Open Access

Positive solutions for classes of multi-parameter fourth-order impulsive differential equations with one-dimensional singular p-Laplacian

Boundary Value Problems20142014:112

DOI: 10.1186/1687-2770-2014-112

Received: 29 January 2014

Accepted: 29 April 2014

Published: 13 May 2014

Abstract

The authors consider the following impulsive differential equations involving the one-dimensional singular p-Laplacian: ( ϕ p ( y ( t ) ) ) = λ ω ( t ) f ( t , y ( t ) ) , t J , t t k , k = 1 , 2 , , m , Δ y | t = t k = μ I k ( t k , y ( t k ) ) , k = 1 , 2 , , m , a y ( 0 ) b y ( 0 ) = 0 1 h ( s ) y ( s ) d s , a y ( 1 ) + b y ( 1 ) = 0 1 h ( s ) y ( s ) d s , ϕ p ( y ( 0 ) ) = ϕ p ( y ( 1 ) ) = 0 1 h ( t ) ϕ p ( y ( t ) ) d t , where λ > 0 and μ > 0 are two parameters. Several new and more general existence and multiplicity results are derived in terms of different values of λ > 0 and μ > 0 . In this case, our results cover equations without impulsive effects and are compared with some recent results.

Keywords

multi-parameter impulsive differential equations one-dimensional singular p-Laplacian positive solution cone and partial ordering

1 Introduction

The theory and applications of the fourth-order ordinary differential equation are emerging as an important area of investigation; it is often referred to as the beam equation. In [1], Sun and Wang pointed out that it is necessary and important to consider various fourth-order boundary value problems (BVPs for short) according to different forms of supporting. Owing to its importance in engineering, physics, and material mechanics, fourth-order BVPs have attracted much attention from many authors; see, for example [229] and the references therein.

Very recently, Zhang and Liu [30] studied the following fourth-order four-point boundary value problem without impulsive effect:
{ ( ϕ p ( x ( t ) ) ) = w ( t ) f ( t , x ( t ) ) , t [ 0 , 1 ] , x ( 0 ) = 0 , x ( 1 ) = a x ( ξ ) , x ( 0 ) = 0 , x ( 1 ) = b x ( η ) ,

where 0 < ξ , η < 1 , 0 a < b < 1 . By using the upper and lower solution method, fixed point theorems, and the properties of the Green’s function G ( t , s ) and H ( t , s ) , the authors give sufficient conditions for the existence of one positive solution.

In this paper, we investigate the existence of positive solutions of fourth-order impulsive differential equations with two parameters
{ ( ϕ p ( y ( t ) ) ) = λ ω ( t ) f ( t , y ( t ) ) , t J , t t k , k = 1 , 2 , , m , Δ y | t = t k = μ I k ( t k , y ( t k ) ) , k = 1 , 2 , , m , a y ( 0 ) b y ( 0 ) = 0 1 g ( s ) y ( s ) d s , a y ( 1 ) + b y ( 1 ) = 0 1 g ( s ) y ( s ) d s , ϕ p ( y ( 0 ) ) = ϕ p ( y ( 1 ) ) = 0 1 h ( s ) ϕ p ( y ( s ) ) d s ,
(1.1)

where λ > 0 and μ > 0 are two parameters, a , b > 0 , J = [ 0 , 1 ] , ϕ p ( s ) is a p-Laplace operator, i.e., ϕ p ( s ) = | s | p 2 s , p > 1 , ( ϕ p ) 1 = ϕ q , 1 p + 1 q = 1 , ω is a nonnegative measurable function on ( 0 , 1 ) , ω 0 on any open subinterval in ( 0 , 1 ) which may be singular at t = 0 and/or t = 1 , t k ( k = 1 , 2 , , m ) (where m is fixed positive integer) are fixed points with 0 = t 0 < t 1 < t 2 < < t k < < t m < t m + 1 = 1 , Δ y | t = t k = y ( t k + ) x ( t k ) , where y ( t k + ) and y ( t k ) represent the right-hand limit and left-hand limit of y ( t ) at t = t k , respectively. In addition, ω, f, I k , g, and h satisfy

(H1) ω L loc 1 ( 0 , 1 ) ;

(H2) f C ( [ 0 , 1 ] × [ 0 , + ) , [ 0 , + ) ) with f ( t , y ) > 0 for all t and y > 0 ;

(H3) I k C ( [ 0 , 1 ] × [ 0 , + ) , [ 0 , + ) ) with I k ( t , y ) > 0 ( k = 1 , 2 , , n ) for all t and y > 0 ;

(H4) g , h L 1 [ 0 , 1 ] are nonnegative and ξ [ 0 , a ) , ν [ 0 , 1 ) , where
ξ = 0 1 g ( t ) d t , ν = 0 1 h ( t ) d t .
(1.2)

Some special cases of (1.1) have been investigated. For example, Bai and Wang [14] studied the existence of multiple solutions of problem (1.1) with p = 2 , I k = 0 , k = 1 , 2 , , m and ω 1 for t J . By using a fixed point theorem and degree theory, the authors proved the existence of one or two positive solutions of problem (1.1).

Feng [31] considered problem (1.1) with λ = 1 , I k ( t k , y ( t k ) ) = I k ( y ( t k ) ) , ω 1 for t J and μ = 1 . By using a suitably constructed cone and fixed point theory for cones, the author proved the existence results of multiple positive solutions of problem (1.1).

Motivated by the papers mentioned above, we will extend the results of [14, 30, 31] to problem (1.1). We remark that on impulsive differential equations with a parameter only a few results have been obtained, not to mention impulsive differential equations with two parameters; see, for instance, [3234]. However, these results only dealt with the case that p = 2 and μ = 1 .

The rest of the paper is organized as follows: in Section 2, we state the main results of problem (1.1). In Section 3, we provide some preliminary results, and the proofs of the main results together with several technical lemmas are given in Section 4.

2 Main results

In this section, we state the main results, including existence and multiplicity of positive solutions for problem (1.1).

