Open Access

Some circular summation formulas for theta functions

Boundary Value Problems20132013:59

DOI: 10.1186/1687-2770-2013-59

Received: 10 December 2012

Accepted: 26 February 2013

Published: 26 March 2013

Abstract

In this paper, we obtain some circular summation formulas of theta functions using the theory of elliptic functions and show some interesting identities of theta functions and applications.

MSC:11F27, 33E05, 11F20.

Keywords

circular summation elliptic functions theta functions theta function identities

1 Introduction

Throughout this paper we take q = e i π τ , where ( τ ) > 0 . The classical Jacobi theta functions θ i ( z | τ ) , i = 1 , 2 , 3 , 4 , are defined as follows:
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ1_HTML.gif
(1.1)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ2_HTML.gif
(1.2)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ3_HTML.gif
(1.3)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ4_HTML.gif
(1.4)

Recently, Chan, Liu and Ng [1] proved Ramanujan’s circular summation formulas and derived identities similar to Ramanujan’s summation formula and connected these identities to Jacobi’s elliptic functions.

Subsequently, Zeng [2] gave a generalized circular summation of the theta function θ 3 ( z | τ ) as follows:
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ5_HTML.gif
(1.5)
where
C 33 ( a , b ; y , τ ) = k n m 1 + + m a + n 1 + + n b = 0 m 1 , , m a , n 1 , , n b = q m 1 2 + + m a 2 + n 1 2 + + n b 2 e 2 k ( m 1 + + m a ) i y .
A special case of formula (1.5) yields the following result (see [[1], Theorem 3.1]):
s = 0 k n 1 θ 3 k ( z k n + π s k n | τ k n 2 ) = C 33 ( k , 0 ; 0 , τ k n 2 ) θ 3 ( z | τ ) ,
(1.6)
where
C 33 ( k , 0 ; 0 , τ ) = k n m 1 + + m k = 0 m 1 , , m k = q m 1 2 + + m k 2 .
(1.7)

Upon a, b, n and k are any positive integer with k = a + b .

More recently, Liu further obtained the general formulas for theta functions (see [3]), but from one main result, Theorem 1 of Liu, we do not deduce our results in the present paper. Many people research the circular summation formulas of theta functions and find more interesting formulas (see, for details, [415]).

In the present paper, we obtain analogues and uniform formulas for theta functions θ 1 ( z | τ ) , a θ 2 ( z | τ ) , θ 3 ( z | τ ) and θ 4 ( z | τ ) . We now state our result as follows.

Theorem 1 For any positive integer k, n, a and b with k = a + b , α = 1 , 2 , β = 3 , 4 .

  • For a, b even, we have
    https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ8_HTML.gif
    (1.8)
  • For a even, n and b odd, we have
    https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ9_HTML.gif
    (1.9)
    https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ10_HTML.gif
    (1.10)
where
C α β ( a , b ; y , τ ) = k n i a α q a 4 e a b i y m 1 , , m a , n 1 , , n b = 2 ( m 1 + + m a + n 1 + + n b ) + a = 0 ( 1 ) α ( m 1 + + m a ) + ( β + 1 ) ( n 1 + + n b ) × q m 1 2 + + m a 2 + n 1 2 + + n b 2 + m 1 + + m a e ( 2 k ( m 1 + + m a ) + a 2 ) i y .
(1.11)

2 Proof of Theorem 1

From Jacobi’s theta functions (1.1)-(1.4), we have the following properties respectively:
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ12_HTML.gif
(2.1)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ13_HTML.gif
(2.2)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ14_HTML.gif
(2.3)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ15_HTML.gif
(2.4)
From (2.1)-(2.4), by using the induction, we easily obtain
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ16_HTML.gif
(2.5)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ17_HTML.gif
(2.6)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ18_HTML.gif
(2.7)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ19_HTML.gif
(2.8)
Let
f ( z ) = s = 0 k n 1 θ α a ( z k n + y a + π s k n | τ k n 2 ) θ β b ( z k n y b + π s k n | τ k n 2 ) .
(2.9)

Case 1. When α = 1 , β = 3 .

