Skip to main content

Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions

Abstract

We consider the quasilinear wave equation

$$u_{tt} -\triangle u_{t} -\operatorname{div}\bigl(\vert \nabla u\vert ^{\alpha-2} \nabla u\bigr) - \operatorname{div}\bigl(\vert \nabla u_{t}\vert ^{\beta-2} \nabla u_{t} \bigr) +a \vert u_{t}\vert ^{m-2} u_{t} =b|u|^{p-2} u $$

\(a,b>0\), associated with initial and Dirichlet boundary conditions at one part and acoustic boundary conditions at another part, respectively. We prove, under suitable conditions on α, β, m, p and for negative initial energy, a global nonexistence of solutions.

1 Introduction

In this paper, we consider the following quasilinear wave equation with acoustic boundary conditions:

$$\begin{aligned}& u_{tt} -\triangle u_{t} -\operatorname{div}\bigl(\vert \nabla u\vert ^{\alpha-2} \nabla u\bigr) - \operatorname{div}\bigl(\vert \nabla u_{t}\vert ^{\beta-2} \nabla u_{t} \bigr) \\& \quad{}+a\vert u_{t}\vert ^{m-2} u_{t} =b \vert u\vert ^{p-2} u\quad \text{in } \Omega\times (0,\infty), \end{aligned}$$
(1.1)
$$\begin{aligned}& u=0\quad \text{on } \Gamma_{0} \times(0,\infty), \end{aligned}$$
(1.2)
$$\begin{aligned}& \frac{\partial u_{t}}{\partial\nu} + \vert \nabla u\vert ^{\alpha-2} \frac {\partial u}{\partial\nu}+ \vert \nabla u_{t}\vert ^{\beta-2} \frac{\partial u_{t}}{\partial\nu} = h(x)y_{t}\quad \text{on } \Gamma_{1} \times(0,\infty), \end{aligned}$$
(1.3)
$$\begin{aligned}& u_{t} +f(x)y_{t} +q(x)y = 0 \quad\text{on } \Gamma_{1} \times(0,\infty), \end{aligned}$$
(1.4)
$$\begin{aligned}& u(x,0)=u_{0}(x), \qquad u_{t}(x,0)=u_{1}(x) \quad\text{in } \Omega, \end{aligned}$$
(1.5)
$$\begin{aligned}& y(x,0) = y_{0}(x)\quad \mbox{on } \Gamma_{1} \times(0,\infty), \end{aligned}$$
(1.6)

where \(a,b>0, \alpha,\beta,m,p >2\), Ω is a regular and bounded domain of \(R^{n}(n \geq1)\) and \(\partial\Omega(=\Gamma):= \Gamma_{0} \cup \Gamma_{1}\). Here \(\Gamma_{0}, \Gamma_{1}\) are closed and disjoint, and \(\frac {\partial}{\partial\nu}\) denotes the unit outer normal derivative. The functions \(f,q,h : \Gamma _{1} \longrightarrow R^{+}\) are essentially bounded and \(0< q_{0} \leq q(x)\) on \(\Gamma_{1}\).

The system (1.1)-(1.6) is a model of a quasilinear wave equation with acoustic boundary conditions. The acoustic boundary conditions were introduced by Morse and Ingard [1] in 1968 and developed by Beale and Rosencrans in [2], where the authors proved the global existence and regularity of the linear problem. Furthermore, Boukhatem and Benabderrahmane [3, 4] studied the existence, blow-up and decay of solutions for viscoelastic wave equations with acoustic boundary conditions. Graber and Said-Houari [5] studied the blow-up solutions for the wave equation with semilinear porous acoustic boundary conditions. Moreover, Wu [6] also considered blow-up solutions for a nonlinear wave equation with porous acoustic boundary conditions. The global nonexistence of solutions for a class of wave equations with nonlinear damping and source terms was proved by Messaoudi and Said-Houari [79] (see [1013] for more details). Recently, Piskin [14] investigated the energy decay and blow-up of solutions for quasilinear hyperbolic equations with nonlinear damping and source terms (see [1518] for more details).

Motivated by the previous works, in this paper, we study the global nonexistence of solutions for quasilinear wave equations with acoustic boundary conditions. To the best of our knowledge, there are no results of a quasilinear wave equation with acoustic boundary conditions. This work is meaningful. The outline of the paper is the following. In Section 2, we prove the main result.