We begin by introducing the notation
f 0 = lim sup y 0 + max t J f ( t , y ) ϕ p ( y ) , f = lim sup y max t J f ( t , y ) ϕ p ( y ) , f 0 = lim inf y 0 + min t J f ( t , y ) ϕ p ( y ) , f = lim inf y min t J f ( t , y ) ϕ p ( y ) , I 0 ( k ) = lim sup y 0 + max t J I k ( t , y ) y , I ( k ) = lim sup y max t J I k ( t , y ) y , I 0 ( k ) = lim inf y 0 + min t J I k ( t , y ) y , I ( k ) = lim inf y min t J I k ( t , y ) y , k = 1 , 2 , , m .
We also choose four numbers r, r 1 , r 2 , and R satisfying
0 < r < r 1 < δ r 2 < r 2 < R < + ,
(2.1)

where δ is defined in (3.20).

Theorem 2.1 Assume that (H1)-(H4) hold.
  1. (i)
    If f = 0 and I = 0 , then there exist λ 0 > 0 and μ 0 > 0 such that, for any λ > λ 0 and μ > μ 0 , problem (1.1) has a positive solution u ( t ) , t J with
    δ r u ( t ) 1 δ R , t J .
    (2.2)
     
  2. (ii)
    If f 0 = 0 and I 0 = 0 , then there exist λ 0 > 0 and μ 0 > 0 such that, for any λ > λ 0 and μ > μ 0 , problem (1.1) has a positive solution u ( t ) with
    δ r u ( t ) R , t J .
    (2.3)
     
  3. (iii)
    If f 0 = f = I = I 0 = 0 , then there exist λ 0 > 0 and μ 0 > 0 such that, for any λ > λ 0 and μ > μ 0 , problem (1.1) has at least two positive solutions u 1 ( t ) and u 2 ( t ) with
    δ r u ( t ) r 1 < δ r 2 u 2 ( t ) R , t J .
    (2.4)
     
Theorem 2.2 Assume that (H1)-(H4) hold.
  1. (i)

    If f = + and I = + , then there exist λ ¯ 0 > 0 and μ ¯ 0 > 0 such that, for any 0 < λ < λ ¯ 0 and 0 < μ < μ ¯ 0 , problem (1.1) has a positive solution u ( t ) , t J with property (2.2).

     
  2. (ii)

    If f 0 = + and I 0 = + , then there exist λ ¯ 0 > 0 and μ ¯ 0 > 0 such that, for any 0 < λ < λ ¯ 0 and 0 < μ < μ ¯ 0 , problem (1.1) has a positive solution u ( t ) , t J with property (2.3).

     
  3. (iii)
    If f 0 = f = I = I 0 = + , then there exist λ ¯ 0 > 0 and μ ¯ 0 > 0 such that, for any 0 < λ < λ ¯ 0 and 0 < μ < μ ¯ 0 , problem (1.1) has at least two positive solutions u 1 ( t ) and u 2 ( t ) with
    δ r u ( t ) r 1 < δ r 2 u 2 ( t ) 1 δ R , t J .
    (2.5)
     

3 Preliminaries

Let J = J { t 1 , t 2 , , t m } , and
P C 1 [ 0 , 1 ] = { y C [ 0 , 1 ] : y | ( t k , t k + 1 ) C ( t k , t k + 1 ) , y ( t k ) , y ( t k + )  exists , k = 1 , 2 , , m } .
Then P C 1 [ 0 , 1 ] is a real Banach space with norm
y P C 1 = max { y , y } ,
(3.1)

where y = sup t J | y ( t ) | , y = sup t J | y ( t ) | .

A function y P C 1 [ 0 , 1 ] C 4 ( J ) with φ p ( y ) C 2 ( 0 , 1 ) is called a solution of problem (1.1) if it satisfies (1.1).

We shall reduce problem (1.1) to an integral equation. To this goal, firstly by means of the transformation
ϕ p ( y ( t ) ) = x ( t ) ,
(3.2)
we convert problem (1.1) into
{ x ( t ) + λ ω ( t ) f ( t , y ( t ) ) = 0 , t J , x ( 0 ) = x ( 1 ) = 0 1 h ( t ) x ( t ) d t
(3.3)
and
{ y ( t ) = ϕ q ( x ( t ) ) , t J , t t k , Δ y | t = t k = μ I k ( t k , y ( t k ) ) , k = 1 , 2 , , m , a y ( 0 ) b y ( 0 ) = 0 1 g ( s ) y ( s ) d s , a y ( 1 ) + b y ( 1 ) = 0 1 g ( s ) y ( s ) d s .
(3.4)
Lemma 3.1 If (H1), (H2), and (H4) hold, then problem (3.3) has a unique solution x given by
x ( t ) = λ 0 1 H ( t , s ) ω ( s ) f ( s , y ( s ) ) d s ,
(3.5)
where
H ( t , s ) = G ( t , s ) + 1 1 ν 0 1 G ( s , τ ) h ( τ ) d τ ,
(3.6)
G ( t , s ) = { t ( 1 s ) , 0 t s 1 , s ( 1 t ) , 0 s t 1 .
(3.7)

Proof The proof of Lemma 3.1 is similar to that of Lemma 2.1 in [31]. □

Write e ( t ) = t ( 1 t ) . Then from (3.6) and (3.7), we can prove that H ( t , s ) and G ( t , s ) have the following properties.