The function f ( z ) becomes of the following form:
f ( z ) = s = 0 k n 1 θ 1 a ( z k n + y a + π s k n | τ k n 2 ) θ 3 b ( z k n y b + π s k n | τ k n 2 ) .
(2.10)
From (2.10) we easily obtain
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ22_HTML.gif
(2.11)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ23_HTML.gif
(2.12)
Comparing (2.11) and (2.12), when a is even, we get
f ( z + π ) = f ( z ) .
(2.13)
By (2.5) and (2.7), and noting that a + b = k , we obtain
f ( z + π τ ) = s = 0 k n 1 θ 1 a ( z k n + y a + π s k n + n π τ k n 2 | τ k n 2 ) θ 3 b ( z k n y b + π s k n + n π τ k n 2 | τ k n 2 ) = ( 1 ) n a q 1 e 2 i z s = 0 k n 1 θ 1 a ( z k n + y a + π s k n | τ k n 2 ) θ 3 b ( z k n y b + π s k n | τ k n 2 ) .
(2.14)
Obviously, when a is even, we have
f ( z + π τ ) = q 1 e 2 i z f ( z ) .
(2.15)
We construct the function f ( z ) θ 3 ( z | τ ) . By (2.13) and (2.15), we find that the function f ( z ) θ 3 ( z | τ ) is an elliptic function with double periods π and πτ and only has a simple pole at z = π 2 + π τ 2 in the period parallelogram. Hence the function f ( z ) θ 3 ( z | τ ) is a constant, say, this constant is denoted by C 13 ( a , b ; y , τ ) , i.e.,
f ( z ) θ 3 ( z | τ ) = C 13 ( a , b ; y , τ ) ,
we have
f ( z ) = C 13 ( a , b ; y , τ ) θ 3 ( z | τ ) .
(2.16)
By (1.3), (2.10) and (2.16), we have
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ28_HTML.gif
(2.17)
By (1.1) and (1.3), we obtain
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ29_HTML.gif
(2.18)
By equating the constant term of both sides of (2.18), we obtain
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ30_HTML.gif
(2.19)
Clearly,
C 13 ( a , b ; y , τ ) = C 13 ( a , b ; y a b , τ k n 2 ) ,
(2.20)
where
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ32_HTML.gif
(2.21)

In the same manner as in Case 1, we can obtain Case 2 below.

Case 2. When α = 2 , β = 3 .

The function f ( z ) becomes of the following form:
f ( z ) = s = 0 k n 1 θ 2 a ( z k n + y a + π s k n | τ k n 2 ) θ 3 b ( z k n y b + π s k n | τ k n 2 ) .
(2.22)
From (2.22) we easily obtain
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ34_HTML.gif
(2.23)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ35_HTML.gif
(2.24)
Comparing (2.23) and (2.24), when a is even, we get
f ( z + π ) = f ( z ) .
(2.25)
By (2.6) and (2.7), and noting that a + b = k , we obtain
f ( z + π τ ) = s = 0 k n 1 θ 2 a ( z k n + y a + π s k n + n π τ k n 2 | τ k n 2 ) θ 3 b ( z k n y b + π s k n + n π τ k n 2 | τ k n 2 ) = q 1 e 2 i z s = 0 k n 1 θ 2 a ( z k n + y a + π s k n | τ k n 2 ) θ 3 b ( z k n y b + π s k n | τ k n 2 ) .
(2.26)
Obviously, we have
f ( z + π τ ) = q 1 e 2 i z f ( z ) .
(2.27)
We construct the function f ( z ) θ 3 ( z | τ ) . By (2.25) and (2.27), we find that the function f ( z ) θ 3 ( z | τ ) is an elliptic function with double periods π and πτ and only has a simple pole at z = π 2 + π τ 2 in the period parallelogram. Hence the function f ( z ) θ 3 ( z | τ ) is a constant, say, this constant is denoted by C 23 ( a , b ; y , τ ) , i.e.,
f ( z ) θ 3 ( z | τ ) = C 23 ( a , b ; y , τ ) ,
we have
f ( z ) = C 23 ( a , b ; y , τ ) θ 3 ( z | τ ) .
(2.28)
By (1.3), (2.22) and (2.28), we have
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ40_HTML.gif
(2.29)
By (1.2) and (1.3), we obtain
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ41_HTML.gif
(2.30)
By equating the constant term of both sides of (2.30), we obtain
C 23 ( a , b ; y , τ ) = k n q a 4 k n 2 e i y m 1 , , m a , n 1 , , n b = 2 ( m 1 + + m a + n 1 + + n b ) + a = 0 q m 1 2 + + m a 2 + n 1 2 + + n b 2 + m 1 + + m a k n 2 × e 2 i y a b [ k ( m 1 + + m a ) + a 2 2 ] .
(2.31)
Clearly,
C 23 ( a , b ; y , τ ) = C 23 ( a , b ; y a b , τ k n 2 ) ,
(2.32)
where
C 23 ( a , b ; y , τ ) = k n q a 4 e a b i y m 1 , , m a , n 1 , , n b = 2 ( m 1 + + m a + n 1 + + n b ) + a = 0 q m 1 2 + + m a 2 + n 1 2 + + n b 2 + m 1 + + m a × e ( 2 k ( m 1 + + m a ) + a 2 ) i y .
(2.33)

Case 3. When α = 1 , β = 4 .