2 Blow-up results

In order to state and prove our result, we introduce

$$\begin{aligned} Z =& L^{\infty}\bigl([0,T); W^{1,\alpha} (\Omega) \bigr) \cap W^{1,\infty} \bigl( [0,T) ; L^{2} (\Omega) \bigr) \\ & {}\cap W^{1,\beta} \bigl( [0,T); W^{1,\beta} (\Omega)\bigr)\cap W^{1,m} \bigl( [0,T) ; L^{m} (\Omega) \bigr) \end{aligned}$$

for \(T>0\) and the energy functional

$$\begin{aligned}& E(t)= {1 \over 2} \int_{\Omega} u_{t}^{2} \,dx + {1\over \alpha} \int_{\Omega} \vert \nabla u\vert ^{\alpha} \,dx - {b \over p} \int_{\Omega} \vert u\vert ^{p} \,dx + {1 \over 2} \int_{\Gamma_{1}}h(x)q(x)y^{2} (t) \,d\Gamma. \end{aligned}$$
(2.1)

Theorem 2.1

Assume that \(\alpha, \beta, m, p \geq2\) such that \(\beta<\alpha\), and \(max\{m,\alpha\} < p< r_{\alpha}\), where \(r_{\alpha}\) is the Sobolev critical exponent of \(W^{1, \alpha}(\Omega)\). Assume further that

$$ E(0) < 0. $$
(2.2)

Then the solution \((u,y) \in Z \times L^{2}(R^{+}; L^{2}(\Gamma_{1}))\) of (1.1)-(1.6) can not exist for all time.

Remark 2.2

If the solution u of (1.1)-(1.6) is smooth enough, then it blows up in finite time.

Proof

We suppose that the solution exists for all time, and we reach a contradiction. For this purpose, we multiply Eq. (1.1) by \(u_{t}\) and, using (1.2)-(1.4), we obtain

$$\begin{aligned} E^{\prime}(t) =& - \int_{\Omega} \bigl\vert \nabla u_{t}(t)\bigr\vert ^{2} \,dx - \int_{\Omega} \bigl\vert \nabla u_{t}(t)\bigr\vert ^{\beta} \,dx \\ &{}-a \int_{\Omega} \bigl\vert u_{t}(t)\bigr\vert ^{m} \,dx - \int _{\Gamma_{1}}h(x)f(x)y_{t}^{2} (t) \,d\Gamma \leq0 \end{aligned}$$
(2.3)

for any regular solution. Hence we get \(E(t) \leq E(0)\) \(\forall t \geq0\).

By setting \(H(t)=-E(t)\), we deduce

$$ 0 < H(0) \leq H(t) \leq{b \over p} \int_{\Omega} \bigl\vert u(t)\bigr\vert ^{p} \,dx,\quad \forall \geq0. $$
(2.4)

Now, we define

$$\begin{aligned}& L(t)= H^{1-\sigma}(t) +\varepsilon \int_{\Omega} u(t)u_{t}(t) \,dx -{\varepsilon\over 2} \int_{\Gamma_{1}} h(x)f(x)y^{2} (t) \,d\Gamma -\varepsilon \int_{\Gamma_{1}}h(x)u(t)y(t) \,d\Gamma \end{aligned}$$
(2.5)

for ε small to be chosen later and

$$ 0 < \sigma\leq \min\biggl\{ \frac{\alpha-2}{p} , \frac{\alpha-\beta}{ p(\beta-1)}, \frac{p -m}{p(m -1)} , \frac{\alpha-2}{2\alpha} \biggr\} . $$
(2.6)

Our goal is to show that \(L(t)\) satisfies a differential inequality of the form

$$ L^{\prime}(t) \geq\xi L^{q}(t),\quad q>1. $$
(2.7)

This, of course, will lead to a blow-up in finite time.

By taking a derivative of (2.5), we get

$$\begin{aligned} L^{\prime}(t) =& (1-\sigma)H^{-\sigma}(t)H^{\prime}(t)+ \varepsilon \int _{\Omega} u_{t}^{2}(t) \,dx +\varepsilon \int_{\Omega} u(t)u_{tt}(t) \,dx \\ & {}-{\varepsilon} \int_{\Gamma_{1}} h(x)f(x)y(t)y_{t}(t) \,d\Gamma -\varepsilon \int_{\Gamma_{1}}h(x)u_{t}(t)y(t) \,d\Gamma \\ &{}-\varepsilon \int _{\Gamma_{1}}h(x)u(t)y_{t}(t) \,d\Gamma. \end{aligned}$$
(2.8)