Proposition 3.1 If (H4) holds, then we have
H ( t , s ) > 0 , G ( t , s ) > 0 , t , s ( 0 , 1 ) ,
(3.8)
H ( t , s ) 0 , G ( t , s ) 0 , t , s J ,
(3.9)
e ( t ) e ( s ) G ( t , s ) G ( t , t ) = t ( 1 t ) = e ( t ) e ¯ = max t [ 0 , 1 ] e ( t ) = 1 4 , t , s J ,
(3.10)
ρ e ( s ) H ( t , s ) γ s ( 1 s ) = γ e ( s ) 1 4 γ , t , s J ,
(3.11)
where
γ = 1 1 ν , ρ = 0 1 e ( τ ) h ( τ ) d τ 1 ν .
(3.12)
Remark 3.1 From (3.6) and (3.11), we obtain
ρ e ( s ) H ( s , s ) γ s ( 1 s ) = γ e ( s ) 1 4 γ , s J .
Lemma 3.2 If (H1), (H3), and (H4) hold, then problem (3.4) has a unique solution y and y can be expressed in the form
y ( t ) = 0 1 H 1 ( t , s ) ϕ q ( x ( s ) ) d s + μ k = 1 m H 1 ( t , t k ) I k ( t k , y ( t k ) ) ,
(3.13)
where
H 1 ( t , s ) = G 1 ( t , s ) + 1 a ξ 0 1 G 1 ( s , τ ) g ( τ ) d τ ,
(3.14)
G 1 ( t , s ) = 1 d { ( b + a s ) ( b + a ( 1 t ) ) , if  0 s t 1 , ( b + a t ) ( b + a ( 1 s ) ) , if  0 t s 1 , d = a ( 2 b + a ) .
(3.15)

Proof The proof of Lemma 3.2 is similar to that of Lemma 2.2 in [31]. □

From (3.14) and (3.15), we can prove that H 1 ( t , s ) and G 1 ( t , s ) have the following properties.

Proposition 3.2 If (H4) holds, then we have
H 1 ( t , s ) > 0 , G 1 ( t , s ) > 0 , t , s J ;
(3.16)
1 d b 2 G 1 ( t , s ) G 1 ( s , s ) 1 d ( b + a ) 2 , t , s J ,
(3.17)
ρ 1 H 1 ( t , s ) H 1 ( s , s ) ρ 2 , t , s J ,
(3.18)
where
ρ 1 = b 2 γ 1 a + 2 b , ρ 2 = γ 1 ( b + a ) 2 a + 2 b , γ 1 = 1 a ξ .
Suppose that y is a solution of problem (1.1). Then from Lemma 3.1 and Lemma 3.2, we have
y ( t ) = 0 1 H 1 ( t , s ) ϕ q ( λ 0 1 H ( s , τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) d s + μ k = 1 m H 1 ( t , t k ) I k ( t k , y ( t k ) ) .
Define a cone in P C 1 [ 0 , 1 ] by
K = { y P C 1 [ 0 , 1 ] : y 0 , y ( t ) δ y P C 1 , t J } ,
(3.19)
where
δ = ρ 1 ρ q 1 ρ 2 γ q 1 .
(3.20)

It is easy to see K is a closed convex cone of P C 1 [ 0 , 1 ] .

Define an operator T λ μ : K P C 1 [ 0 , 1 ] by
( T λ μ y ) ( t ) = 0 1 H 1 ( t , s ) ϕ q ( λ 0 1 H ( s , τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) d s + μ k = 1 m H 1 ( t , t k ) I k ( t k , y ( t k ) ) .
(3.21)

From (3.21), we know that y P C 1 [ 0 , 1 ] is a solution of problem (1.1) if and only if y is a fixed point of operator T λ μ .

Lemma 3.3 Suppose that (H1)-(H4) hold. Then T λ μ ( K ) K and T λ μ : K K is completely continuous.

Proof The proof of Lemma 3.3 is similar to that of Lemma 2.4 in [31]. □

To obtain positive solutions of problem (1.1), the following fixed point theorem in cones is fundamental, which can be found in [[35], p.94].

Lemma 3.4 Let P be a cone in a real Banach space E. Assume Ω 1 , Ω 2 are bounded open sets in E with 0 Ω 1 , Ω ¯ 1 Ω 2 . If
A : P ( Ω ¯ 2 Ω 1 ) P
is completely continuous such that either
  1. (a)

    A x x , x P Ω 1 and A x x , x P Ω 2 , or

     
  2. (b)

    A x x , x P Ω 1 and A x x , x P Ω 2 ,

     

then A has at least one fixed point in P ( Ω ¯ 2 Ω 1 ) .

Remark 3.2 To make the reader clear what Ω ¯ 2 , Ω 2 , Ω 1 , and Ω 2 Ω ¯ 1 mean, we give typical examples of Ω 1 and Ω 2 , e.g.,
Ω 1 = { x C [ a , b ] : x < r } , Ω 2 = { x C [ a , b ] : x < R }

with 0 < r < R , where x = sup t [ a , b ] | x ( t ) | .

4 Proofs of the main results

For convenience we introduce the following notation:
η = φ q ( 0 1 ω ( s ) d s ) , η = φ q ( t 1 t m ω ( s ) d s )
and
Ω r = { y K : y P C 1 < r } , Ω r = { y K : y P C 1 = r } ,

where r > 0 is a constant.

