Fuzzy approximate solutions of second-order fuzzy linear boundary value problems

  • Xiaobin Guo1, 3Email author,

    Affiliated with

    • Dequan Shang2 and

      Affiliated with

      • Xiaoquan Lu3

        Affiliated with

        Boundary Value Problems20132013:212

        DOI: 10.1186/1687-2770-2013-212

        Received: 21 January 2013

        Accepted: 2 August 2013

        Published: 30 September 2013

        Abstract

        In this paper, approximate solutions of second-order linear differential equations with fuzzy boundary conditions, in which coefficient functions maintain the sign, are investigated. The fuzzy linear boundary value problem is converted to a crisp function system of linear equations by the undetermined fuzzy coefficients method. The fuzzy approximate solution of the fuzzy linear differential equation is obtained by solving the crisp linear equations. Some numerical examples are given to illustrate the proposed method.

        Keywords

        fuzzy numbers matrix analysis fuzzy boundary value problems fuzzy approximate solutions

        1 Introduction

        Nowadays, fuzzy differential equations (FDEs) is a popular topic studied by many researchers since it is utilized widely for the purpose of modeling problems in science and engineering. Most of the practical problems require the solution of a fuzzy differential equation (FDE) which satisfies fuzzy initial or boundary conditions, therefore a fuzzy initial or boundary problem should be solved. However, many fuzzy initial or boundary value problems could not be solved exactly, sometimes it is even impossible to find their analytical solutions. Thus, considering their approximate solutions is becoming more important.

        Prior to discussing fuzzy differential equations and their associated numerical algorithms, it is necessary to present an appropriate brief introduction to derivative of the fuzzy-valued function. The concept of a fuzzy derivative was first introduced by Chang and Zadeh [1], followed up by Dubois and Prade [2] who used the extension principle in their approach. Other fuzzy derivative concepts were proposed by Puri and Ralescu [3] and Goetschel and Vaxman [4] as an extension of the Hukuhara derivative of multivalued functions. Kandel and Byatt [5, 6] applied the concept of fuzzy differential equation to the analysis of fuzzy dynamical problems.

        The numerical methods for solving fuzzy differential equation are introduced in [79]. In 2001, Buckley and Feuring [10] presented two analytical methods for solving an n th-order fuzzy linear differential equation with fuzzy initial conditions. Their first method of solution was to fuzzify the crisp solution and then check to see if it satisfies the fuzzy differential equations with fuzzy initial conditions. The second method was the reverse of the first method; in that they firstly solved the fuzzy initial value problem and then checked to see if it defined a fuzzy function. In 2008, Allahviranllo et al. [11] obtained the approximate solution of n th-order linear differential equations with fuzzy initial conditions by using the collocation method. In 2003, O’Regan et al. [12] proved a super-linear result for fuzzy boundary value problems relying on a general Schauder theorem in the metric space. Meanwhile Lakshmikantham et al. [13] investigated the solution of two-point boundary value problems associated with nonlinear fuzzy differential equations by using the extension principle. In 2008, Chen Minghao et al. [14] obtained the conclusion: two-point boundary value problems have the analytic solution only on condition that the new structure and properties to the fuzzy number are given. But for second-order fuzzy linear boundary value problems
        y + p ( t ) y + q ( t ) y = g ( t ) , t [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ1_HTML.gif
        (1.1)
        associated with
        y ( a ) = α ˜ , y ( b ) = β ˜ , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ2_HTML.gif
        (1.2)
        y ( a ) = α ˜ , y ( b ) = β ˜ , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ3_HTML.gif
        (1.3)
        y ( a ) α 0 y ( a ) = α ˜ , y ( b ) + β 0 y ( b ) = β ˜ , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ4_HTML.gif
        (1.4)

        it is not the case. Once the coefficient functions p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif, q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif, g ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq3_HTML.gif are continuous on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq4_HTML.gif and p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif, q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif maintain the sign on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq4_HTML.gif, a unique solution must exist.

        In this paper, we consider the approximate solution of a class of second-order linear differential Eq. (1.1) under fuzzy boundary value conditions (1.2), (1.3) and (1.4). Based on the undetermined fuzzy coefficients method, we convert a second-order linear differential equation to the crisp system of linear equations. Secondly, we investigate their cases according to indifferent cases of coefficient functions p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif and q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif from the original systems and build the corresponding crisp systems of linear equations. Then we derive a fuzzy approximate solution of the fuzzy linear differential equation from solving crisp function systems of linear equations. Finally, some examples are given to illustrate the proposed method. The structure of this paper is organized as follows.

        In Section 2, we recall some basic definitions and results about fuzzy numbers as well as fuzzy derivative of the fuzzy-valued function. In Sections 3, 4 and 5, we build crisp function systems of linear equations via analyzing different cases based on the coefficient functions of the fuzzy linear differential equation in detail. The proposed algorithms are illustrated by solving some examples in Section 6 and the conclusion is drawn in Section 7.

        2 Preliminaries

        2.1 Fuzzy numbers

        Definition 2.1 [1]

        A fuzzy number is a fuzzy set like u : R I = [ 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq5_HTML.gif which satisfies:
        1. (1)

          u is upper semi-continuous,

           
        2. (2)

          u ( x ) = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq6_HTML.gif outside some interval [ c , d ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq7_HTML.gif,

           
        3. (3)

          there are real numbers a, b such that c a b d http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq8_HTML.gif and

           

        (3.1) u ( x ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq9_HTML.gif is monotonic increasing on [ c , a ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq10_HTML.gif,

        (3.2) u ( x ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq9_HTML.gif is monotonic decreasing on [ b , d ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq11_HTML.gif,

        (3.3) u ( x ) = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq12_HTML.gif, a x b http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq13_HTML.gif.

        Let E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq14_HTML.gif be the set of all real fuzzy numbers which are normal, upper semi-continuous, convex and compactly supported fuzzy sets.

        Definition 2.2 [2]

        A fuzzy number u in a parametric form is a pair ( u ̲ , u ¯ ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq15_HTML.gif of functions u ̲ ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq16_HTML.gif, u ¯ ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq17_HTML.gif, 0 r 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq18_HTML.gif, which satisfies the following requirements:
        1. (1)

          u ̲ ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq16_HTML.gif is a bounded monotonic increasing left continuous function,

           
        2. (2)

          u ¯ ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq17_HTML.gif is a bounded monotonic decreasing left continuous function,

           
        3. (3)

          u ̲ ( r ) u ¯ ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq19_HTML.gif, 0 r 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq18_HTML.gif.

           

        A crisp number x is simply represented by ( u ̲ ( r ) , u ¯ ( r ) ) = ( x , x ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq20_HTML.gif, 0 r 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq18_HTML.gif. By appropriate definitions, the fuzzy number space { ( u ̲ ( r ) , u ¯ ( r ) ) } http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq21_HTML.gif becomes a convex cone E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq14_HTML.gif which could be embedded isomorphically and isometrically into a Banach space [15, 16].