By using Eqs. (1.1)-(1.4), estimate (2.8) becomes

$$\begin{aligned} L^{\prime}(t) = & (1-\sigma)H^{-\sigma}(t)H^{\prime}(t)+ \varepsilon \int _{\Omega} u_{t}^{2}(t) \,dx \\ & {}+\varepsilon \int_{\Omega} u(t) \bigl[ \Delta u_{t}(t) + \operatorname{div} \bigl( \bigl\vert \nabla u(t)\bigr\vert ^{\alpha-2} \nabla u(t)\bigr) +\operatorname{div} \bigl( \bigl\vert \nabla u_{t}(t)\bigr\vert ^{\beta-2} \nabla u_{t}(t)\bigr) \\ & {}-a \bigl\vert u_{t}(t)\bigr\vert ^{m -2} u_{t}(t) +b\bigl\vert u(t)\bigr\vert ^{p -2} u(t)\bigr] \,dx -{\varepsilon} \int_{\Gamma_{1}} h(x)f(x)y(t)y_{t}(t) \,d\Gamma \\ & {}-\varepsilon \int_{\Gamma_{1}}h(x)u_{t}(t)y(t) \,d\Gamma-\varepsilon \int _{\Gamma_{1}}h(x)u(t)y_{t}(t) \,d\Gamma \\ =& (1-\sigma)H^{-\sigma}(t)H^{\prime}(t)+\varepsilon \int_{\Omega} u_{t}^{2}(t) \,dx -\varepsilon \int_{\Omega} \nabla u_{t}(t) \nabla u(t) \,dx \\ & {}-\varepsilon \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx -\varepsilon \int_{\Omega}\bigl(\bigl\vert \nabla u_{t}(t)\bigr\vert ^{\beta-2} \nabla u_{t}(t)\bigr) \nabla u(t) \,dx \\ & {}-a\varepsilon \int_{\Omega} \bigl\vert u_{t}(t)\bigr\vert ^{m -2} u_{t}(t)u(t) \,dx +b\varepsilon \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{p} \,dx \\ & {}+ \varepsilon \int_{\Gamma_{1}}\biggl( \frac{\partial u_{t}(t)}{\partial\nu} + \bigl\vert \nabla u(t) \bigr\vert ^{\alpha-2} \frac{\partial u(t)}{\partial\nu} + \bigl\lvert \nabla u_{t}(t)\bigr\rvert ^{\beta-2} \frac{\partial u_{t}(t)}{\partial\nu}\biggr)u(t) \,d \Gamma \\ & {}-\varepsilon \int_{\Gamma_{1}} h(x)f(x)y(t)y_{t}(t) \,d\Gamma -\varepsilon \int_{\Gamma_{1}}h(x)u_{t}(t)y(t) \,d\Gamma-\varepsilon \int _{\Gamma_{1}}h(x)u(t)y_{t}(t) \,d\Gamma \\ = & (1-\sigma)H^{-\sigma}(t)H^{\prime}(t)+\varepsilon \int_{\Omega} u_{t}^{2}(t) \,dx -\varepsilon \int_{\Omega} \nabla u_{t}(t) \nabla u(t) \,dx \\ & {}-\varepsilon \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx -\varepsilon \int_{\Omega}\bigl(\bigl\vert \nabla u_{t}(t)\bigr\vert ^{\beta-2} \nabla u_{t}(t)\bigr) \nabla u(t) \,dx \\ & {}-a\varepsilon \int_{\Omega} \bigl\vert u_{t}(t)\bigr\vert ^{m -2} u_{t}(t)u(t) \,dx +b\varepsilon \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{p} \,dx + \varepsilon \int_{\Gamma_{1}}h(x)q(x)y^{2}(t) \,d\Gamma. \end{aligned}$$
(2.9)

Exploiting Hölder’s and Young’s inequalities, for any \(\eta,\mu ,\delta>0\), we obtain

$$\begin{aligned}& \int_{\Omega} \bigl\vert u_{t}(t)\bigr\vert ^{m -2} u_{t}(t)u(t) \,dx \leq\frac{\eta^{m}}{m} \int _{\Omega} \bigl\vert u(t)\bigr\vert ^{m } \,dx + \frac{m-1}{m} \eta^{-\frac{m}{m-1}} \int _{\Omega} \bigl\vert u_{t}(t)\bigr\vert ^{m} \,dx, \end{aligned}$$
(2.10)
$$\begin{aligned}& \int_{\Omega} \nabla u_{t}(t) \nabla u(t) \,dx \leq \frac{1}{4\mu} \int _{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{2} \,dx + \mu \int_{\Omega} \bigl\vert \nabla u_{t}(t)\bigr\vert ^{2} \,dx, \end{aligned}$$
(2.11)
$$\begin{aligned}& \int_{\Omega}\bigl\vert \nabla u_{t}(t)\bigr\vert ^{\beta-2} \nabla u_{t}(t) \nabla u(t) \,dx \leq\frac{\delta^{\beta}}{\beta} \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\beta} \,dx + \frac{\beta-1}{\beta} \delta^{-\frac{\beta}{\beta-1}} \int_{\Omega }\bigl\vert \nabla u_{t}(t)\bigr\vert ^{\beta} \,dx. \end{aligned}$$
(2.12)

A substitution of (2.10)-(2.12) in (2.9) yields

$$\begin{aligned} L^{\prime}(t) \geq & (1-\sigma)H^{-\sigma}(t)H^{\prime }(t)+ \varepsilon \int_{\Omega} u_{t}^{2}(t) \,dx - \frac{\varepsilon}{4\mu} \int _{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{2} \,dx \\ & {}- \varepsilon\mu \int_{\Omega} \bigl\vert \nabla u_{t}(t)\bigr\vert ^{2} \,dx -\varepsilon \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx - \frac {\varepsilon\delta^{\beta}}{\beta} \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\beta} \,dx \\ & {}- \frac{\varepsilon(\beta-1)}{\beta} \delta^{-\frac{\beta}{\beta -1}} \int_{\Omega}\bigl\vert \nabla u_{t}(t)\bigr\vert ^{\beta} \,dx -\frac{a\varepsilon\eta ^{m}}{m} \int_{\Omega} \bigl\vert u(t)\bigr\vert ^{m } \,dx \\ & {}- \frac{a\varepsilon(m-1)}{m} \eta^{-\frac{m}{m-1}} \int_{\Omega} \bigl\vert u_{t}(t)\bigr\vert ^{m} \,dx +b\varepsilon \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{p} \,dx \\ &{}+ \varepsilon \int_{\Gamma_{1}}h(x)q(x)y^{2}(t) \,d\Gamma. \end{aligned}$$
(2.13)