Proof of Theorem 2.1 Part (i). Noticing that f ( t , y ) > 0 , I k ( t , y ) > 0 ( k = 1 , 2 , , m ) for all t and y > 0 , we can define
m r = min t J , δ r y r { f ( t , y ) } > 0 , m = min { m k , k = 1 , 2 , , m } > 0 ,
where r > 0 , and
m k = min t J , δ r y r { I k ( t , y ) } , k = 1 , 2 , , m .
Let
λ 0 ( 1 2 ρ 1 η r ) p 1 [ ρ m r t 1 ( 1 t m ) ] 1 , μ 0 1 2 m ρ 1 m r .
Then, for u K Ω r and λ > λ 0 , μ > μ 0 , we have
( T λ μ y ) ( t ) = 0 1 H 1 ( t , s ) ϕ q ( λ 0 1 H ( s , τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) d s + μ k = 1 m H 1 ( t , t k ) I k ( t k , y ( t k ) ) ρ 1 ρ q 1 φ q ( λ 0 1 e ( τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) + μ ρ 1 k = 1 m I k ( t k , y ( t k ) ) ρ 1 ρ q 1 φ q ( λ 0 1 e ( τ ) ω ( τ ) m r d τ ) + μ ρ 1 k = 1 m m = ρ 1 ρ q 1 m r q 1 λ q 1 φ q ( 0 1 e ( τ ) ω ( τ ) d τ ) + μ m ρ 1 m ρ 1 ρ q 1 m r q 1 λ q 1 φ q ( t 1 t m e ( τ ) ω ( τ ) d τ ) + μ m ρ 1 m ρ 1 ρ q 1 m r q 1 λ q 1 [ t 1 ( 1 t m ) ] q 1 φ q ( t 1 t m ω ( τ ) d τ ) + μ m ρ 1 m > ρ 1 ρ q 1 m r q 1 λ 0 q 1 [ t 1 ( 1 t m ) ] q 1 φ q ( t 1 t m ω ( τ ) d τ ) + μ 0 m ρ 1 m = ρ 1 ρ q 1 m r q 1 λ 0 q 1 [ t 1 ( 1 t m ) ] q 1 η + μ 0 m ρ 1 m 1 2 r + 1 2 r = r = y P C 1 ,
which implies that
T λ μ y P C 1 > y P C 1 , y K Ω r , λ > λ 0  and  μ > μ 0 .
(4.1)
If f = 0 , I = 0 , then there exist l 1 > 0 , l 2 > 0 , and R > r > 0 such that
f ( t , y ) < l 1 φ p ( y ) , I k ( t , y ) < l 2 y , t J , y R , k = 1 , 2 , , m ,
where l 1 satisfies
2 max { ρ 2 , a ( a + b ) } η φ q ( 1 4 γ λ l 1 ) 1 ,
(4.2)
l 2 satisfies
2 max { ρ 2 , a ( a + b ) } m μ l 2 1 .
(4.3)
Let α = R δ . Thus, when y K Ω α we have
y ( t ) δ y P C 1 = δ α = R , t J ,
and then we get
( T λ μ y ) ( t ) = 0 1 H 1 ( t , s ) ϕ q ( λ 0 1 H ( s , τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) d s ( T λ μ y ) ( t ) = + μ k = 1 m H 1 ( t , t k ) I k ( t k , y ( t k ) ) ( T λ μ y ) ( t ) ρ 2 ( 1 4 λ γ ) q 1 φ q ( 0 1 ω ( τ ) f ( τ , y ( τ ) ) d τ ) + μ ρ 2 k = 1 m I k ( t k , y ( t k ) ) ( T λ μ y ) ( t ) ρ 2 ( 1 4 λ γ ) q 1 φ q ( 0 1 ω ( τ ) l 1 ϕ p ( y ( τ ) ) d τ ) + μ ρ 2 k = 1 m l 2 y ( t k ) ( T λ μ y ) ( t ) ρ 2 ( 1 4 λ γ ) q 1 φ q ( 0 1 ω ( τ ) l 1 ϕ p ( y P C 1 ) d τ ) + μ ρ 2 k = 1 m l 2 y P C 1 ( T λ μ y ) ( t ) ρ 2 ( 1 4 λ γ ) q 1 l 1 q 1 y P C 1 φ q ( 0 1 ω ( τ ) d τ ) + μ ρ 2 m l 2 y P C 1 ( T λ μ y ) ( t ) = ρ 2 ( 1 4 λ γ ) q 1 l 1 q 1 y P C 1 η + μ ρ 2 m l 2 y P C 1 ( T λ μ y ) ( t ) 1 2 y P C 1 + 1 2 y P C 1 = y P C 1 ,
(4.4)
| ( T λ μ y ) ( t ) | 0 1 | H 1 t ( t , s ) | ϕ q ( λ 0 1 H ( s , τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) d s | ( T λ μ y ) ( t ) | + μ k = 1 m | H 1 t ( t , t k ) | I k ( t k , y ( t k ) ) | ( T λ μ y ) ( t ) | a ( b + a ) ( 1 4 λ γ ) q 1 φ q ( 0 1 ω ( τ ) f ( τ , y ( τ ) ) d τ ) + μ a ( b + a ) k = 1 m I k ( t k , y ( t k ) ) | ( T λ μ y ) ( t ) | a ( b + a ) ( 1 4 λ γ ) q 1 φ q ( 0 1 ω ( τ ) l 1 ϕ p ( y ( τ ) ) d τ ) + μ a ( b + a ) k = 1 m l 2 y ( t k ) | ( T λ μ y ) ( t ) | a ( b + a ) ( 1 4 λ γ ) q 1 φ q ( 0 1 ω ( τ ) l 1 ϕ p ( y P C 1 ) d τ ) | ( T λ μ y ) ( t ) | + μ a ( b + a ) k = 1 m l 2 y P C 1 | ( T λ μ y ) ( t ) | a ( b + a ) ( 1 4 λ γ ) q 1 l 1 q 1 y P C 1 η + μ a ( b + a ) m l 2 y P C 1 | ( T λ μ y ) ( t ) | 1 2 y P C 1 + 1 2 y P C 1 = y P C 1 ,
(4.5)
where
H 1 t ( t , s ) = G 1 t ( t , s ) = { a ( b + a s ) , if  0 s t 1 , a ( b + a ( 1 s ) ) , if  0 t s 1
and
max t , s J , t s | H 1 t ( t , s ) | = max t , s J , t s | G 1 t ( t , s ) | = a ( b + a ) .
It follows from (4.4) and (4.5) that
T λ μ y P C 1 y P C 1 , y K Ω α .
(4.6)

Applying (b) of Lemma 3.4 to (4.1) and (4.6) shows that T λ μ has a fixed point y K ( Ω ¯ α Ω r ) with r y P C 1 α = 1 δ R . Hence, since for y K we have y ( t ) δ y P C 1 , t J , it follows that (2.2) holds. This gives the proof of part (i).

