 1 u d x Ω u t d x = Ω u t 2 d x 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equi_HTML.gif

        and hence, E ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq30_HTML.gif is non-increasing in t. □

        The following second lemma gives a lower bound estimate for the solution u ( x , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq43_HTML.gif in the L p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq44_HTML.gif-norm:

        Lemma 2 Let u ( x , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq10_HTML.gif be a solution of (1.1)-(1.3) with initial data satisfying
        E ( 0 ) < E 1 and u 0 p > α 1 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equj_HTML.gif
        Then there exists a positive constant α 2 > α 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq45_HTML.gif such that
        u p > α 2 , t 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ9_HTML.gif
        (3.1)
        and
        u q + 1 B α 2 , t 0 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ10_HTML.gif
        (3.2)
        Proof By (2.1) and (2.3), we notice that
        E ( t ) 1 p u p p 1 q + 1 B q + 1 u p q + 1 = 1 p α p 1 q + 1 B q + 1 α q + 1 g ( α ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ11_HTML.gif
        (3.3)

        where α = u p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq46_HTML.gif. It can be easily seen that g is increasing for 0 < α < α 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq47_HTML.gif, and decreasing for α > α 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq48_HTML.gif, g ( α ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq49_HTML.gif as α + http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq50_HTML.gif, and g ( α 1 ) = E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq51_HTML.gif, where α 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq28_HTML.gif and E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq29_HTML.gif are constants defined in (2.2). Therefore, there exists a constant α 2 > α 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq45_HTML.gif such that E ( 0 ) = g ( α 2 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq52_HTML.gif, since E ( 0 ) < E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq37_HTML.gif.

        Setting α 0 = u 0 p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq53_HTML.gif, we have g ( α 0 ) E ( 0 ) = g ( α 2 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq54_HTML.gif by (3.3), which implies that α 0 α 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq55_HTML.gif, since α 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq56_HTML.gif and α 2 α 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq57_HTML.gif.

        To establish (3.1), we assume that there exists a constant t 0 > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq58_HTML.gif such that u ( , t 0 ) p < α 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq59_HTML.gif. Because of the continuity of u ( , t ) p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq60_HTML.gif, we can choose t 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq61_HTML.gif such that u ( , t 0 ) p > α 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq62_HTML.gif. From (3.3), we deduce that
        E ( 0 ) = g ( α 2 ) < g ( u ( , t 0 ) p ) E ( t 0 ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equk_HTML.gif

        which is impossible by Lemma 1, and hence, inequality (3.1) is established.

        It also follows from (2.3) that
        1 p u p p E ( 0 ) + 1 q + 1 Ω | u | q + 1 d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equl_HTML.gif
        We then obtain that
        1 q + 1 Ω | u | q + 1 d x 1 p u p p E ( 0 ) 1 p α 2 p E ( 0 ) = 1 p α 2 p g ( α 2 ) = 1 q + 1 B q + 1 α 2 q + 1 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equm_HTML.gif

        from which inequality (3.2) follows. □

        Setting
        H ( t ) = E 1 E ( t ) , t 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ12_HTML.gif
        (3.4)

        we have the following lemma.

        Lemma 3 For all t 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq63_HTML.gif, we have the inequalities
        0 < H ( 0 ) H ( t ) 1 q + 1 Ω | u | q + 1 d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ13_HTML.gif
        (3.5)
        Proof By Lemma 1, we have
        H ( t ) = E ( t ) 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equn_HTML.gif
        and so
        H ( t ) H ( 0 ) > 0 , t 0 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equo_HTML.gif
        From (2.3) and (3.4), we get
        H ( t ) = E 1 1 p u p p + 1 q + 1 Ω | u | q + 1 d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equp_HTML.gif
        It then follows from (3.1) and (3.3) that
        E 1 1 p u p p E 1 1 p α 2 p 1 q + 1 B q + 1 α 1 q + 1 0 , t 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equq_HTML.gif

        which guarantees (3.5). □

        Proof of Theorem 1 Setting G ( t ) = 1 2 Ω u 2 ( x , t ) d x http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq64_HTML.gif and differentiating it, we obtain that
        G ( t ) = Ω u u t d x = Ω u ( Δ p u + | u | q 1 u 1 m ( Ω ) Ω | u | q 1 u d x ) d x = Ω | u | q + 1 d x Ω | u | p d x = Ω | u | q + 1 d x p E ( t ) p q + 1 Ω | u | q + 1 d x = q p + 1 q + 1 Ω | u | q + 1 d x p E 1 + p H ( t ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ14_HTML.gif
        (3.6)
        From (2.2) and (3.2), we deduce that
        p E 1 = p ( 1 p 1 q + 1 ) B p ( q + 1 ) q p + 1 = q p + 1 q + 1 α 1 q + 1 α 2 q + 1 B q + 1 α 2 q + 1 q p + 1 q + 1 α 1 q + 1 α 2 q + 1 Ω | u | q + 1 d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ15_HTML.gif
        (3.7)
        Substituting (3.7) into (3.6), we obtain
        G ( t ) ( 1 α 1 q + 1 α 2 q + 1 ) q p + 1 q + 1 Ω | u | q + 1 d x + p H ( t ) = C 0 Ω | u | q + 1 d x + p H ( t ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ16_HTML.gif
        (3.8)

        where C 0 = ( 1 α 1 q + 1 α 2 q + 1 ) q p + 1 q + 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq65_HTML.gif.