Therefore, by choosing \(\eta,\mu,\delta\) so that

$$\begin{aligned}& \eta^{-\frac{m}{m-1}} = M_{1} H^{-\sigma}(t), \\ & \mu= M_{2} H^{-\sigma}(t), \\ & \delta^{-\frac{\beta}{\beta-1}}= M_{3} H^{-\sigma}(t) \end{aligned}$$

for \(M_{1}, M_{2}, M_{3}\) to be specified later, and using (2.13), we arrive at

$$\begin{aligned} L^{\prime}(t) \geq & (1-\sigma)H^{-\sigma}(t)H^{\prime }(t)+ \varepsilon \int_{\Omega} u_{t}^{2}(t) \,dx - \frac{\varepsilon }{4M_{2}}H^{\sigma}(t) \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{2} \,dx \\ &{}-\varepsilon \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx -\frac {\varepsilon M_{3}^{-(\beta-1)}}{\beta}H^{\sigma(\beta-1)}(t) \int _{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\beta} \,dx \\ & {}-\frac{a\varepsilon}{m} M_{1} ^{-(m-1)}H^{\sigma(m-1)}(t) \int_{\Omega } \bigl\vert u(t)\bigr\vert ^{m } \,dx +b \varepsilon \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{p} \,dx \\ & {}-\varepsilon \biggl[ M_{2} \int_{\Omega} \bigl\vert \nabla u_{t}(t)\bigr\vert ^{2} \,dx + \frac{\beta-1}{\beta}M_{3} \int_{\Omega}\bigl\vert \nabla u_{t}(t)\bigr\vert ^{\beta} \,dx \\ &{}+\frac{a(m-1)}{m} M_{1} \int_{\Omega} \bigl\vert u_{t}(t)\bigr\vert ^{m} \,dx \biggr] H^{-\sigma}(t) +\varepsilon \int_{\Gamma_{1}}h(x)q(x)y^{2}(t) \,d\Gamma. \end{aligned}$$
(2.14)

If \(M = M_{2}+ \frac{(\beta-1)M_{3}}{\beta}+\frac{(m-1)M_{1}}{m}\), then (2.14) takes the form

$$\begin{aligned} L^{\prime}(t) \geq & (1-\sigma-\varepsilon M)H^{-\sigma}(t)H^{\prime }(t)+\varepsilon \int_{\Omega} u_{t}^{2}(t) \,dx - \frac{\varepsilon }{4M_{2}}H^{\sigma}(t) \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{2} \,dx \\ &{}-\varepsilon \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx -\frac {\varepsilon M_{3}^{-(\beta-1)}}{\beta}H^{\sigma(\beta-1)}(t) \int _{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\beta} \,dx \\ & {}-\frac{a\varepsilon}{m} M_{1} ^{-(m-1)}H^{\sigma(m-1)}(t) \int_{\Omega } \bigl\vert u(t)\bigr\vert ^{m } \,dx +b \varepsilon \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{p} \,dx \\ & {}+\varepsilon M H^{-\sigma}(t) \int_{\Gamma_{1}}h(x)f(x)y_{t}^{2}(t) \,d\Gamma + \varepsilon \int_{\Gamma_{1}}h(x)q(x)y^{2}(t) \,d\Gamma. \end{aligned}$$
(2.15)

Then we use the embedding \(L^{p}(\Omega) \hookrightarrow L^{m}(\Omega)\) and (2.4) to get

$$ H^{\sigma(m-1)}(t) \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{m} \,dx \leq \biggl(\frac{b}{p}\biggr)^{\sigma (m-1)} \biggl( \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{p} \,dx \biggr)^{\frac{m+\sigma p (m-1)}{p}}. $$
(2.16)

We also exploit the inequality

$$\int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{2} \,dx \leq c \biggl( \int_{\Omega}\bigl\lvert \nabla u(t)\bigr\rvert ^{\alpha}\,dx \biggr)^{\frac{2}{\alpha}}, $$

the embedding \(W^{1,\alpha}(\Omega) \hookrightarrow H^{1} (\Omega)\) and (2.4) to obtain

$$\begin{aligned} & H^{\sigma}(t) \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{2} \,dx \leq c\biggl(\frac {b}{p}\biggr)^{\sigma} \biggl( \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx \biggr)^{\frac {p\sigma+2}{\alpha}}. \end{aligned}$$
(2.17)