        Definition 2.3 [2]

        Let x = ( x ̲ ( r ) , x ¯ ( r ) ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq22_HTML.gif, y = ( y ̲ ( r ) , y ¯ ( r ) ) E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq23_HTML.gif, 0 r 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq24_HTML.gif and arbitrary k R http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq25_HTML.gif. Then
        1. (1)

          x = y http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq26_HTML.gif iff x ̲ ( r ) = y ̲ ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq27_HTML.gif and x ¯ ( r ) = y ¯ ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq28_HTML.gif,

           
        2. (2)

          x + y = ( x ̲ ( r ) + y ̲ ( r ) , x ¯ ( r ) + y ¯ ( r ) ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq29_HTML.gif,

           
        3. (3)

          x y = ( x ̲ ( r ) y ¯ ( r ) , x ¯ ( r ) y ̲ ( r ) ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq30_HTML.gif,

           
        4. (4)

          k x = { ( k x ̲ ( r ) , k x ¯ ( r ) ) , k 0 , ( k x ¯ ( r ) , k x ̲ ( r ) ) , k < 0 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq31_HTML.gif

           

        Definition 2.4 [17]

        For arbitrary u = ( u ̲ , u ¯ ) , v = ( v ̲ , v ¯ ) E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq32_HTML.gif, the quantity
        D ( u , v ) = ( 0 1 ( u ̲ ( r ) v ̲ ( r ) ) 2 d r + 0 1 ( u ¯ ( r ) v ¯ ( r ) ) 2 d r ) 1 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equa_HTML.gif

        is the distance between fuzzy numbers u and v.

        2.2 Second-order fuzzy boundary value problem

        Definition 2.5 [3]

        Let x , y E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq33_HTML.gif. If there exists z E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq34_HTML.gif such that x = y + z http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq35_HTML.gif, then z is called the H u k u h a r a http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq36_HTML.gif-difference of fuzzy numbers x and y, and it is denoted by z = x y http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq37_HTML.gif.

        In this paper the ⊖ sign stands always for H u k u h a r a http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq36_HTML.gif-difference, and let us remark that x y x + ( 1 ) y http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq38_HTML.gif.

        Definition 2.6 [18]

        Let f : [ a , b ] E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq39_HTML.gif and t 0 [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq40_HTML.gif. We say that f is H u k u h a r a http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq36_HTML.gif differential at t 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq41_HTML.gif, if there exists an element f ( t 0 ) E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq42_HTML.gif such that for all h > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq43_HTML.gif sufficiently small, f ( t 0 + h ) f ( t 0 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq44_HTML.gif, f ( t 0 ) f ( t 0 h ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq45_HTML.gif and the limits (in the metric D)
        lim h 0 f ( t 0 + h ) f ( t 0 ) h = lim h 0 f ( t 0 ) f ( t 0 h ) h = f ( t 0 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equb_HTML.gif

        Lemma 2.1 [19]

        If g : [ a , b ] R http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq46_HTML.gif is differential on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq47_HTML.gif such that g http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq48_HTML.gif, g http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq49_HTML.gif are nonnegative and monotonic increasing on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq47_HTML.gif, then c E 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq50_HTML.gif, f ( x ) = c g ( x ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq51_HTML.gif is differential on [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq47_HTML.gif and
        f ( x ) = c g ( x ) , f ( x ) = c g ( x ) , x [ a , b ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equc_HTML.gif
        Definition 2.7 The second-order differential equation
        y = f ( t , y , y ) , t [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ5_HTML.gif
        (2.1)
        with the boundary value conditions
        y ( a ) = α ˜ , y ( b ) = β ˜ , α ˜ , β ˜ E 1 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ6_HTML.gif
        (2.2)
        y ( a ) = α ˜ , y ( b ) = β ˜ , α ˜ , β ˜ E 1 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ7_HTML.gif
        (2.3)
        y ( a ) α 0 y ( a ) = α ˜ , y ( b ) + β 0 y ( b ) = β ˜ , α 0 , β 0 0 , α 0 + β 0 > 0 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ8_HTML.gif
        (2.4)

        are called the second-order fuzzy boundary value problems (FBVPs). The differential Eq. (2.1) along with fuzzy boundary value conditions (2.2), (2.3) and (2.4) are said to be second-order fuzzy differential equation No. 1, No. 2 and No. 3 boundary value problems, respectively.

        In particular, when f ( t , y , y ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq52_HTML.gif is a linear function with respect to y and y http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq53_HTML.gif, Eq. (2.1) is reduced to Eq. (1.1)
        y + p ( t ) y + q ( t ) y = g ( t ) , t [ a , b ] , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equd_HTML.gif

        and it is a linear differential equation. In this paper, we discuss the approximate solution of the second-order fuzzy linear differential function boundary value problem. For simplicity, we only discuss the second-order fuzzy linear differential function with fuzzy boundary value conditions (2.3) and (2.4).

        3 Method for solving No. 2 FBVPs

        3.1 The undetermined fuzzy coefficients method

        The undetermined fuzzy coefficients method is to seek an approximate solution as
        y ˜ N ( t ) = k = 0 N θ ˜ k ϕ k ( t ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ9_HTML.gif
        (3.1)
        where ϕ k ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq54_HTML.gif, k = 0 , 1 , , N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq55_HTML.gif, are positive basic functions whose all differentiations are positive. We compute the fuzzy coefficients in (3.1) by setting the error to zero as follows:
        E = D ( y ˜ + p ( t ) y ˜ + q ( t ) y ˜ , g ˜ ( t ) ) + D ( y ˜ ( a ) , α ˜ ) + D ( y ˜ ( b ) , β ˜ ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ10_HTML.gif
        (3.2)
        Then we substitute (3.1) in (3.2) and represent them in parametric forms, then
        { y ( t , r ) + p ( t ) y ( t , r ) + q ( t ) y ( t , r ) ̲ = g ( t , r ) ̲ , y ̲ ( a , r ) = α ̲ ( r ) , y ̲ ( b , r ) = β ̲ ( r ) , y ( t , r ) + p ( t ) y ( t , r ) + q ( t ) y ( t , r ) ¯ = g ( t , r ) ¯ , y ¯ ( a , r ) = α ¯ ( r ) , y ¯ ( b , r ) = β ¯ ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ11_HTML.gif
        (3.3)

        Lemma 3.1 [11]

        Let basic functions ϕ k ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq54_HTML.gif, k = 0 , 1 , , N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq55_HTML.gif, and all of their differentiations be positive, without loss of generality. Then ( y ̲ N ) ( i ) ( t ) = y N ( i ) ̲ ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq56_HTML.gif and ( y ¯ N ( i ) ) ¯ ( t ) = y N ( i ) ¯ ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq57_HTML.gif, i = 0 , 1 , 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq58_HTML.gif.

        In order to solve Eq. (1.1) with condition (1.3), we need to investigate the system of Eq. (3.3). In this section we consider two cases.