The function f ( z ) becomes of the following form:
f ( z ) = s = 0 k n 1 θ 1 a ( z k n + y a + π s k n | τ k n 2 ) θ 4 b ( z k n y b + π s k n | τ k n 2 ) .
(2.34)
From (2.34) we easily obtain
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ46_HTML.gif
(2.35)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ47_HTML.gif
(2.36)
Comparing (2.35) and (2.36), when a is even, we have
f ( z + π ) = f ( z ) .
(2.37)
By (2.5) and (2.8), and noting that a + b = k , we obtain
f ( z + π τ ) = s = 0 k n 1 θ 1 a ( z k n + y a + π s k n + n π τ k n 2 | τ k n 2 ) θ 4 b ( z k n y b + π s k n + n π τ k n 2 | τ k n 2 ) = ( 1 ) k n q 1 e 2 i z s = 0 k n 1 θ 1 a ( z k n + y a + π s k n | τ k n 2 ) θ 4 b ( z k n y b + π s k n | τ k n 2 ) .
(2.38)
  • When a and b are even, then kn is also even, we have
    f ( z + π τ ) = q 1 e 2 i z f ( z ) .
    (2.39)
We construct the function f ( z ) θ 3 ( z | τ ) , by (2.37) and (2.39), we find that the function f ( z ) θ 3 ( z | τ ) is an elliptic function with double periods π and πτ and only has a simple pole at z = π 2 + π τ 2 in the period parallelogram. Hence the function f ( z ) θ 3 ( z | τ ) is a constant, say, this constant is denoted by C 14 ( a , b ; y , τ ) , i.e.,
f ( z ) θ 3 ( z | τ ) = C 14 ( a , b ; y , τ ) ,
we have
f ( z ) = C 14 ( a , b ; y , τ ) θ 3 ( z | τ ) .
(2.40)
By (1.3), (2.34) and (2.40), we have
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ52_HTML.gif
(2.41)
By (1.1) and (1.4), we obtain
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ53_HTML.gif
(2.42)
By equating the constant term of both sides of (2.42), we obtain
C 14 ( a , b ; y , τ ) = k n i a q a 4 k n 2 e i y m 1 , , m a , n 1 , , n b = 2 ( m 1 + + m a + n 1 + + n b ) + a = 0 ( 1 ) m 1 + + n b × q m 1 2 + + m a 2 + n 1 2 + + n b 2 + m 1 + + m a k n 2 e 2 i y a b [ k ( m 1 + + m a ) + a 2 2 ] .
(2.43)
  • When a is even, n and b are odd, then kn is also odd, we have
    f ( z + π τ ) = q 1 e 2 i z f ( z ) .
    (2.44)
We construct the function f ( z ) θ 4 ( z | τ ) . By (2.37) and (2.44), we find that the function f ( z ) θ 4 ( z | τ ) is an elliptic function with double periods π and πτ and only has a simple pole at z = π 2 + π τ 2 in the period parallelogram. Hence the function f ( z ) θ 4 ( z | τ ) is a constant, say, this constant is denoted by C 14 ( a , b ; y , τ ) , i.e.,
f ( z ) θ 4 ( z | τ ) = C 14 ( a , b ; y , τ ) ,
we have
f ( z ) = C 14 ( a , b ; y , τ ) θ 4 ( z | τ ) .
(2.45)
By (1.4), (2.34) and (2.45), we have
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ57_HTML.gif
(2.46)
By (1.1) and (1.4), we obtain
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ58_HTML.gif
(2.47)
By equating the constant term of both sides of (2.47), we obtain
C 14 ( a , b ; y , τ ) = k n i a q a 4 k n 2 e i y m 1 , , m a , n 1 , , n b = 2 ( m 1 + + m a + n 1 + + n b ) + a = 0 ( 1 ) m 1 + + n b × q m 1 2 + + m a 2 + n 1 2 + + n b 2 + m 1 + + m a k n 2 e 2 i y a b [ k ( m 1 + + m a ) + a 2 2 ] .
(2.48)
Clearly, in (2.43) and (2.48), we have
C 14 ( a , b ; y , τ ) = C 14 ( a , b ; y a b , τ k n 2 ) ,
where
C 14 ( a , b ; y , τ ) = k n i a q a 4 e a b i y m 1 , , m a , n 1 , , n b = 2 ( m 1 + + m a + n 1 + + n b ) + a = 0 ( 1 ) m 1 + + n b × q m 1 2 + + m a 2 + n 1 2 + + n b 2 + m 1 + + m a e ( 2 k ( m 1 + + m a ) + a 2 ) i y .
(2.49)