Part (ii). Noticing that f ( t , y ) > 0 , I k ( t , y ) > 0 ( k = 1 , 2 , , m ) for all t and y > 0 , we can define
m R = min t J , δ R y R { f ( t , y ) } > 0 , m = min { m k , k = 1 , 2 , , m } > 0 ,
where R > 0 , and
m k = min t J , δ R y R { I k ( t , y ) } , k = 1 , 2 , , m .
Let
λ 0 ( 1 2 ρ 1 η R ) p 1 [ ρ m R t 1 ( 1 t m ) ] 1 , μ 0 1 2 m ρ 1 m R .
Then, for y K Ω R and λ > λ 0 , μ > μ 0 , we have
( T λ μ y ) ( t ) = 0 1 H 1 ( t , s ) ϕ q ( λ 0 1 H ( s , τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) d s + μ k = 1 m H 1 ( t , t k ) I k ( t k , y ( t k ) ) ρ 1 ρ q 1 φ q ( λ 0 1 e ( τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) + μ ρ 1 k = 1 m I k ( t k , y ( t k ) ) ρ 1 ρ q 1 φ q ( λ 0 1 e ( τ ) ω ( τ ) m R d τ ) + μ ρ 1 k = 1 m m = ρ 1 ρ q 1 m R q 1 λ q 1 φ q ( 0 1 e ( τ ) ω ( τ ) d τ ) + μ m ρ 1 m ρ 1 ρ q 1 m R q 1 λ q 1 φ q ( t 1 t m e ( τ ) ω ( τ ) d τ ) + μ m ρ 1 m ρ 1 ρ q 1 m R q 1 λ q 1 [ t 1 ( 1 t m ) ] q 1 φ q ( t 1 t m ω ( τ ) d τ ) + μ m ρ 1 m > ρ 1 ρ q 1 m R q 1 λ 0 q 1 [ t 1 ( 1 t m ) ] q 1 φ q ( t 1 t m ω ( τ ) d τ ) + μ 0 m ρ 1 m = ρ 1 ρ q 1 m R q 1 λ 0 q 1 [ t 1 ( 1 t m ) ] q 1 η + μ 0 m ρ 1 m 1 2 R + 1 2 R = y P C 1 ,
which implies that
T λ μ y P C 1 > y P C 1 , y K Ω R , λ > λ 0  and  μ > μ 0 .
(4.7)
If f 0 = 0 , I 0 = 0 , then there exist l 1 > 0 , l 2 > 0 , and 0 < r < R such that
f ( t , y ) < l 1 φ p ( y ) , I k ( t , y ) < l 2 y ( t J , 0 y r , k = 1 , 2 , , m ) ,

where l 1 and l 2 satisfy (4.2) and (4.3), respectively.

Similar to the proof of (4.6), we can prove that
T λ μ y P C 1 y P C 1 , y K Ω r .
(4.8)

Applying (a) of Lemma 3.4 to (4.7) and (4.8) shows that T λ μ has a fixed point y K ( Ω ¯ R Ω r ) with r y P C 1 R . Hence, since for y K we have y ( t ) δ y P C 1 for t J , it follows that (2.3) holds. This gives the proof of part (ii).

Consider part (iii). Choose two numbers r 1 and r 2 satisfying (2.1). By part (i) and part (ii), there exist λ 0 > 0 and μ 0 > 0 such that
T λ μ y P C 1 > y P C 1 , y K Ω r i , i = 1 , 2 .
(4.9)
Since f 0 = f = I = I 0 = 0 , from the proof of part (i) and part (ii), it follows that
T λ μ y P C 1 < y P C 1 , y K Ω r
(4.10)
and
T λ μ y P C 1 < y P C 1 , y K Ω R .
(4.11)

Applying Lemma 3.4 to (4.9)-(4.11) shows that T λ μ has two fixed points y 1 and y 2 such that y 1 K ( Ω ¯ r 1 Ω r ) and y 2 K ( Ω ¯ R Ω r 2 ) . These are the desired distinct positive solutions of problem (1.1) for λ 0 > 0 and μ 0 > 0 satisfying (2.4). Then the result of part (iii) follows. □