        3.2 Case 1 p ( t ) q ( t ) 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq59_HTML.gif

        Suppose that coefficients p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif, q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif are nonnegative. From (3.3), we have
        y ̲ ( t , r ) + p ( t ) y ̲ ( t , r ) + q ( t ) y ̲ ( t , r ) = g ̲ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ12_HTML.gif
        (3.4)
        y ¯ ( t , r ) + p ( t ) y ¯ ( t , r ) + q ( t ) y ¯ ( t , r ) = g ¯ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ13_HTML.gif
        (3.5)
        y ̲ ( a , r ) = α ̲ ( r ) , y ̲ ( b , r ) = β ̲ ( r ) , y ¯ ( a , r ) = α ¯ ( r ) , y ¯ ( b , r ) = β ¯ ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ14_HTML.gif
        (3.6)
        And when coefficients p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif, q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif are negative, we have
        y ̲ ( t , r ) p ( t ) y ¯ ( t , r ) q ( t ) y ¯ ( t , r ) = g ̲ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ15_HTML.gif
        (3.7)
        y ¯ ( t , r ) p ( t ) y ̲ ( t , r ) q ( t ) y ̲ ( t , r ) = g ¯ ( t , r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ16_HTML.gif
        (3.8)
        If (3.1) is substituted in (3.4) and (3.5), respectively, then
        k = 0 N θ ̲ k ( r ) ϕ k ( t ) + p ( t ) k = 0 N θ ̲ k ( r ) ϕ k ( t ) + q ( t ) k = 0 N θ ̲ k ( r ) ϕ k ( t ) = g ̲ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Eque_HTML.gif
        and
        k = 0 N θ ¯ k ( r ) ϕ k ( t ) + p ( t ) k = 0 N θ ¯ k ( r ) ϕ k ( t ) + q ( t ) k = 0 N θ ¯ k ( r ) ϕ k ( t ) = g ¯ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equf_HTML.gif
        also
        k = 0 N θ ̲ k ( r ) ϕ k ( a ) = α ̲ ( r ) , k = 0 N θ ̲ k ( r ) ϕ k ( b ) = β ̲ ( r ) , k = 0 N θ ¯ k ( r ) ϕ k ( a ) = α ¯ ( r ) , k = 0 N θ ¯ k ( r ) ϕ k ( b ) = β ¯ ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equg_HTML.gif
        By setting
        { γ k = ϕ k ( t ) + p ( t ) ϕ k ( t ) + q ( t ) ϕ k ( t ) , σ a k = ϕ k ( a ) , σ b k = ϕ k ( b ) , k = 0 , 1 , , N , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equh_HTML.gif
        the following system is obtained:
        { k = 0 N θ ̲ k ( r ) γ k = g ̲ ( t , r ) , k = 0 N θ ̲ k ( r ) σ a k = α ̲ ( r ) , k = 0 N θ ̲ k ( r ) σ b k = β ̲ ( r ) k = 0 N θ ¯ k ( r ) γ k = g ¯ ( t , r ) , k = 0 N θ ¯ k ( r ) σ a k = α ¯ ( r ) , k = 0 N θ ¯ k ( r ) σ b k = β ¯ ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ17_HTML.gif
        (3.9)
        Equation (3.9) is a system of linear equations S ( t ) X ( r ) = Y ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq60_HTML.gif such that
        S = ( S 1 S 2 S 2 S 1 ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equi_HTML.gif
        where
        S 1 = ( γ 0 γ 1 γ N σ a 0 σ a 1 σ a N σ b 0 σ b 1 σ b N ) , S 2 = ( 0 0 0 0 0 0 0 0 0 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equj_HTML.gif
        And
        X = ( θ ̲ 0 , θ ̲ 1 , , θ ̲ N , θ ¯ 0 , θ ¯ 1 , , θ ¯ N ) , Y = ( g ̲ ( t , r ) , α ̲ ( r ) , β ̲ ( r ) , g ¯ ( t , r ) , α ¯ ( r ) , β ¯ ( r ) ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equk_HTML.gif

        The variables θ ̲ 0 , θ ̲ 1 , , θ ̲ N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq61_HTML.gif, θ ¯ 0 , θ ¯ 1 , , θ ¯ N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq62_HTML.gif are obtained by solving (3.9) by setting t = s http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq63_HTML.gif, s [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq64_HTML.gif. These variables yield the fuzzy approximate solution ( y ̲ ( t , r ) , y ¯ ( t , r ) ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq65_HTML.gif.

        In the same way, when coefficients p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif, q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif are negative, we build the corresponding system of linear equations as follows:
        ( γ 0 γ 1 γ N δ 0 δ 1 δ N σ a 0 σ a 1 σ a N 0 0 0 σ b 0 σ b 1 σ b N 0 0 0 δ 0 δ 1 δ N γ 0 γ 1 γ N 0 0 0 σ a 0 σ a 1 σ a N 0 0 0 σ b 0 σ b 1 σ b N ) ( θ ̲ 0 θ ̲ 1 θ ̲ N θ ¯ 0 θ ¯ 1 θ ¯ N ) = ( g ̲ ( t , r ) α ̲ ( r ) β ̲ ( r ) g ¯ ( t , r ) α ¯ ( r ) β ¯ ( r ) ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ18_HTML.gif
        (3.10)
        where
        { γ k = ϕ k ( t ) , δ k = p ( t ) ϕ k ( t ) q ( t ) ϕ k ( t ) , σ a k = ϕ k ( a ) , σ b k = ϕ k ( b ) , k = 0 , 1 , , N . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equl_HTML.gif

        3.3 Case 2 p ( t ) q ( t ) < 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq66_HTML.gif

        Suppose that coefficient p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif is nonnegative and q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif is negative. From (3.3), we have
        y ̲ ( t , r ) + p ( t ) y ̲ ( t , r ) q ( t ) y ¯ ( t , r ) = g ̲ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ19_HTML.gif
        (3.11)
        y ¯ ( t , r ) + p ( t ) y ¯ ( t , r ) q ( t ) y ̲ ( t , r ) = g ¯ ( t , r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ20_HTML.gif
        (3.12)
        When coefficient p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif is negative and q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif is nonnegative, we have
        y ̲ ( t , r ) p ( t ) y ¯ ( t , r ) + q ( t ) y ̲ ( t , r ) = g ̲ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ21_HTML.gif
        (3.13)
        y ¯ ( t , r ) p ( t ) y ̲ ( t , r ) + q ( t ) y ¯ ( t , r ) = g ¯ ( t , r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ22_HTML.gif
        (3.14)
        If (3.1) is substituted in (3.11) and (3.12), respectively, then
        k = 0 N θ ̲ k ( r ) ϕ k ( t ) + p ( t ) k = 0 N θ ̲ k ( r ) ϕ k ( t ) q ( t ) k = 0 N θ ¯ k ( r ) ϕ k ( t ) = g ̲ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equm_HTML.gif
        and
        k = 0 N θ ¯ k ( r ) ϕ k ( t ) + p ( t ) k = 0 N θ ¯ k ( r ) ϕ k ( t ) q ( t ) k = 0 N θ ̲ k ( r ) ϕ k ( t ) = g ¯ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equn_HTML.gif
        also
        k = 0 N θ ̲ k ( r ) ϕ k ( a ) = α ̲ ( r ) , k = 0 N θ ̲ k ( r ) ϕ k ( b ) = β ̲ ( r ) , k = 0 N θ ¯ k ( r ) ϕ k ( a ) = α ¯ ( r ) , k = 0 N θ ¯ k ( r ) ϕ k ( b ) = β ¯ ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equo_HTML.gif
        By setting
        { ζ k = ϕ k ( t ) + p ( t ) ϕ k ( t ) , ξ k = q ( t ) ϕ k ( t ) , σ a k = ϕ k ( a ) , σ b k = ϕ k ( b ) , k = 0 , 1 , , N , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equp_HTML.gif
        the following system is obtained:
        { k = 0 N θ ̲ k ( r ) ζ k + k = 0 N θ ¯ k ( r ) ξ k = g ̲ ( t , r ) , k = 0 N θ ̲ k ( r ) σ a k = α ̲ ( r ) , k = 0 N θ ̲ k ( r ) σ b k = β ̲ ( r ) k = 0 N θ ¯ k ( r ) ζ k + k = 0 N θ ̲ k ( r ) ξ k = g ¯ ( t , r ) , k = 0 N θ ¯ k ( r ) σ a k = α ¯ ( r ) , k = 0 N θ ¯ k ( r ) σ b k = β ¯ ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ23_HTML.gif
        (3.15)
        Equation (3.15) is a system of linear equations S ( t ) X ( r ) = Y ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq60_HTML.gif such that
        S = ( S 1 S 2 S 2 S 1 ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equq_HTML.gif
        where
        S 1 = ( ζ 0 ζ 1 ζ N σ a 0 σ a 1 σ a N σ b 0 σ b 1 σ b N ) , S 2 = ( ξ 0 ξ 1 ξ N 0 0 0 0 0 0 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equr_HTML.gif
        And
        X = ( θ ̲ 0 , θ ̲ 1 , , θ ̲ N , θ ¯ 0 , θ ¯ 1 , , θ ¯ N ) , Y = ( g ̲ ( t , r ) , α ̲ ( r ) , β ̲ ( r ) , g ¯ ( t , r ) , α ¯ ( r ) , β ¯ ( r ) ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equs_HTML.gif