In the same manner as in Case 3, we can obtain Case 4 below.

Case 4. When α = 2 , β = 4 .

The function f ( z ) becomes of the following form:
f ( z ) = s = 0 k n 1 θ 2 a ( z k n + y a + π s k n | τ k n 2 ) θ 4 b ( z k n y b + π s k n | τ k n 2 ) .
(2.50)
  • When a and b are even, we have
    https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ62_HTML.gif
    (2.51)
    https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ63_HTML.gif
    (2.52)
  • When a is even, n and b are odd, we have
    f ( z ) = C 24 ( a , b ; y , τ ) θ 4 ( z | τ ) ,
    (2.53)
C 24 ( a , b ; y , τ ) = k n q a 4 k n 2 e i y m 1 , , m a , n 1 , , n b = 2 ( m 1 + + m a + n 1 + + n b ) + a = 0 ( 1 ) n 1 + + n b × q m 1 2 + + m a 2 + n 1 2 + + n b 2 + m 1 + + m a k n 2 e 2 i y a b [ k ( m 1 + + m a ) + a 2 2 ] .
(2.54)
Clearly, in (2.52) and (2.54), we have
C 24 ( a , b ; y , τ ) = C 24 ( a , b ; y a b , τ k n 2 ) ,
where
C 24 ( a , b ; y , τ ) = k n q a 4 e a b i y m 1 , , m a , n 1 , , n b = 2 ( m 1 + + m a + n 1 + + n b ) + a = 0 ( 1 ) n 1 + + n b q m 1 2 + + m a 2 + n 1 2 + + n b 2 + m 1 + + m a × e ( 2 k ( m 1 + + m a ) + a 2 ) i y .
(2.55)

Therefore we complete the proof of Theorem 1.

3 Some special cases of Theorem 1

In this section we give some special cases of Theorem 1 and obtain some interesting identities of theta functions.

Corollary 1 For any positive integer n, we have
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ67_HTML.gif
(3.1)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ68_HTML.gif
(3.2)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ69_HTML.gif
(3.3)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ70_HTML.gif
(3.4)

where C 13 ( 2 , 2 ; y , τ ) and C 24 ( 2 , 2 ; y , τ ) are defined by (2.21) and (2.55), respectively.

Proof Taking a = b = 2 and α = 1 , β = 3 in (1.11), we have
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ71_HTML.gif
(3.5)
Taking a = b = 2 and α = 2 , β = 4 in (1.11), we have
C 24 ( 2 , 2 ; y , τ ) = 4 n q 1 2 m 1 , m 2 , n 1 , n 2 = m 1 + m 2 + n 1 + n 2 + 1 = 0 ( 1 ) n 1 + n 2 q m 1 2 + m 2 2 + n 1 2 + n 2 2 + m 1 + m 2 e 8 i y ( m 1 + m 2 ) e 5 i y = 4 n e 3 i y θ 1 2 ( 4 y | τ ) θ 3 2 ( 0 | τ ) .
(3.6)

Obviously, we find that C 13 ( 2 , 2 ; y , τ ) = C 24 ( 2 , 2 ; y , τ ) = 4 n e 3 i y θ 1 2 ( 4 y | τ ) θ 3 2 ( 0 | τ ) . □