Proof of Theorem 2.2 Part (i). Noticing that f ( t , y ) > 0 , I k ( t , y ) > 0 ( k = 1 , 2 , , m ) for all t and y > 0 , we can define
M r = max t J , δ r y r { f ( t , y ) } > 0 , M = max { M k , k = 1 , 2 , , m } > 0 ,
where r > 0 , and
M k = max t J , δ r y r { I k ( t , y ) } , k = 1 , 2 , , m .
Let
λ ¯ 0 4 ( 1 2 max { ρ 2 , a ( a + b ) } η r ) p 1 ( M r γ ) 1 , μ ¯ 0 1 2 max { ρ 2 , a ( a + b ) } m M r .
Then, for y K Ω r and λ < λ ¯ 0 , μ < μ ¯ 0 , we have
( T λ μ y ) ( t ) = 0 1 H 1 ( t , s ) ϕ q ( λ 0 1 H ( s , τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) d s + μ k = 1 m H 1 ( t , t k ) I k ( t k , y ( t k ) ) ρ 2 ( 1 4 γ ) q 1 φ q ( λ 0 1 ω ( τ ) f ( τ , y ( τ ) ) d τ ) + μ ρ 2 k = 1 m I k ( t k , y ( t k ) ) ρ 2 ( 1 4 γ λ ) q 1 φ q ( 0 1 ω ( τ ) M r d τ ) + μ ρ 2 k = 1 m M = ρ 2 ( 1 4 γ λ M r ) q 1 φ q ( 0 1 ω ( τ ) d τ ) + μ ρ 2 m M < ρ 2 ( 1 4 γ λ ¯ 0 M r ) q 1 η + μ ¯ 0 ρ 2 m M 1 2 r + 1 2 r = y P C 1 .
(4.12)
Similar to the proof of (4.5), we can prove
| ( T λ μ y ) ( t ) | < y P C 1 .
(4.13)
It follows from (4.12) and (4.13) that
T λ μ y P C 1 < y P C 1 , y K Ω r .
(4.14)
If f = , I = , then there exist l 3 > 0 , l 4 > 0 , and R > r > 0 such that
f ( t , y ) > l 3 φ p ( y ) , I k ( t , y ) > l 4 y ( t J , y R , k = 1 , 2 , , m ) ,
where l 3 satisfies
2 ρ 1 ρ q 1 λ q 1 l 3 q 1 δ [ t 1 ( 1 t m ) ] q 1 η 1 ,
(4.15)
l 4 satisfies
2 μ ρ 1 m l 4 δ 1 .
(4.16)
Let α = R δ . Thus, when y K Ω α we have
y ( t ) δ y P C 1 = δ α = R , t J ,
and then we get
( T λ μ y ) ( t ) = 0 1 H 1 ( t , s ) ϕ q ( λ 0 1 H ( s , τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) d s + μ k = 1 m H 1 ( t , t k ) I k ( t k , y ( t k ) ) ρ 1 ρ q 1 φ q ( λ 0 1 e ( τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) + μ ρ 1 k = 1 m I k ( t k , y ( t k ) ) ρ 1 ρ q 1 λ q 1 φ q ( 0 1 e ( τ ) ω ( τ ) l 3 ϕ p ( y ( τ ) ) d τ ) + μ ρ 1 k = 1 m l 4 y ( t k ) ρ 1 ρ q 1 λ q 1 φ q ( 0 1 e ( τ ) ω ( τ ) l 3 ϕ p ( δ y P C 1 ) d τ ) + μ ρ 1 k = 1 m l 4 δ y P C 1 = ρ 1 ρ q 1 λ q 1 l 3 q 1 δ y P C 1 φ q ( 0 1 e ( τ ) ω ( τ ) d τ ) + μ ρ 1 m l 4 δ y P C 1 ρ 1 ρ q 1 λ q 1 l 3 q 1 δ y P C 1 φ q ( t 1 t m e ( τ ) ω ( τ ) d τ ) + μ ρ 1 m l 4 δ y P C 1 ρ 1 ρ q 1 λ q 1 l 3 q 1 δ y P C 1 [ t 1 ( 1 t m ) ] q 1 φ q ( t 1 t m ω ( τ ) d τ ) + μ ρ 1 m l 4 δ y P C 1 > ρ 1 ρ q 1 λ q 1 l 3 q 1 δ y P C 1 [ t 1 ( 1 t m ) ] q 1 η + μ ρ 1 m l 4 δ y P C 1 1 2 α + 1 2 α = α .
This yields
T λ μ y P C 1 y P C 1 , y K Ω α .
(4.17)

Applying (b) of Lemma 3.4 to (4.14) and (4.17) shows that T λ μ has a fixed point y K ( Ω ¯ α Ω r ) with r y P C 1 α = 1 δ R . Hence, since for y K we have y ( t ) δ y P C 1 , t J , it follows that (2.2) holds. This gives the proof of part (i).

Part (ii). Noticing that f ( t , y ) > 0 , I k ( t , y ) > 0 ( k = 1 , 2 , , m ) for all t and y > 0 , we can define
M R = max t J , 0 y R { f ( t , y ) } > 0 , M = max { M k , k = 1 , 2 , , m } > 0 ,
where R > 0 , and
M k = max t J , 0 y R { I k ( t , y ) } , k = 1 , 2 , , m .
Let
λ ¯ 0 4 ( R 2 ρ 2 η ) p 1 ( γ M R ) 1 , μ ¯ 0 R 2 ρ 2 m M .
Then, for y K Ω R and λ < λ ¯ 0 , μ < μ ¯ 0 , we have
( T λ μ y ) ( t ) = 0 1 H 1 ( t , s ) ϕ q ( λ 0 1 H ( s , τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) d s + μ k = 1 m H 1 ( t , t k ) I k ( t k , y ( t k ) ) ρ 2 ( 1 4 γ ) q 1 φ q ( λ 0 1 ω ( τ ) f ( τ , y ( τ ) ) d τ ) + μ ρ 2 k = 1 m I k ( t k , y ( t k ) ) ρ 2 ( 1 4 γ λ ) q 1 φ q ( 0 1 ω ( τ ) M R d τ ) + μ ρ 2 k = 1 m M = ρ 2 ( 1 4 γ λ M R ) q 1 φ q ( 0 1 ω ( τ ) d τ ) + μ ρ 2 m M < ρ 2 ( 1 4 γ λ ¯ 0 M R ) q 1 η + μ ¯ 0 ρ 2 m M 1 2 R + 1 2 R = y P C 1 .
(4.18)
Similar to the proof of (4.5), we can prove
| ( T λ μ y ) ( t ) | y P C 1 , y K Ω R .
(4.19)
It follows from (4.18) and (4.19) that
T λ μ y P C 1 < y P C 1 , y K Ω R .
(4.20)
If f 0 = , I 0 = , then there exist l 3 > 0 , l 4 > 0 , and 0 < r < R such that
f ( t , y ) > l 3 φ p ( y ) , I k ( t , y ) > l 4 y ( t J , 0 y r , k = 1 , 2 , , m ) ,

where l 3 and l 4 satisfy (4.15) and (4.16), respectively.

Therefore, for y K Ω r , we obtain
( T λ μ y ) ( t ) = 0 1 H 1 ( t , s ) ϕ q ( λ 0 1 H ( s , τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) d s + μ k = 1 m H 1 ( t , t k ) I k ( t k , y ( t k ) ) ρ 1 ρ q 1 φ q ( λ 0 1 e ( τ ) ω ( τ ) f ( τ , y ( τ ) ) d τ ) + μ ρ 1 k = 1 m I k ( t k , y ( t k ) ) ρ 1 ρ q 1 λ q 1 φ q ( 0 1 e ( τ ) ω ( τ ) l 3 ϕ p ( y ( τ ) ) d τ ) + μ ρ 1 k = 1 m l 4 y ( t k ) ρ 1 ρ q 1 λ q 1 φ q ( 0 1 e ( τ ) ω ( τ ) l 3 ϕ p ( δ y P C 1 ) d τ ) + μ ρ 1 k = 1 m l 4 δ y P C 1 = ρ 1 ρ q 1 λ q 1 l 3 q 1 δ y P C 1 φ q ( 0 1 e ( τ ) ω ( τ ) d τ ) + μ ρ 1 m l 4 δ y P C 1 ρ 1 ρ q 1 λ q 1 l 3 q 1 δ y P C 1 φ q ( t 1 t m e ( τ ) ω ( τ ) d τ ) + μ ρ 1 m l 4 δ y P C 1 ρ 1 ρ q 1 λ q 1 l 3 q 1 δ y P C 1 [ t 1 ( 1 t m ) ] q 1 φ q ( t 1 t m ω ( τ ) d τ ) + μ ρ 1 m l 4 δ y P C 1 > ρ 1 ρ q 1 λ q 1 l 3 q 1 δ y P C 1 [ t 1 ( 1 t m ) ] q 1 η + μ ρ 1 m l 4 δ y P C 1 1 2 y P C 1 + 1 2 y P C 1 = y P C 1 .
This yields
T λ μ y P C 1 > y P C 1 , y K Ω r .
(4.21)