        The variables θ ̲ 0 , θ ̲ 1 , , θ ̲ N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq61_HTML.gif, θ ¯ 0 , θ ¯ 1 , , θ ¯ N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq62_HTML.gif are obtained by solving (3.15) by setting t = s http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq63_HTML.gif, s [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq64_HTML.gif. These variables yield the fuzzy approximate solution ( y ̲ ( t , r ) , y ¯ ( t , r ) ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq65_HTML.gif.

        In the same way, when coefficient p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif is negative and q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif is nonnegative, we set up the corresponding system of linear equations as follows:
        ( ζ 0 ζ 1 ζ N ξ 0 ξ 1 ξ N σ a 0 σ a 1 σ a N 0 0 0 σ b 0 σ b 1 σ b N 0 0 0 ξ 0 ξ 1 ξ N ζ 0 ζ 1 ζ N 0 0 0 σ a 0 σ a 1 σ a N 0 0 0 σ b 0 σ b 1 σ b N ) ( θ ̲ 0 θ ̲ 1 θ ̲ N θ ¯ 0 θ ¯ 1 α ¯ N ) = ( g ̲ ( t , r ) α ̲ ( r ) β ̲ ( r ) g ¯ ( t , r ) α ¯ ( r ) β ¯ ( r ) ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ24_HTML.gif
        (3.16)
        where
        { ζ k = ϕ k ( t ) + q ( t ) ϕ k ( t ) , ξ k = p ( t ) ϕ k ( t ) , σ a k = ϕ k ( a ) , σ b k = ϕ k ( b ) , k = 0 , 1 , , N . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equt_HTML.gif

        4 Method for solving No. 3 FBVPs

        4.1 The undetermined fuzzy coefficients method

        Similarly, we compute the fuzzy coefficients in (3.1) by setting the error to zero as follows:
        E = D ( y ˜ + p ( t ) y ˜ + q ( t ) y ˜ , g ˜ ( t ) ) + D ( y ˜ ( a ) α 0 y ˜ ( a ) , α ˜ ) + D ( y ˜ ( b ) + β 0 y ˜ ( b ) , β ˜ ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ25_HTML.gif
        (4.1)
        Then we substitute (3.1) in (4.1) and represent them in parametric forms:
        { y ( t , r ) + p ( t ) y ( t , r ) + q ( t ) y ( t , r ) ̲ = g ( t , r ) ̲ , y ̲ ( a , r ) + α 0 y ¯ ( a , r ) = α ̲ ( r ) , y ̲ ( b , r ) + β 0 y ̲ ( b , r ) = β ̲ ( r ) , y ( t , r ) + p ( t ) y ( t , r ) + q ( t ) y ( t , r ) ¯ = g ( t , r ) ¯ , y ¯ ( a , r ) + α 0 y ̲ ( a , r ) = α ¯ ( r ) , y ¯ ( b , r ) + β 0 y ¯ ( b , r ) = β ¯ ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ26_HTML.gif
        (4.2)

        In order to solve Eq. (1.1) with Eq. (1.4), we need to investigate the system of Eq. (4.3). In this section we also consider two cases.

        4.2 Case 1 p ( t ) q ( t ) 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq59_HTML.gif

        Suppose that coefficients p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif, q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif are nonnegative. From (4.2), we have
        y ̲ ( t , r ) + p ( t ) y ̲ ( t , r ) + q ( t ) y ̲ ( t , r ) = g ̲ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ27_HTML.gif
        (4.3)
        y ¯ ( t , r ) + p ( t ) y ¯ ( t , r ) + q ( t ) y ¯ ( t , r ) = g ¯ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ28_HTML.gif
        (4.4)
        y ̲ ( a , r ) + α 0 y ¯ ( a , r ) = α ̲ ( r ) , y ̲ ( b , r ) + β 0 y ̲ ( b , r ) = β ̲ ( r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ29_HTML.gif
        (4.5)
        y ¯ ( a , r ) + α 0 y ̲ ( a , r ) = α ¯ ( r ) , y ¯ ( b , r ) + β 0 y ¯ ( b , r ) = β ¯ ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ30_HTML.gif
        (4.6)
        And when coefficients p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif, q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif are negative, we have
        y ̲ ( t , r ) p ( t ) y ¯ ( t , r ) q ( t ) y ¯ ( t , r ) = g ̲ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ31_HTML.gif
        (4.7)
        y ¯ ( t , r ) p ( t ) y ̲ ( t , r ) q ( t ) y ̲ ( t , r ) = g ¯ ( t , r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ32_HTML.gif
        (4.8)
        If (3.1) is substituted in (4.3) and (4.4), respectively, then
        k = 0 N θ ̲ k ( r ) ϕ k ( t ) + p ( t ) k = 0 N θ ̲ k ( r ) ϕ k ( t ) + q ( t ) k = 0 N θ ̲ k ( r ) ϕ k ( t ) = g ̲ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equu_HTML.gif
        and
        k = 0 N θ ¯ k ( r ) ϕ k ( t ) + p ( t ) k = 0 N θ ¯ k ( r ) ϕ k ( t ) + q ( t ) k = 0 N θ ¯ k ( r ) ϕ k ( t ) = g ¯ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equv_HTML.gif
        also
        k = 0 N θ ̲ k ( r ) ϕ k ( a ) + α 0 k = 0 N θ ¯ k ( r ) ϕ k ( a ) = α ̲ ( r ) , k = 0 N θ ̲ k ( r ) ϕ k ( b ) + β 0 k = 0 N θ ̲ k ( r ) ϕ k ( b ) = β ̲ ( r ) , k = 0 N θ ¯ k ( r ) ϕ k ( a ) + α 0 k = 0 N θ ̲ k ( r ) ϕ k ( a ) = α ¯ ( r ) , k = 0 N θ ¯ k ( r ) ϕ k ( b ) + β 0 k = 0 N θ ¯ k ( r ) ϕ k ( b ) = β ¯ ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equw_HTML.gif
        By setting
        { γ k = ϕ k ( t ) + p ( t ) ϕ k ( t ) + q ( t ) ϕ k ( t ) , σ a k = ϕ k ( a ) , σ b k = α 0 ϕ k ( a ) , δ ( k ) = ϕ k ( b ) + β 0 ϕ k ( b ) , k = 0 , 1 , , N , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equx_HTML.gif
        the following system is obtained:
        { k = 0 N θ ̲ k ( r ) γ k = g ̲ ( t , r ) , k = 0 N θ ̲ k ( r ) σ a k + k = 0 N θ ¯ k ( r ) σ b k = α ̲ ( r ) , k = 0 N θ ̲ k ( r ) δ k = β ̲ ( r ) k = 0 N θ ¯ k ( r ) γ k = g ¯ ( t , r ) , k = 0 N θ ¯ k ( r ) σ a k + k = 0 N θ ̲ k ( r ) σ b k = α ¯ ( r ) , k = 0 N θ ¯ k ( r ) δ k = β ¯ ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ33_HTML.gif
        (4.9)
        Equation (4.9) is a system of linear equations S ( t ) X ( r ) = Y ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq60_HTML.gif such that
        S = ( S 1 S 2 S 2 S 1 ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equy_HTML.gif
        where
        S 1 = ( γ 0 γ 1 γ N σ a 0 σ a 1 σ a N δ b 0 δ b 1 δ b N ) , S 2 = ( 0 0 0 σ b 0 σ b 1 σ b N 0 0 0 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equz_HTML.gif
        And
        X = ( θ ̲ 0 , θ ̲ 1 , , θ ̲ N , θ ¯ 0 , θ ¯ 1 , , θ ¯ N ) , Y = ( g ̲ ( t , r ) , α ̲ ( r ) , β ̲ ( r ) , g ¯ ( t , r ) , α ¯ ( r ) , β ¯ ( r ) ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equaa_HTML.gif