Taking n = 1 and letting z 4 z , y 2 y , τ 4 τ in Corollary 1, we get the following identities for theta functions:
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ73_HTML.gif
(3.7)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ74_HTML.gif
(3.8)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ75_HTML.gif
(3.9)
Further, taking y = 0 in the above identities, we obtain the following additive formulas of the theta function θ 3 ( z | τ ) :
θ 3 ( 4 z | 4 τ ) = 1 4 θ 1 2 θ 3 2 [ θ 1 2 ( z | τ ) θ 3 2 ( z | τ ) + θ 1 2 ( z + π 4 | τ ) θ 3 2 ( z + π 4 | τ ) + θ 1 2 ( z + π 2 | τ ) θ 3 2 ( z + π 2 | τ ) + θ 1 2 ( z + 3 π 4 | τ ) θ 3 2 ( z + 3 π 4 | τ ) ]
(3.10)
= 1 4 θ 1 2 θ 3 2 [ θ 2 2 ( z | τ ) θ 4 2 ( z | τ ) + θ 2 2 ( z + π 4 | τ ) θ 4 2 ( z + π 4 | τ ) + θ 2 2 ( z + π 2 | τ ) θ 4 2 ( z + π 2 | τ ) + θ 2 2 ( z + 3 π 4 | τ ) θ 4 2 ( z + 3 π 4 | τ ) ] ,
(3.11)

where θ 1 = θ 1 ( 0 | τ ) , θ 3 = θ 3 ( 0 | τ ) .

Similarly, we have the following.

Corollary 2 For any positive integer n, we have
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ78_HTML.gif
(3.12)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ79_HTML.gif
(3.13)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ80_HTML.gif
(3.14)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ81_HTML.gif
(3.15)

where C 14 ( 2 , 2 ; y , τ ) = C 23 ( 2 , 2 ; y , τ ) = 4 n e 3 i y θ 2 2 ( 4 y | τ ) θ 3 2 ( 0 | τ ) are defined by (2.49) and (2.33), respectively.

Taking n = 1 and letting z 4 z , y 2 y , τ 4 τ in Corollary 2, we get the following identities of theta functions:
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ82_HTML.gif
(3.16)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ83_HTML.gif
(3.17)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ84_HTML.gif
(3.18)
Further, taking y = 0 in the above identities, we obtain other additive formulas for the theta function θ 3 ( z | τ ) as follows:
θ 3 ( 4 z | 4 τ ) = 1 4 θ 2 2 θ 3 2 [ θ 1 2 ( z | τ ) θ 4 2 ( z | τ ) + θ 1 2 ( z + π 4 | τ ) θ 4 2 ( z + π 4 | τ ) + θ 1 2 ( z + π 2 | τ ) θ 4 2 ( z + π 2 | τ ) + θ 1 2 ( z + 3 π 4 | τ ) θ 4 2 ( z + 3 π 4 | τ ) ]
(3.19)
= 1 4 θ 2 2 θ 3 2 [ θ 2 2 ( z | τ ) θ 3 2 ( z | τ ) + θ 2 2 ( z + π 4 | τ ) θ 3 2 ( z + π 4 | τ ) + θ 2 2 ( z + π 2 | τ ) θ 3 2 ( z + π 2 | τ ) + θ 2 2 ( z + 3 π 4 | τ ) θ 3 2 ( z + 3 π 4 | τ ) ] ,
(3.20)

where θ 2 = θ 2 ( 0 | τ ) , θ 3 = θ 3 ( 0 | τ ) .

Taking a = 2 , b = 1 in (1.9), (1.10) and (1.11), we have the following.

Corollary 3 For n odd, we have
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ87_HTML.gif
(3.21)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ88_HTML.gif
(3.22)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ89_HTML.gif
(3.23)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ90_HTML.gif
(3.24)

where C 14 ( 2 , 2 ; y , τ ) and C 24 ( 2 , 2 ; y , τ ) are defined by (2.49) and (2.55), respectively.

Proof Taking a = 2 , b = 1 and α = ( 1 , 2 ) , β = 4 in (1.11), we have
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ91_HTML.gif
(3.25)
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ92_HTML.gif
(3.26)

 □

Taking n = 1 and letting z 3 z , y 2 y , τ 3 τ in Corollary 3, we get the following identities for theta functions:
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ93_HTML.gif
(3.27)
and
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ94_HTML.gif
(3.28)
Further taking y = 0 in the above identities, we obtain the following additive formulas for the theta function θ 4 ( z | τ ) as follows:
θ 4 ( 3 z | 3 τ ) = 1 3 θ 3 θ 2 2 [ θ 1 2 ( z | τ ) θ 4 ( z | τ ) + θ 1 2 ( z + π 3 | τ ) θ 4 ( z + π 3 | τ ) + θ 1 2 ( z + 2 π 3 | τ ) θ 4 ( z + 2 π 3 | τ ) ]
(3.29)
and
θ 4 ( 3 z | 3 τ ) = 1 3 θ 3 θ 1 2 [ θ 2 2 ( z | τ ) θ 4 ( z | τ ) + θ 2 2 ( z + π 3 | τ ) θ 4 ( z + π 3 | τ ) + θ 2 2 ( z + 2 π 3 | τ ) θ 4 ( z + 2 π 3 | τ ) ] ,
(3.30)

where θ 1 = θ 1 ( 0 | τ ) , θ 2 = θ 2 ( 0 | τ ) , θ 3 = θ 3 ( 0 | τ ) .