Applying (a) of Lemma 3.4 to (4.20) and (4.21) shows that T λ μ has a fixed point y K ( Ω ¯ R Ω r ) with r y P C 1 R . Hence, since for y K we have y ( t ) δ y P C 1 , t J , it follows that (2.3) holds. This gives the proof of part (ii).

Consider part (iii). Choose two numbers r 1 and r 2 satisfying (2.1). By part (i) and part (ii), there exist λ ¯ 0 > 0 and μ ¯ 0 > 0 such that
T λ μ y P C 1 < y P C 1 , 0 < λ < λ ¯ 0 , 0 < μ < μ ¯ 0 , y K Ω r i , i = 1 , 2 .
(4.22)
Since f 0 = f = I = I 0 = , from the proof of part (i) and part (ii), it follows that
T λ μ y P C 1 > y P C 1 , y K Ω r
(4.23)
and
T λ μ y P C 1 > y P C 1 , y K Ω R .
(4.24)

Applying Lemma 3.4 to (4.22)-(4.24) shows that T λ μ has two fixed points y 1 and y 2 such that y 1 K ( Ω ¯ r 1 Ω r ) and y 2 K ( Ω ¯ R Ω r 2 ) . These are the desired distinct positive solutions of problem (1.1) for 0 < λ < λ ¯ 0 and 0 < μ < μ ¯ 0 satisfying (2.5). Then the proof of part (iii) is complete. □

Remark 4.1 Comparing with Feng [31], the main features of this paper are as follows.
  1. (i)

    Two parameters λ > 0 and μ > 0 are considered.

     
  2. (ii)

    ω L loc 1 ( 0 , 1 ) , not only ω ( t ) 1 for t J .

     
  3. (iii)

    It follows from the proof of Theorem 2.1 that the conditions of Corollary 3.2 in [31] are not the optimal conditions, which guarantee the existence of at least one positive solution for problem (1.1). In fact, if f 0 = , or f = 0 , I ( k ) = 0 , we can prove that problem (1.1) has at least one positive solution, respectively.

     

Declarations

Acknowledgements

This work is sponsored by the project NSFC (11301178, 11171032) and the Fundamental Research Funds for the Central Universities (2014MS58). The authors are grateful to anonymous referees for their constructive comments and suggestions, which has greatly improved this paper.

Authors’ Affiliations

(1)
Department of Mathematics and Physics, North China Electric Power University
(2)
School of Applied Science, Beijing Information Science and Technology University