Since \(\alpha> \beta\), we obtain

$$\begin{aligned} & \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\beta}\,dx \leq c \biggl( \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx \biggr)^{\frac{\beta}{\alpha}}, \end{aligned}$$

we derive

$$\begin{aligned} & H^{\sigma(\beta-1)} (t) \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\beta}\,dx \leq c\biggl(\frac{b}{p}\biggr)^{\sigma(\beta-1)} \biggl( \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx \biggr)^{\frac{p\sigma(\beta-1)+\beta}{\alpha}}, \end{aligned}$$
(2.18)

where c is a constant depending on Ω only. By using (2.6) and the inequality

$$\begin{aligned}& z^{\nu} \leq z+1 \leq\biggl(1+ \frac{1}{a}\biggr) (z+a),\quad \forall z \geq0, 0 < \nu< 1, a \geq0, \end{aligned}$$
(2.19)

we get the following inequalities:

$$\begin{aligned}& \biggl( \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{p} \,dx \biggr)^{\frac{m+\sigma p (m-1)}{p}} \leq c \biggl( \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx \biggr)^{\frac{m+\sigma p (m-1)}{\alpha}} \\& \phantom{\biggl( \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{p} \,dx \biggr)^{\frac{m+\sigma p (m-1)}{p}}} \leq d \biggl( \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx+ H(0) \biggr) \\& \phantom{\biggl( \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{p} \,dx \biggr)^{\frac{m+\sigma p (m-1)}{p}}} \leq d \biggl( \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx+ H(t) \biggr),\quad \forall t \geq0, \end{aligned}$$
(2.20)
$$\begin{aligned}& \biggl( \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx \biggr)^{\frac{p\sigma +2}{\alpha}} \leq d \biggl( \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx + H(t) \biggr),\quad \forall t \geq0, \end{aligned}$$
(2.21)

and

$$\begin{aligned}& \biggl( \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx \biggr)^{\frac{p\sigma (\beta-1) +\beta}{\alpha}} \leq d \biggl( \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx + H(t) \biggr),\quad \forall t \geq0, \end{aligned}$$
(2.22)

where \(d=1+1/H(0), a=H(0)\). Inserting (2.16)-(2.18) and (2.20)-(2.22) into (2.15), we deduce

$$\begin{aligned} L^{\prime}(t) \geq & (1-\sigma-\varepsilon M )H^{-\sigma }(t)H^{\prime}(t) \\ &{}+ kH(t) +\biggl(\varepsilon+\frac{k}{2}\biggr) \int_{\Omega} u_{t}^{2}(t) \,dx \\ &{}-\frac{\varepsilon c_{2}}{ M_{2}} \biggl( \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx +H(t) \biggr) -\varepsilon \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx \\ &{}-\frac{\varepsilon c_{3}}{ M_{3}^{\beta-1}} \biggl( \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx +H(t) \biggr) + \frac{k}{\alpha} \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx \\ &{}-\frac{\varepsilon c_{1}}{ M_{1}^{m -1}} \biggl( \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx +H(t) \biggr) +b\biggl(\varepsilon-\frac{k}{p}\biggr) \int _{\Omega}\bigl\vert u(t)\bigr\vert ^{p} \,dx \\ & {}+\varepsilon M H^{-\sigma}(t) \int_{\Gamma_{1}}h(x)f(x)y_{t}^{2}(t) \,d\Gamma + \biggl(\varepsilon+\frac{k}{2}\biggr) \int_{\Gamma_{1}}h(x)q(x)y^{2}(t) \,d\Gamma \end{aligned}$$

for some constant k and \(c_{1}= \frac{acd}{m} (\frac{b}{p})^{\sigma (m-1)}\), \(c_{2}= \frac{cd}{4} (\frac{b}{p})^{\sigma}\), \(c_{3}= \frac {cd}{\beta} (\frac{b}{p})^{\sigma(\beta-1)}\).

Using \(k=\varepsilon p\), we arrive at

$$\begin{aligned} L^{\prime}(t) \geq & (1-\sigma-\varepsilon M )H^{-\sigma }(t)H^{\prime}(t) + \varepsilon\biggl(\frac{p+2}{2} \biggr) \int_{\Omega} u_{t}^{2}(t) \,dx \\ & {}+\varepsilon \biggl( p - \frac{ c_{2}}{ M_{2}} -\frac{c_{3}}{ M_{3}^{\beta -1}} - \frac{c_{1}}{ M_{1}^{m -1}} \biggr) H(t) \\ & {}+ \varepsilon \biggl( \frac{p}{\alpha} - \frac{ c_{2}}{ M_{2}} - \frac {c_{3}}{ M_{3}^{\beta-1}} -\frac{c_{1}}{ M_{1}^{m -1}} -1 \biggr) \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx \\ & {}+\varepsilon M H^{-\sigma}(t) \int_{\Gamma_{1}}h(x)f(x)y_{t}^{2}(t) \,d\Gamma + \varepsilon\biggl(\frac{p+2}{2}\biggr) \int_{\Gamma_{1}}h(x)q(x)y^{2}(t) \,d\Gamma. \end{aligned}$$