        The variables θ ̲ 0 , θ ̲ 1 , , θ ̲ N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq61_HTML.gif, θ ¯ 0 , θ ¯ 1 , , θ ¯ N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq62_HTML.gif are obtained by solving (4.9) by setting t = s http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq63_HTML.gif, s [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq64_HTML.gif. These variables yield the fuzzy approximate solution ( y ̲ ( t , r ) , y ¯ ( t , r ) ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq65_HTML.gif.

        Similarly, when coefficients p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif, q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif are negative, we build the corresponding system of linear equations as follows:
        ( γ 0 γ 1 γ N η 0 η 1 η N σ a 0 σ a 1 σ a N σ b 0 σ b 1 σ b N δ 0 δ 1 δ N 0 0 0 η 0 η 1 η N γ 0 γ 1 γ N σ b 0 σ b 1 σ b N σ a 0 σ a 1 σ a N 0 0 0 δ 0 δ 1 δ N ) ( θ ̲ 0 θ ̲ 1 θ ̲ N θ ¯ 0 θ ¯ 1 θ ¯ N ) = ( g ̲ ( t , r ) α ̲ ( r ) β ̲ ( r ) g ¯ ( t , r ) α ¯ ( r ) β ¯ ( r ) ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ34_HTML.gif
        (4.10)
        where
        { γ k = ϕ k ( t ) , η k = p ( t ) ϕ k ( t ) q ( t ) ϕ k ( t ) , σ a k = ϕ k ( a ) , σ b k = α 0 ϕ k ( a ) , δ ( k ) = ϕ k ( b ) + β 0 ϕ k ( b ) , k = 0 , 1 , , N , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equab_HTML.gif

        4.3 Case 2 p ( t ) q ( t ) < 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq66_HTML.gif

        Suppose that coefficient p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif is nonnegative and q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif is negative. From (4.3), we have
        y ̲ ( t , r ) + p ( t ) y ̲ ( t , r ) q ( t ) y ¯ ( t , r ) = g ̲ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ35_HTML.gif
        (4.11)
        y ¯ ( t , r ) + p ( t ) y ¯ ( t , r ) q ( t ) y ̲ ( t , r ) = g ¯ ( t , r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ36_HTML.gif
        (4.12)
        When coefficient p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif is negative and q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif is nonnegative, we have
        y ̲ ( t , r ) p ( t ) y ¯ ( t , r ) + q ( t ) y ̲ ( t , r ) = g ̲ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ37_HTML.gif
        (4.13)
        y ¯ ( t , r ) p ( t ) y ̲ ( t , r ) + q ( t ) y ¯ ( t , r ) = g ¯ ( t , r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ38_HTML.gif
        (4.14)
        If (3.1) is substituted in (4.11) and (4.12), respectively, then
        k = 0 N θ ̲ k ( r ) ϕ k ( t ) p ( t ) k = 0 N θ ̲ k ( r ) ϕ k ( t ) + q ( t ) k = 0 N θ ¯ k ( r ) ϕ k ( t ) = g ̲ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equac_HTML.gif
        and
        k = 0 N θ ¯ k ( r ) ϕ k ( t ) p ( t ) k = 0 N θ ¯ k ( r ) ϕ k ( t ) + q ( t ) k = 0 N θ ̲ k ( r ) ϕ k ( t ) = g ¯ ( t , r ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equad_HTML.gif
        also
        k = 0 N θ ̲ k ( r ) ϕ k ( a ) + α 0 k = 0 N θ ¯ k ( r ) ϕ k ( a ) = α ̲ ( r ) , k = 0 N θ ̲ k ( r ) ϕ k ( b ) + β 0 k = 0 N θ ̲ k ( r ) ϕ k ( b ) = β ̲ ( r ) , k = 0 N θ ¯ k ( r ) ϕ k ( a ) + α 0 k = 0 N θ ̲ k ( r ) ϕ k ( a ) = α ¯ ( r ) , k = 0 N θ ¯ k ( r ) ϕ k ( b ) + β 0 k = 0 N θ ¯ k ( r ) ϕ k ( b ) = β ¯ ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equae_HTML.gif
        By setting
        { γ k = ϕ k ( t ) + p ( t ) ϕ k ( t ) , ξ k = q ( t ) ϕ k ( t ) , σ a k = ϕ k ( a ) , σ b k = α 0 ϕ k ( a ) , δ ( k ) = ϕ k ( b ) + β 0 ϕ k ( b ) , k = 0 , 1 , , N , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equaf_HTML.gif
        the following system is obtained:
        { k = 0 N θ ̲ k ( r ) γ k + k = 0 N θ ¯ k ( r ) ξ k = g ̲ ( t , r ) , k = 0 N θ ̲ k ( r ) σ a k + k = 0 N θ ¯ k ( r ) σ b k = α ̲ ( r ) , k = 0 N θ ̲ k ( r ) δ k = β ̲ ( r ) , k = 0 N θ ¯ k ( r ) γ k + k = 0 N θ ̲ k ( r ) ξ k = g ¯ ( t , r ) , k = 0 N θ ¯ k ( r ) σ a k + k = 0 N θ ̲ k ( r ) σ b k = α ¯ ( r ) , k = 0 N θ ¯ k ( r ) δ k = β ¯ ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ39_HTML.gif
        (4.15)
        Equation (4.15) is a system of linear equations S ( t ) X ( t ) = Y ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq67_HTML.gif such that
        S = ( S 1 S 2 S 2 S 1 ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equag_HTML.gif
        where
        S 1 = ( γ 0 γ 1 γ N σ a 0 σ a 1 σ a N δ 0 δ 1 δ N ) , S 2 = ( ξ 0 ξ 1 ξ N σ b 0 σ b 1 σ b N 0 0 0 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equah_HTML.gif
        And
        X = ( θ ̲ 0 , θ ̲ 1 , , θ ̲ N , θ ¯ 0 , θ ¯ 1 , , θ ¯ N ) , Y = ( g ̲ ( t , r ) , α ̲ ( r ) , β ̲ ( r ) , g ¯ ( t , r ) , α ¯ ( r ) , β ¯ ( r ) ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equai_HTML.gif