Corollary 4 When n is odd, we have
s = 0 k n 1 ( 1 ) s θ 2 k ( z + π s k n | τ ) = C 33 ( k , 0 ; 0 , τ ) θ 2 ( k n z | k n 2 τ ) ,
(3.31)

where C 33 ( k , 0 ; 0 , τ ) is defined by (1.7).

Proof Replacing z by k n z + k n π + k n 2 π τ 2 and τ by k n 2 τ in (1.6), we obtain
https://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-59/MediaObjects/13661_2012_Article_320_Equ98_HTML.gif
(3.32)

Substituting n by 2 n + 1 in the left-hand side of (3.32), we get (3.31). □

Declarations

Acknowledgements

Dedicated to Professor Hari M Srivastava.

The present investigation was supported, in part, by Research Project of Science and Technology of Chongqing Education Commission, China under Grant KJ120625, Fund of Chongqing Normal University, China under Grant 10XLR017 and 2011XLZ07 and National Natural Science Foundation of China under Grant 11226281 and 11271057.

Authors’ Affiliations

(1)
Department of Mathematics, Chongqing Normal University, Chongqing Higher Education Mega Center, Huxi Campus

References

  1. Chan HH, Liu ZG, Ng ST: Circular summation of theta functions in Ramanujan’s lost notebook. J. Math. Anal. Appl. 2006, 316: 628-641. 10.1016/j.jmaa.2005.05.015MathSciNetView Article
  2. Zeng XF: A generalized circular summation of theta function and its application. J. Math. Anal. Appl. 2009, 356: 698-703. 10.1016/j.jmaa.2009.03.047MathSciNetView Article
  3. Liu ZG: Some inverse relations and theta function identities. Int. J. Number Theory 2012, 8: 1977-2002. 10.1142/S1793042112501126MathSciNetView Article
  4. Berndt BC: Ramanujan’s Notebooks, Part III. Springer, New York; 1991.View Article
  5. Berndt BC: Ramanujan’s Notebooks, Part V. Springer, New York; 1998.View Article
  6. Chan SH, Liu ZG: On a new circular summation of theta functions. J. Number Theory 2010, 130: 1190-1196. 10.1016/j.jnt.2009.09.011MathSciNetView Article
  7. Chua KS:The root lattice A n and Ramanujan’s circular summation of theta functions. Proc. Am. Math. Soc. 2002, 130: 1-8. 10.1090/S0002-9939-01-06080-4MathSciNetView Article
  8. Chua KS: Circular summation of the 13th powers of Ramanujan’s theta function. Ramanujan J. 2001, 5: 353-354. 10.1023/A:1013935519780MathSciNetView Article
  9. Liu ZG: A theta function identity and its implications. Trans. Am. Math. Soc. 2005, 357: 825-835. 10.1090/S0002-9947-04-03572-XView Article
  10. Ono K: On the circular summation of the eleventh powers of Ramanujan’s theta function. J. Number Theory 1999, 76: 62-65. 10.1006/jnth.1998.2354MathSciNetView Article
  11. Ramanujan S: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi; 1988.
  12. Shen LC: On the additive formula of the theta functions and a collection of Lambert series pertaining to the modular equations of degree 5. Trans. Am. Math. Soc. 1994, 345: 323-345.
  13. Son SH: Circular summation of theta functions in Ramanujan’s lost notebook. Ramanujan J. 2004, 8: 235-272.MathSciNetView Article
  14. Zhu JM: An alternate circular summation formula of theta functions and its applications. Appl. Anal. Discrete Math. 2012, 6: 114-125. 10.2298/AADM120204004ZMathSciNetView Article
  15. Zhu JM: A note on a generalized circular summation formula of theta functions. J. Number Theory 2012, 132: 1164-1169. 10.1016/j.jnt.2011.12.016MathSciNetView Article

Copyright

© Cai et al.; licensee Springer 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.