At this point, by choosing \(M_{1}, M_{2}, M_{3}\) large enough and using

$$\varepsilon M H^{-\sigma}(t) \int_{\Gamma_{1}}h(x)f(x)y_{t}^{2}(t) \,d\Gamma >0, $$

we have

$$\begin{aligned} L^{\prime}(t) \geq & (1-\sigma-\varepsilon M )H^{-\sigma }(t)H^{\prime}(t) \\ & {}+r\varepsilon \biggl( H(t) + \int_{\Omega} u_{t}^{2}(t) \,dx + \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx + \int_{\Gamma_{1}}h(x)q(x)y^{2}(t) \,d\Gamma \biggr), \end{aligned}$$
(2.23)

where r is a positive constant (this is possible since \(p>\alpha\)).

We choose \(0<\varepsilon< \frac{1-\sigma}{M}\) so that

$$\begin{aligned} L(0) = H^{1-\sigma}(0)+\varepsilon \int_{\Omega} u_{0}u_{1} \,dx - \frac {\varepsilon}{2} \int_{\Gamma_{1}}h(x)f(x)y_{0}^{2} \,d\Gamma - \varepsilon \int _{\Gamma_{1}}h(x)u_{0}y_{0} \,d\Gamma>0. \end{aligned}$$

Then from (2.23) we get

$$\begin{aligned} L(t) \geq L(0) >0, \quad\forall t \geq0, \end{aligned}$$

and

$$\begin{aligned} & L^{\prime}(t) \geq r\varepsilon \biggl( H(t) + \int_{\Omega} u_{t}^{2}(t) \,dx + \int_{\Omega} \bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx + \int_{\Gamma _{1}}h(x)q(x)y^{2}(t) \,d\Gamma \biggr). \end{aligned}$$
(2.24)

On the other hand, from (2.5) and \(f, h >0\), we have

$$\begin{aligned} L(t)\leq H^{1-\sigma}(t) +\varepsilon \int_{\Omega} u(t)u_{t}(t) \,dx -\varepsilon \int_{\Gamma_{1}}h(x)u(t)y(t) \,d\Gamma. \end{aligned}$$

Consequently, the above estimate leads to

$$\begin{aligned} L^{\frac{1}{1-\sigma}}(t)\leq C(\varepsilon,\sigma) \biggl[ H(t) + \biggl( \int_{\Omega} u(t)u_{t}(t) \,dx \biggr)^{\frac{1}{1-\sigma}} + \biggl( \int _{\Gamma_{1}}h(x)u(t)y(t) \,d\Gamma \biggr)^{\frac{1}{1-\sigma}} \biggr]. \end{aligned}$$
(2.25)

From Hölder’s inequality, we obtain

$$\begin{aligned} \int_{\Omega} u(t)u_{t}(t) \,dx \leq & \biggl( \int_{\Omega}u_{t}^{2}(t) \,dx \biggr)^{\frac{1}{2}} \biggl( \int_{\Omega}u^{2}(t) \,dx \biggr)^{\frac{1}{2}} \\ \leq & c \biggl( \int_{\Omega}u_{t}^{2}(t) \,dx \biggr)^{\frac{1}{2}} \biggl( \int_{\Omega }\bigl\vert u(t)\bigr\vert ^{\alpha}\,dx \biggr)^{\frac{1}{\alpha}}, \end{aligned}$$

where c is the positive constant which comes from the embedding \(L^{\alpha}(\Omega) \hookrightarrow L^{2}(\Omega)\). This inequality implies that there exists a positive constant \(c_{4}>0\) such that

$$\begin{aligned} \biggl( \int_{\Omega} u(t)u_{t}(t) \,dx \biggr)^{\frac{1}{1-\sigma}} \leq c_{4} \biggl( \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{\alpha} \,dx \biggr)^{\frac{1}{(1-\sigma)\alpha }} \biggl( \int_{\Omega}u_{t}^{2}(t) \,dx \biggr)^{\frac{1}{2(1-\sigma)}}. \end{aligned}$$

Applying Young’s inequality to the right-hand side of the preceding inequality, we have a positive constant, also denoted by \(c>0\), such that

$$\begin{aligned} \biggl( \int_{\Omega} u(t)u_{t}(t) \,dx \biggr)^{\frac{1}{1-\sigma}} \leq c \biggl[ \biggl( \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{\alpha} \,dx \biggr)^{\frac{\mu}{(1-\sigma )\alpha}} + \biggl( \int_{\Omega}u_{t}^{2}(t) \,dx \biggr)^{\frac{\theta }{2(1-\sigma)}} \biggr] \end{aligned}$$

for \(\frac{1}{\mu} + \frac{1}{\theta}=1\). We take \(\theta=2(1-\sigma)\), hence \(\mu=2(1-\sigma)/(1-2\sigma)\), to get

$$\begin{aligned} \biggl( \int_{\Omega} u(t)u_{t}(t) \,dx \biggr)^{\frac{1}{1-\sigma}} \leq c \biggl[ \biggl( \int_{\Omega}\bigl\vert u(t)\bigr\vert ^{\alpha} \,dx \biggr)^{\frac{2}{(1-2\sigma )\alpha}} + \int_{\Omega}u_{t}^{2}(t) \,dx \biggr]. \end{aligned}$$