        By Hölder’s inequality, we get
        G q + 1 2 ( t ) = ( 1 2 Ω | u | 2 ( x , t ) d x ) q + 1 2 C Ω | u | q + 1 d x , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ17_HTML.gif
        (3.9)
        where C = C ( | Ω | , q ) > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq66_HTML.gif. Combining (3.8) and (3.9) with Lemma 3, we have
        G ( t ) γ G q + 1 2 ( t ) , where  γ = C 0 C > 0 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equ18_HTML.gif
        (3.10)
        Integrating (3.10) over ( 0 , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq67_HTML.gif, we obtain
        G q 1 2 ( t ) 1 G 1 q 2 ( 0 ) q 1 2 γ t , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_Equr_HTML.gif

        which implies that G ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq68_HTML.gif blows up at a finite time T G 1 q 2 ( 0 ) q 1 2 γ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq69_HTML.gif, and so does u ( x , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq10_HTML.gif. The proof is completed. □

        Remark 4 Due to the restriction of our method, we cannot get the blow-up result for q > ( p 1 ) N + p N p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq70_HTML.gif, when N > p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq71_HTML.gif. We conjecture that Theorem 1 will hold for all q > p 1 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq72_HTML.gif.

        Declarations

        Acknowledgements

        This work is supported by the Natural Science Foundation of Shandong Province of China (ZR2012AM018). The authors would like to deeply thank all the reviewers for their insightful and constructive comments.

        Authors’ Affiliations

        (1)
        School of Mathematical Sciences, Ocean University of China

        References

        1. Furter J, Grinfield M: Local vs. non-local interactions in populations dynamics. J. Math. Biol. 1989, 27: 65-80. 10.1007/BF00276081MathSciNetView Article
        2. Calsina A, Perello C, Saldana J: Non-local reaction-diffusion equations modelling predator-prey coevolution. Publ. Mat. 1994, 38: 315-325.MathSciNetView Article
        3. Allegretto W, Fragnelli G, Nistri P, et al.: Coexistence and optimal control problems for a degenerate predator-prey model. J. Math. Anal. Appl. 2011, 378: 528-540. 10.1016/j.jmaa.2010.12.036MathSciNetView Article
        4. Bebernes J, Eberly D: Mathematical Problems from Combustion Theory. Springer, New York; 1989.View Article
        5. Pao CV: Nonlinear Parabolic and Elliptic Equations. Plenum, New York; 1992.
        6. Wu ZQ, Zhao JN, Yin JX, et al.: Nonlinear Diffusion Equations. World Scientific, Singapore; 2001.View Article
        7. Budd CJ, Dold JW, Stuart AM: Blow-up in a system of partial differential equations with conserved first integral. Part II: problems with convection. SIAM J. Appl. Math. 1994, 54(3):610-640. 10.1137/S0036139992232131MathSciNetView Article
        8. Hu B, Yin HM: Semi-linear parabolic equations with prescribed energy. Rend. Circ. Mat. Palermo 1995, 44: 479-505. 10.1007/BF02844682MathSciNetView Article
        9. El Soufi A, Jazar M, Monneau R: A gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1995, 24(1):17-39.MathSciNetView Article
        10. Jazar M, Kiwan R: Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 2008, 25: 215-218. 10.1016/j.anihpc.2006.12.002MathSciNetView Article
        11. Gao WJ, Han YZ: Blow-up of a nonlocal semilinear parabolic equation with positive initial energy. Appl. Math. Lett. 2011, 24(5):784-788. 10.1016/j.aml.2010.12.040MathSciNetView Article
        12. Niculescu CP, Rovenţa J: Large solutions for semilinear parabolic equations involving some special classes of nonlinearities. Discrete Dyn. Nat. Soc. 2010., 2010: Article ID 491023
        13. Liu WJ, Wang MX: Blow-up of the solution for a p -Laplacian equation with positive initial energy. Acta Appl. Math. 2008, 103: 141-146. 10.1007/s10440-008-9225-3MathSciNetView Article
        14. Niculescu CP, Rovenţa J: Generalized convexity and the existence of finite time blow-up solutions for an evolutionary problem. Nonlinear Anal. TMA 2012, 75: 270-277. 10.1016/j.na.2011.08.031View Article
        15. Zhao JN:Existence and nonexistence of solutions for u t = div ( | u | p 2 u ) + f ( u , u , x , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-181/MediaObjects/13661_2013_Article_433_IEq73_HTML.gif. J. Math. Anal. Appl. 1993, 172: 130-146. 10.1006/jmaa.1993.1012MathSciNetView Article
        16. Li FC, Xie CH: Global and blow-up solutions to a p -Laplace equation with nonlocal source. Comput. Math. Appl. 2003, 46: 1525-1533. 10.1016/S0898-1221(03)90188-XMathSciNetView Article

        Copyright

        © Fang et al.; licensee Springer 2013

        This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.