References

  1. Sun J, Wang X: Monotone positive solutions for an elastic beam equation with nonlinear boundary conditions. Math. Probl. Eng. 2011. 10.1155/2011/609189Google Scholar
  2. Yao Q: Positive solutions of nonlinear beam equations with time and space singularities. J. Math. Anal. Appl. 2011, 374: 681-692. 10.1016/j.jmaa.2010.08.056MathSciNetView ArticleMATHGoogle Scholar
  3. Yao Q: Local existence of multiple positive solutions to a singular cantilever beam equation. J. Math. Anal. Appl. 2010, 363: 138-154. 10.1016/j.jmaa.2009.07.043MathSciNetView ArticleMATHGoogle Scholar
  4. O’Regan D: Solvability of some fourth (and higher) order singular boundary value problems. J. Math. Anal. Appl. 1991, 161: 78-116. 10.1016/0022-247X(91)90363-5MathSciNetView ArticleMATHGoogle Scholar
  5. Wei Z: A class of fourth order singular boundary value problems. Appl. Math. Comput. 2004, 153: 865-884. 10.1016/S0096-3003(03)00683-0MathSciNetView ArticleMATHGoogle Scholar
  6. Yang B: Positive solutions for the beam equation under certain boundary conditions. Electron. J. Differ. Equ. 2005., 2005: Article ID 78Google Scholar
  7. Zhang X: Existence and iteration of monotone positive solutions for an elastic beam equation with a corner. Nonlinear Anal., Real World Appl. 2009, 10: 2097-2103. 10.1016/j.nonrwa.2008.03.017MathSciNetView ArticleMATHGoogle Scholar
  8. Gupta GP: Existence and uniqueness theorems for the bending of an elastic beam equation. Appl. Anal. 1988, 26: 289-304. 10.1080/00036818808839715MathSciNetView ArticleMATHGoogle Scholar
  9. Gupta GP: A nonlinear boundary value problem associated with the static equilibrium of an elastic beam supported by sliding clamps. Int. J. Math. Math. Sci. 1989, 12: 697-711. 10.1155/S0161171289000864View ArticleMathSciNetMATHGoogle Scholar
  10. Graef JR, Yang B: On a nonlinear boundary value problem for fourth order equations. Appl. Anal. 1999, 72: 439-448. 10.1080/00036819908840751MathSciNetView ArticleMATHGoogle Scholar
  11. Agarwal RP: On fourth-order boundary value problems arising in beam analysis. Differ. Integral Equ. 1989, 2: 91-110.MathSciNetMATHGoogle Scholar
  12. Davis J, Henderson J: Uniqueness implies existence for fourth-order Lidstone boundary value problems. Panam. Math. J. 1998, 8: 23-35.MathSciNetMATHGoogle Scholar
  13. Kosmatov N: Countably many solutions of a fourth order boundary value problem. Electron. J. Qual. Theory Differ. Equ. 2004., 2004: Article ID 12Google Scholar
  14. Bai Z, Wang H: On the positive solutions of some nonlinear fourth-order beam equations. J. Math. Anal. Appl. 2002, 270: 357-368. 10.1016/S0022-247X(02)00071-9MathSciNetView ArticleMATHGoogle Scholar
  15. Bai Z, Huang B, Ge W: The iterative solutions for some fourth-order p -Laplace equation boundary value problems. Appl. Math. Lett. 2006, 19: 8-14. 10.1016/j.aml.2004.10.010MathSciNetView ArticleMATHGoogle Scholar
  16. Liu X-L, Li W-T: Existence and multiplicity of solutions for fourth-order boundary values problems with parameters. J. Math. Anal. Appl. 2007, 327: 362-375. 10.1016/j.jmaa.2006.04.021MathSciNetView ArticleMATHGoogle Scholar
  17. Bonanno G, Bella B: A boundary value problem for fourth-order elastic beam equations. J. Math. Anal. Appl. 2008, 343: 1166-1176. 10.1016/j.jmaa.2008.01.049MathSciNetView ArticleMATHGoogle Scholar
  18. Ma R, Wang H: On the existence of positive solutions of fourth-order ordinary differential equations. Appl. Anal. 1995, 59: 225-231. 10.1080/00036819508840401MathSciNetView ArticleMATHGoogle Scholar
  19. Han G, Xu Z: Multiple solutions of some nonlinear fourth-order beam equations. Nonlinear Anal. 2008, 68: 3646-3656. 10.1016/j.na.2007.04.007MathSciNetView ArticleMATHGoogle Scholar
  20. Zhang X, Ge W: Symmetric positive solutions of boundary value problems with integral boundary conditions. Appl. Math. Comput. 2012, 219: 3553-3564. 10.1016/j.amc.2012.09.037MathSciNetView ArticleMATHGoogle Scholar
  21. Zhai C, Song R, Han Q: The existence and the uniqueness of symmetric positive solutions for a fourth-order boundary value problem. Comput. Math. Appl. 2011, 62: 2639-2647. 10.1016/j.camwa.2011.08.003MathSciNetView ArticleMATHGoogle Scholar
  22. Zhang X, Feng M, Ge W: Symmetric positive solutions for p -Laplacian fourth order differential equation with integral boundary conditions. J. Comput. Appl. Math. 2008, 222: 561-573. 10.1016/j.cam.2007.12.002MathSciNetView ArticleMATHGoogle Scholar
  23. Zhang X, Feng M, Ge W: Existence results for nonlinear boundary-value problems with integral boundary conditions in Banach spaces. Nonlinear Anal. 2008, 69: 3310-3321. 10.1016/j.na.2007.09.020MathSciNetView ArticleMATHGoogle Scholar
  24. Zhang X, Liu L: A necessary and sufficient condition of positive solutions for fourth order multi-point boundary value problem with p -Laplacian. Nonlinear Anal. 2008, 68: 3127-3137. 10.1016/j.na.2007.03.006MathSciNetView ArticleMATHGoogle Scholar
  25. Aftabizadeh AR: Existence and uniqueness theorems for fourth-order boundary value problems. J. Math. Anal. Appl. 1986, 116: 415-426. 10.1016/S0022-247X(86)80006-3MathSciNetView ArticleMATHGoogle Scholar
  26. Kang P, Wei Z, Xu J: Positive solutions to fourth-order singular boundary value problems with integral boundary conditions in abstract spaces. Appl. Math. Comput. 2008, 206: 245-256. 10.1016/j.amc.2008.09.010MathSciNetView ArticleMATHGoogle Scholar
  27. Xu J, Yang Z: Positive solutions for a fourth order p -Laplacian boundary value problem. Nonlinear Anal. 2011, 74: 2612-2623. 10.1016/j.na.2010.12.016MathSciNetView ArticleMATHGoogle Scholar
  28. Webb JRL, Infante G, Franco D: Positive solutions of nonlinear fourth-order boundary value problems with local and non-local boundary conditions. Proc. R. Soc. Edinb. 2008, 138: 427-446.MathSciNetView ArticleMATHGoogle Scholar
  29. Ma H: Symmetric positive solutions for nonlocal boundary value problems of fourth order. Nonlinear Anal. 2008, 68: 645-651. 10.1016/j.na.2006.11.026MathSciNetView ArticleMATHGoogle Scholar
  30. Zhang X, Liu L: Positive solutions of fourth-order four-point boundary value problems with p -Laplacian operator. J. Math. Anal. Appl. 2007, 336: 1414-1423. 10.1016/j.jmaa.2007.03.015MathSciNetView ArticleMATHGoogle Scholar
  31. Feng M: Multiple positive solutions of four-order impulsive differential equations with integral boundary conditions and one-dimensional p -Laplacian. Bound. Value Probl. 2011. 10.1155/2011/654871Google Scholar
  32. Hao X, Liu L, Wu Y: Positive solutions for second order impulsive differential equations with integral boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 2011, 16: 101-111. 10.1016/j.cnsns.2010.04.007MathSciNetView ArticleMATHGoogle Scholar
  33. Sun J, Chen H, Yang L: The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method. Nonlinear Anal. TMA 2010, 73: 440-449. 10.1016/j.na.2010.03.035MathSciNetView ArticleMATHGoogle Scholar
  34. Ning P, Huan Q, Ding W: Existence result for impulsive differential equations with integral boundary conditions. Abstr. Appl. Anal. 2013. 10.1155/2013/134691Google Scholar
  35. Guo D, Lakshmikantham V: Nonlinear Problems in Abstract Cones. Academic Press, New York; 1988.MATHGoogle Scholar

Copyright

© Zhang and Feng; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.