By Poincare’s inequality, we obtain

$$\begin{aligned} \biggl( \int_{\Omega} u(t)u_{t}(t) \,dx \biggr)^{\frac{1}{1-\sigma}} \leq c \biggl[ \biggl( \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha} \,dx \biggr)^{\frac {2}{(1-2\sigma)\alpha}} + \int_{\Omega}u_{t}^{2}(t) \,dx \biggr]. \end{aligned}$$

We use (2.6) and the algebraic inequality (2.19) with \(z=\Vert \nabla u(t) \Vert _{\alpha}^{\alpha}\), \(d= 1+ 1/H(0)\), \(a=H(0)\), \(\nu =2/{\alpha(1-2\sigma)}\), condition (2.6) on σ ensures that \(0<\nu<1\), and it follows that

$$\begin{aligned} z^{\nu}\leq d\bigl(z+H(0)\bigr) \leq d\bigl(z+H(t)\bigr). \end{aligned}$$

Therefore, from (2.20), there exists a positive constant, denoted by \(c_{4}\), such that for all \(t \geq0\),

$$\begin{aligned} \biggl( \int_{\Omega} u(t)u_{t}(t) \,dx \biggr)^{\frac{1}{1-\sigma}} \leq c_{4} \bigl[H(t) + \bigl\Vert \nabla u(t)\bigr\Vert _{\alpha}^{\alpha} + \bigl\Vert u_{t}(t)\bigr\Vert _{2}^{2} \bigr]. \end{aligned}$$
(2.26)

Furthermore, by the same method, we have

$$\begin{aligned} \int_{\Gamma_{1}}h(x)u(t)y(t) \,d\Gamma =& \biggl\vert \int_{\Gamma_{1}}\frac {h(x)q(x)}{q(x)}u(t)y(t) \,d\Gamma\biggr\vert \\ \leq & \frac{\Vert h\Vert _{\infty}^{{1}\over {2}} \Vert q\Vert _{\infty}^{{1}\over {2}}}{q_{0}} \biggl( \int_{\Gamma_{1}}h(x)q(x)y^{2}(t) \,d\Gamma \biggr)^{{1}\over {2}} \biggl( \int_{\Gamma_{1}}u^{2}(t) \,d\Gamma \biggr)^{{1}\over {2}}. \end{aligned}$$

Using the embedding \(W_{0}^{1,\alpha}(\Omega) \hookrightarrow L^{2} (\Gamma _{1})\) and Hölder’s inequality, we get

$$\begin{aligned} \int_{\Gamma_{1}}h(x)u(t)y(t) \,d\Gamma \leq c_{5} \frac{\Vert h\Vert _{\infty}^{{1}\over {2}} \Vert q\Vert _{\infty}^{{1}\over {2}}}{q_{0}} \biggl( \int_{\Gamma _{1}}h(x)q(x)y^{2}(t) \,d\Gamma \biggr)^{{1}\over {2}} \biggl( \int_{\Omega }\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx \biggr)^{{1}\over {\alpha}}. \end{aligned}$$

Consequently, there exists a positive constant \(c_{5}=c_{5}( \Vert h\Vert _{\infty}, \Vert q\Vert _{\infty}, q_{0}, \sigma, \alpha)\) such that

$$\begin{aligned} \biggl( \int_{\Gamma_{1}}h(x)u(t)y(t) \,d\Gamma \biggr)^{{1} \over {1-\sigma}} \leq c_{5} \biggl( \int_{\Gamma_{1}}h(x)q(x)y^{2}(t) \,d\Gamma \biggr)^{{1}\over {2(1-\sigma)}} \biggl( \int_{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx \biggr)^{{1}\over {\alpha(1-\sigma)}}. \end{aligned}$$

Using Young’s inequality exactly as in (2.26), we write

$$\begin{aligned} \biggl( \int_{\Gamma_{1}}h(x)u(t)y(t) \,d\Gamma \biggr)^{{1} \over {1-\sigma}} \leq c_{6} \biggl[ \int_{\Gamma_{1}}h(x)q(x)y^{2}(t) \,d\Gamma+ \biggl( \int _{\Omega}\bigl\vert \nabla u(t)\bigr\vert ^{\alpha}\,dx \biggr)^{{2}\over {\alpha(1-2\sigma)}} \biggr], \end{aligned}$$

where \(c_{6}\) is a positive constant depending on \(c_{5}\) and α. Consequently, applying once again the algebraic inequality (2.19) with \(z=\Vert \nabla u(t)\Vert _{\alpha}^{\alpha}\), \(\nu=2/{\alpha (1-2\sigma)}\) and making use of (2.6), we obtain by the same method as above