        The variables θ ̲ 0 , θ ̲ 1 , , θ ̲ N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq61_HTML.gif, θ ¯ 0 , θ ¯ 1 , , θ ¯ N http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq62_HTML.gif are obtained by solving (4.14) by setting t = s http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq63_HTML.gif, s [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq64_HTML.gif. These variables yield the fuzzy approximate solution ( y ̲ ( t , r ) , y ¯ ( t , r ) ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq65_HTML.gif.

        Similarly, when coefficient p ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq1_HTML.gif is negative and q ( t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq2_HTML.gif is nonnegative, we extend the corresponding system of linear equations as follows:
        ( γ 0 γ 1 γ N ξ 0 ξ 1 ξ N σ a 0 σ a 1 σ a N σ b 0 σ b 1 σ b N δ 0 δ 1 δ N 0 0 0 ξ 0 ξ 1 ξ N γ 0 γ 1 γ N σ b 0 σ b 1 σ b N σ a 0 σ a 1 σ a N 0 0 0 δ 0 δ 1 δ N ) ( θ ̲ 0 θ ̲ 1 θ ̲ N θ ¯ 0 θ ¯ 1 θ ¯ N ) = ( g ̲ ( t , r ) α ̲ ( r ) β ̲ ( r ) g ¯ ( t , r ) α ¯ ( r ) β ¯ ( r ) ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ40_HTML.gif
        (4.16)
        where
        { γ k = ϕ k ( t ) + q ( t ) ϕ k ( t ) , ξ k = p ( t ) ϕ k ( t ) , σ a k = ϕ k ( a ) , σ b k = α 0 ϕ k ( a ) , δ ( k ) = ϕ k ( b ) + β 0 ϕ k ( b ) , k = 0 , 1 , , N . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equaj_HTML.gif

        Likewise, for Eq. (1.1) with fuzzy boundary conditions (1.2), the following results are obvious.

        5 Approximate solutions of second-order FLBVPs

        The above model linear Eqs. (3.9), (3.10), (3.15), (3.16), (4.9), (4.10), (4.15) and (4.16) are 6 × 2 ( N + 1 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq68_HTML.gif function systems of linear equations and they have the same form as follows:
        S ( t ) X ( r ) = Y ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ41_HTML.gif
        (5.1)
        In the process of solving Eq. (5.1) by setting t = q http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq69_HTML.gif, q [ a , b ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq70_HTML.gif, no matter whether it is consistent or inconsistent, we obtain the minimal norm least squares solution [20] by using the generalized inverse of the coefficient matrix S, i.e.,
        X ( r ) = S ( q ) Y ( r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ42_HTML.gif
        (5.2)
        Thus we get
        θ ̲ 0 , θ ̲ 1 , , θ ̲ N , θ ¯ 0 , θ ¯ 1 , , θ ¯ N . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equak_HTML.gif
        Therefore, we obtain the fuzzy approximate solution of the original fuzzy linear differential equation as follows:
        y ̲ ( t , r ) = θ ̲ 0 ( r ) ϕ 0 ( t ) + θ ̲ 1 ( r ) ϕ 1 ( t ) + + θ ̲ N ( r ) ϕ N ( t ) , y ¯ ( t , r ) = θ ¯ 0 ( r ) ϕ 0 ( t ) + θ ¯ 1 ( r ) ϕ 1 ( t ) + + θ ¯ N ( r ) ϕ N ( t ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equ43_HTML.gif
        (5.3)

        6 Numerical examples

        Example 6.1 Consider the following second-order fuzzy linear differential equation:
        { y + y = t , t [ 0 , π 2 ] y ˜ ( 0 ) = ( 0.1 + 0.1 r , 0.1 0.1 r ) , y ˜ ( π 2 ) = ( π 2 + 0.1 r , 1 + π 2 0.1 r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equal_HTML.gif
        The exact solution is as follows:
        Y ̲ ( t , r ) = ( 0.1 + 0.1 r ) cos t + ( 0.1 r ) sin t t , Y ¯ ( t , r ) = ( 0.1 0.1 r ) cos t + ( 1 + π 0.1 r ) sin t t . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equam_HTML.gif
        If ϕ k ( t ) = t k http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq71_HTML.gif, k = 0 , 1 , 2 , 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq72_HTML.gif, then
        y ̲ ( t , r ) = α ̲ 0 + α ̲ 1 t + α ̲ 2 t 2 + α ̲ 3 t 3 , y ¯ ( t , r ) = α ¯ 0 + α ¯ 1 t + α ¯ 2 t 2 + α ¯ 3 t 3 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equan_HTML.gif
        From (3.11), we build the following system:
        ( 1 t 2 + t 2 6 t + t 3 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 t 2 + t 2 6 t + t 3 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 ) ( θ ̲ 0 ( r ) θ ̲ 1 ( r ) θ ̲ 2 ( r ) θ ̲ 3 ( r ) θ ¯ 0 ( r ) θ ¯ 1 ( r ) θ ¯ 2 ( r ) θ ¯ 3 ( r ) ) = ( t 0.1 + 0.1 r π 2 + 0.1 r t 0.1 0.1 r 1 + π 2 0.1 r ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equao_HTML.gif
        By setting t = 1 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq73_HTML.gif, the parameters α ̲ 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq74_HTML.gif, α ̲ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq75_HTML.gif, α ̲ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq76_HTML.gif, α ̲ 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq77_HTML.gif, α ¯ 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq78_HTML.gif, α ¯ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq79_HTML.gif, α ¯ 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq80_HTML.gif, α ¯ 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq81_HTML.gif are obtained, and by putting them into (5.3), we have
        y ̲ ( t , r ) = ( 0.100 + 0.100 r ) + ( 1.5708 + 0.100 r ) t y ( t , r ) = + ( 0.0674 0.0229 r ) t 2 + ( 0.0936 0.03165 r ) t 3 , y ¯ ( t , r ) = ( 0.100 0.100 r ) + ( 4.142 0.100 r ) t y ¯ ( t , r ) = + ( 0.1128 + 0.0227 r ) t 2 + ( 0.1568 + 0.03161 r ) t 3 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equap_HTML.gif
        Tables 1, 2, 3 and 4 show the comparisons between the exact solution and the approximate solution at t = 0.01 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq82_HTML.gif and t = 0.001 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq83_HTML.gif for some r [ 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq84_HTML.gif; all data are computed by Matlab7.x.
        Table 1