$$\begin{aligned} \biggl( \int_{\Gamma_{1}}h(x)u(t)y(t) \,d\Gamma \biggr)^{{1} \over {1-\sigma}} \leq c_{7} \biggl[ H(t) + \bigl\Vert \nabla u(t)\bigr\Vert _{\alpha}^{\alpha}+ \int_{\Gamma _{1}}h(x)q(x)y^{2}(t) \,d\Gamma \biggr], \end{aligned}$$
(2.27)

where \(c_{7}\) is a positive constant. From (2.25), (2.26) and (2.27), we arrive at

$$\begin{aligned} L^{{1} \over {1-\sigma}}(t) \leq c \biggl[ H(t) + \bigl\Vert \nabla u(t) \bigr\Vert _{\alpha}^{\alpha}+\bigl\Vert u_{t}(t)\bigr\Vert _{2}^{2} + \int_{\Gamma_{1}}h(x)q(x)y^{2}(t) \,d\Gamma \biggr], \end{aligned}$$
(2.28)

where c is a positive constant. Consequently, a combination of (2.24) and (2.28), for some \(\xi>0\), yields

$$\begin{aligned} L^{\prime}(t) \geq\xi L^{{1} \over {1-\sigma}}(t), \quad\forall t \geq0. \end{aligned}$$
(2.29)

Integration of (2.29) over \((0,t)\) gives

$$\begin{aligned} L^{{\sigma} \over {1-\sigma}}(t) \geq\frac{1}{ L^{-{\sigma} \over {1-\sigma}}(0)-{{\xi\sigma} \over {1-\sigma}}t},\quad \forall t \geq0. \end{aligned}$$

Hence \(L(t)\) blows up in finite time

$$\begin{aligned} T^{*} \leq \frac{1-\sigma}{\xi\sigma L^{{\sigma} \over {1-\sigma}}(0)}. \end{aligned}$$

Thus the proof of Theorem 2.1 is complete. □

References

  1. Morse, PM, Ingard, KU: Theoretical Acoustics. McGraw-Hill, New York (1968)

    Google Scholar 

  2. Beale, JT, Rosencrans, SI: Acoustic boundary conditions. Bull. Am. Math. Soc. 80, 1276-1278 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boukhatem, Y, Benabderrahmane, B: Polynomial decay and blow up of solutions for variable coefficients viscoelastic wave equation with acoustic boundary conditions. Acta Math. Sin. Engl. Ser. 32(2), 153-174 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boukhatem, Y, Benabderrahmane, B: Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions. Nonlinear Anal. 97, 191-209 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Graber, PJ, Said-Houari, B: On the wave equation with semilinear porous acoustic boundary conditions. J. Differ. Equ. 252, 4898-4941 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, ST: Non-existence of global solutions for a class of wave equations with nonlinear damping and source terms. Proc. R. Soc. Edinb. A 141(4), 865-880 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Messaoudi, SA: Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation. J. Math. Anal. Appl. 320, 902-915 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Messaoudi, SA: Blow up in a non-linearly damping wave equation. Math. Nachr. 231, 1-7 (2001)

    Article  Google Scholar 

  9. Messaoudi, SI, Houari, BS: Global non-existence of solutions of a class of wave equations with non-linear damping and source terms. Math. Methods Appl. Sci. 27, 1687-1696 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ball, J: Remarks on blow-up and non-existence theorems for non-linear evolutions equations. Quarterly J. Math. Oxford Series 28(2), 473-486 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hao, J, Zhang, Y, Li, S: Global existence and blow-up phenomena for a nonlinear wave equation. Nonlinear Anal. 71, 4823-4832 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levine, HA: Some additional remarks on the non-existence of global solutions to non-linear wave equation. SIAM J. Math. Anal. 5, 138-146 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, Z: Blow up of solutions for a class of non-linear evolution equations with non-linear damping and source terms. Math. Methods Appl. Sci. 25, 825-833 (2002)

    Article  MathSciNet  Google Scholar 

  14. Piskin, E: On the decay and blow up of solutions for a quasilinear hyperbolic equations with nonlinear damping and source terms. Bound. Value Probl. 2015(127), 1 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Ang, DD, Dinh, APN: Strong solutions of quasilinear wave equation with non-linear damping. SIAM J. Math. Anal. 19, 337-347 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kalantarov, VK, Ladyzhenskaya, OA: The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type. J. Sov. Math. 10, 53-70 (1978)

    Article  MATH  Google Scholar 

  17. Levine, HA, Serrin, J: A global non-existence theorem for quasilinear evolution equation with dissipation. Archives for Rational Mechanics and Analysis 137, 341-361 (1997)

    Article  MATH  Google Scholar 

  18. Levine, HA, Park, SR: Global existence and global non-existence of solutions of the Cauchy problem for a non-linearly damped wave equation. J. Math. Anal. Appl. 228, 181-205 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A1B03930361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Han Kang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, JM., Park, JY. & Kang, Y.H. Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions. Bound Value Probl 2017, 42 (2017). https://doi.org/10.1186/s13661-017-0773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-017-0773-1

MSC

Keywords