        Comparisons between the exact solution and the approximate solution

        r

        Y ̲ ( t , r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq85_HTML.gif

        y ̲ ( t , r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq86_HTML.gif

        Error

        0

        −0.09911518137409

        −0.09912683067200

        0.11649297906799e-4

        0.1

        −0.08901568303658

        −0.08902706143300

        0.11378396415129e-4

        0.2

        −0.07891618469908

        −0.07892729219400

        0.11107494923460e-4

        0.3

        −0.06881668636157

        −0.06882752295500

        0.10836593431776e-4

        0.4

        −0.05871718802406

        −0.05872775371600

        0.10565691940079e-4

        0.5

        −0.04861768968655

        −0.04862798447700

        0.10294790448395e-4

        0.6

        −0.03851819134904

        −0.03852821523800

        0.10023888956719e-4

        0.7

        −0.02841869301153

        −0.02842844599900

        0.09752987465039e-4

        0.8

        −0.01831919467403

        −0.01832867676000

        0.09482085973359e-4

        0.9

        −0.00821969633652

        −0.00822890752100

        0.09211184481680e-4

        1

        0.00187980200099

        0.00187086171800

        0.08940282990000e-4

        Table 2

        Comparisons between the exact solution and the approximate solution

        r

        Y ¯ ( t , r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq87_HTML.gif

        y ¯ ( t , r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq88_HTML.gif

        Error

        0

        0.10287478537607

        0.10286855421000

        0.62311660731923e-5

        0.1

        0.09277528703856

        0.09276878497120

        0.65020673648691e-5

        0.2

        0.08267578870106

        0.08266901573240

        0.67729686565599e-5

        0.3

        0.07257629036355

        0.07256924649360

        0.70438699482367e-5

        0.4

        0.06247679202604

        0.06246947725480

        0.73147712399066e-5

        0.5

        0.05237729368853

        0.05236970801600

        0.75856725315904e-5

        0.6

        0.04227779535102

        0.04226993877720

        0.78565738232741e-5

        0.7

        0.03217829701351

        0.03217016953840

        0.81274751149579e-5

        0.8

        0.02207879867601

        0.02207040029960

        0.83983764066348e-5

        0.9

        0.01197930033850

        0.01197063106080

        0.86692776983185e-5

        1

        0.00187980200099

        0.00187086182200

        0.89401789899965e-5

        Table 3

        Comparisons between the exact solution and the approximate solution

        r

        Y ̲ ( t , r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq85_HTML.gif

        y ̲ ( t , r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq86_HTML.gif

        Error

        0

        −0.09991195018134

        −0.09991206746457

        0.11728323451310e-6

        0.1

        −0.08990195518300

        −0.08990206974373

        0.11456072925020e-6

        0.2

        −0.07989196018467

        −0.07989207202289

        0.11183822400118e-6

        0.3

        −0.06988196518634

        −0.06988207430206

        0.10911571875216e-6

        0.4

        −0.05987197018800

        −0.05987207658122

        0.10639321350314e-6

        0.5

        −0.04986197518967

        −0.04986207886038

        0.10367070826106e-6

        0.6

        −0.03985198019133

        −0.03985208113954

        0.10094820300510e-6

        0.7

        −0.02984198519300

        −0.02984208341870

        0.09822569775955e-6

        0.8

        −0.01983199019467

        −0.01983208569786

        0.09550319251053e-6

        0.9

        −0.00982199519633

        −0.00982208797702

        0.09278068726151e-6

        1

        0.00018799980200

        0.00018790974382

        0.09005818201011e-6

        Table 4

        Comparisons between the exact solution and the approximate solution

        r

        Y ¯ ( t , r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq87_HTML.gif

        y ¯ ( t , r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq88_HTML.gif

        Error

        0

        0.10028794978534

        0.10028788695321

        0.62832127500911e-7

        0.1

        0.09027795478700

        0.09027788923237

        0.65554632569520e-7

        0.2

        0.08026795978867

        0.08026789151153

        0.68277137610373e-7

        0.3

        0.07025796479034

        0.07025789379069

        0.70999642678982e-7

        0.4

        0.06024796979200

        0.06024789606985

        0.73722147712896e-7

        0.5

        0.05023797479367

        0.05023789834902

        0.76444652760688e-7

        0.6

        0.04022797979534

        0.04022790062818

        0.79167157815418e-7

        0.7

        0.03021798479700

        0.03021790290734

        0.81889662859741e-7

        0.8

        0.02020798979867

        0.02020790518650

        0.84612167911002e-7

        0.9

        0.01019799480033

        0.01019790746566

        0.87334672960529e-7

        1

        0.00018799980200

        0.00018790974482

        0.90057178009920e-7

        Example 6.2 Consider the following second-order fuzzy linear differential equation:
        { y 4 y + 4 y = 4 t 4 , t 0 y ˜ ( 0 ) = ( 3 + 2 r , 6 5 r ) , y ˜ ( 1 ) = ( ( 1 + 5 r ) e 2 + 1 , ( 7 5 r ) e 2 + 1 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equaq_HTML.gif
        The exact solution of the equation is
        Y ̲ ( t , r ) = ( 1 + r ) e 2 t + ( 1 + r ) t e 2 t + t , Y ¯ ( t , r ) = ( 2 r ) e 2 t + ( 1 r ) t e 2 t + t . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equar_HTML.gif
        The extended linear equations S ( t ) X ( r ) = Y ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq60_HTML.gif is as follows:
        ( 4 4 t 2 + 4 t 2 6 t + 4 t 3 0 4 8 t 12 t 2 0 1 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 4 8 t 12 t 2 4 4 t 2 + 4 t 2 6 t + 4 t 3 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2 0 ) ( α ̲ 0 ( r ) α ̲ 1 ( r ) α ̲ 2 ( r ) α ̲ 3 ( r ) α ¯ 0 ( r ) α ¯ 1 ( r ) α ¯ 2 ( r ) α ¯ 3 ( r ) ) = ( 4 t 4 3 + 2 r ( 1 + 5 r ) e 2 + 1 4 t 4 6 5 r ( 7 5 r ) e 2 + 1 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_Equas_HTML.gif
        By setting t = 1 6 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq89_HTML.gif, the parameters α ̲ 0 ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq90_HTML.gif, α ̲ 1 ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq91_HTML.gif, α ̲ 2 ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq92_HTML.gif, α ̲ 3 ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq93_HTML.gif, α ¯ 0 ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq94_HTML.gif, α ¯ 1 ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq95_HTML.gif, α ¯ 2 ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq96_HTML.gif, α ¯ 3 ( r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq97_HTML.gif are obtained. Tables 5 and 6 show comparisons between the exact solution and the approximate solution at t = 0.001 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq83_HTML.gif for some r [ 0 , 1 ] http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq84_HTML.gif; all data were calculated by Matlab7.x.
        Table 5

        Comparisons between the exact solution and the approximate solution

        r

        Y ̲ ( t , r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq85_HTML.gif

        y ̲ ( t , r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq86_HTML.gif

        Error

        0

        2.00400200066667

        2.00300328843835

        0.00099871222831

        0.1

        2.10430240100020

        2.10320316558466

        0.00109923541554

        0.2

        2.20460280133373

        2.20340304273096

        0.00119975860278

        0.3

        2.30490320166727

        2.30360291987726

        0.00130028179001

        0.4

        2.40520360200080

        2.40380279702356

        0.00140080497724

        0.5

        2.50550400233433

        2.50400267416986

        0.00150132816447

        0.6

        2.60580440266787

        2.60420255131616

        0.00160185135171

        0.7

        2.70610480300140

        2.70440242846246

        0.00170237453894

        0.8

        2.80640520333493

        2.80460230560876

        0.00180289772617

        0.9

        2.90670560366847

        2.90480218275507

        0.00190342091340

        1

        3.00700600400200

        3.00500205990137

        0.00200394410063

        Table 6

        Comparisons between the exact solution and the approximate solution

        r

        Y ¯ ( t , r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq87_HTML.gif

        y ¯ ( t , r ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-212/MediaObjects/13661_2013_Article_606_IEq88_HTML.gif

        Error

        0

        4.01001000733734

        4.00899990996165

        0.00101009737569

        0.1

        3.90970960700380

        3.90880003281535

        0.00090957418846

        0.2

        3.80940920667027

        3.80860015566904

        0.00080905100122

        0.3

        3.70910880633673

        3.70840027852274

        0.00070852781399

        0.4

        3.60880840600320

        3.60820040137644

        0.00060800462676

        0.5

        3.50850800566967

        3.50800052423014

        0.00050748143953

        0.6

        3.40820760533613

        3.40780064708384

        0.00040695825230

        0.7

        3.30790720500260

        3.30760076993754

        0.00030643506506

        0.8

        3.20760680466907

        3.20740089279124

        0.00020591187783

        0.9

        3.10730640433553

        3.10720101564493

        0.00010538869060

        1

        3.00700600400200

        3.00700113849863

        0.00000486550337

        Form Tables 1, 2, 3, 4, 5 and 6, we know that the approximate solutions obtained from the proposed method are best close to the exact solutions of original linear deferential equations with fuzzy boundary value conditions.

        7 Conclusion

        In this paper the approximate method similar to the undetermined coefficients method, based on a positive basis for solving second-order fuzzy linear boundary value problems, was discussed. Three classes of boundary conditions and the general case were considered. According to the sign of coefficient functions of the fuzzy linear differential equation, the corresponding function systems of linear equations were set up. Following each other, fuzzy approximate solutions were obtained by solving a crisp function extended system of linear equations. Numerical examples show that our methods are practical and efficient.

        Declarations

        Acknowledgements

        The work is supported by the Natural Scientific Funds of PR China (71061013, 21175108) and the Youth Research Ability Project of Northwest Normal University (NWNU-LKQN-1120).

        Authors’ Affiliations

        (1)
        College of Mathematics and Statistics, Northwest Normal University
        (2)
        Department of Public Courses, Gansu College of Traditional Chinese Medicine
        (3)
        College of Chemistry and Chemical Engineering, Northwest Normal University

        References

        1. Zadeh LA: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 1975, 8: 199-249. 10.1016/0020-0255(75)90036-5MathSciNetView Article
        2. Dubois D, Prade H: Operations on fuzzy numbers. Int. J. Syst. Sci. 1978, 9: 613-626. 10.1080/00207727808941724MathSciNetView Article
        3. Puri ML, Ralescu DA: Differentials for fuzzy functions. J. Math. Anal. Appl. 1983, 91: 552-558. 10.1016/0022-247X(83)90169-5MathSciNetView Article
        4. Goetschel R, Voxman W: Elementary calculus. Fuzzy Sets Syst. 1986, 18: 31-43. 10.1016/0165-0114(86)90026-6MathSciNetView Article
        5. Kandel A: Fuzzy dynamic systems and the nature of their solutions. In Fuzzy Sets Theory and Application to Policy Analysis and Information Systems. Edited by: Wang PP, Chang SK. Plenum Press, New York; 1980:93-1221.
        6. Kandel A, Byatt WJ: Fuzzy differential equations. Proceedings of the International Conference on Cybernetics and Society 1987, 1213-1216. Tokyo
        7. Abbasbandy S, Allahviranloo T: Numerical solutions of fuzzy differential equations by Taylor method. Comput. Methods Appl. Math. 2002, 2: 113-124.MathSciNetView Article
        8. Abbasbandy S, Allahviranloo T, Lopez-Pouso O, Otadi M: Numerical methods for fuzzy differential inclusions. Comput. Math. Appl. 2004, 48: 1633-1641. 10.1016/j.camwa.2004.03.009MathSciNetView Article
        9. Allahviranloo T, Ahmady N, Ahmady E: Numerical solutions of fuzzy differential equations by predictor-corrector method. Inf. Sci. 2007, 177: 1633-1647. 10.1016/j.ins.2006.09.015MathSciNetView Article
        10. Buckley JJ, Feuring T: Fuzzy initial value problem for Nth-order fuzzy differential equations. Fuzzy Sets Syst. 2001, 121: 247-255. 10.1016/S0165-0114(00)00028-2MathSciNetView Article
        11. Allahviranloo T: Nth-order fuzzy linear differential equations. Inf. Sci. 2008, 178: 1309-1324. 10.1016/j.ins.2007.10.013MathSciNetView Article
        12. O’Regan D, Lakshkantham V, Nieto JJ: Initial and boundary value problems for fuzzy differential equations. Nonlinear Anal. 2003, 54: 405-415. 10.1016/S0362-546X(03)00097-XMathSciNetView Article
        13. Lakshkantham V, Murty KN, Turner J: Two points boundary value problems associated with nonlinear fuzzy differential equations. Math. Inequal. Appl. 2003, 4: 527-533.
        14. Chen M, Wu C, Xue X: On fuzzy boundary value problems. Inf. Sci. 2008, 178: 1877-1892. 10.1016/j.ins.2007.11.017MathSciNetView Article
        15. Wu CX, Ma M: Embedding problem of fuzzy number space: Part I. Fuzzy Sets Syst. 1991, 44: 33-38. 10.1016/0165-0114(91)90030-TMathSciNetView Article
        16. Wu CX, Ma M: Embedding problem of fuzzy number space: Part III. Fuzzy Sets Syst. 1992, 46: 281-286. 10.1016/0165-0114(92)90142-QMathSciNetView Article
        17. He O, Yi W: On fuzzy differential equations. Fuzzy Sets Syst. 1989, 24: 321-325.View Article
        18. Bede B: Note on “Numerical solutions of fuzzy differential equations by predictor-corrector method”. Inf. Sci. 2008, 178: 1917-1922. 10.1016/j.ins.2007.11.016MathSciNetView Article
        19. Bede B, Gal S: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equation. Fuzzy Sets Syst. 2005, 151: 581-599. 10.1016/j.fss.2004.08.001MathSciNetView Article
        20. Ben-Israel A, Greville TNE: Generalized Inverses: Theory and Applications. 2nd edition. Springer, New York; 2003.

        Copyright

        © Guo et al.; licensee Springer 2013

        This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.