Open Access

Complicated asymptotic behavior exponents for solutions of the evolution p-Laplacian equation with absorption

Boundary Value Problems20172017:73

DOI: 10.1186/s13661-017-0806-9

Received: 26 December 2016

Accepted: 8 May 2017

Published: 19 May 2017

Abstract

In this paper, we investigate how the initial value belonging to spaces \(W_{\sigma}(\mathbb{R}^{N})\) (\(0<\sigma<N\)) affects the complicated asymptotic behavior of solutions for the Cauchy problem of the evolution p-Laplacian equation with absorption. In fact, we reveal the fact that \(\sigma=\frac{p}{q-p+1}\) is the critical exponent for the complicated asymptotic behavior of the solutions.

Keywords

complicated asymptotic behavior evolution p-Laplacian equation critical exponent absorption

MSC

35B40 35K65

1 Introduction

In this paper, we study the complicated asymptotic behavior of solutions for the Cauchy problem of the evolution p-Laplacian equation with absorption
$$\begin{aligned} &\frac{\partial u}{\partial t}-\operatorname {div}\bigl( \vert \nabla u \vert ^{p-2}\nabla u \bigr)+ \lambda u^{q}=0 \quad \text{in }(0,\infty)\times \mathbb{R}^{N}, \end{aligned}$$
(1.1)
$$\begin{aligned} &u(x,0)=u_{0}(x)\quad \text{in }\mathbb{R}^{N}, \end{aligned}$$
(1.2)
where \(p>2\), \(q>p-1+\frac{p}{N}\), \(N\ge1\), \(\lambda>0\) and \(\varphi (x)\in W_{\sigma}^{+}(\mathbb{R}^{N})\), i.e., \(\varphi(x)\geq0\) and \(\varphi \in W_{\sigma}(\mathbb{R}^{N})\equiv\{\phi\in L^{1}_{\mathrm{loc}}(\mathbb {R}^{N}); \vert x \vert ^{\sigma}\phi(x)\in L^{\infty}(\mathbb{R}^{N})\}\) with the norm \(\Vert \varphi \Vert _{W_{\sigma}(\mathbb{R}^{N})}= \Vert \vert \cdot \vert ^{\sigma}\varphi(\cdot) \Vert _{L^{\infty}(\mathbb{R}^{N})}\).
For solutions of some evolution equations, different initial values may cause different asymptotic behaviors, see [15]. Consider Problem (1.1)-(1.2). If \(\lambda=0\) and the nonnegative initial value \(u_{0}\in L^{1}(\mathbb{R}^{N})\), it is well known that the solutions \(u(x,t)\) converge to the Barenblatt solution \(U_{M}\) in \(L^{1}(\mathbb{R}^{N})\) as \(t\to\infty\) [6]. If \(q>p-1+\frac{p}{N}\), \(0<\sigma<N\) and \(\lambda=1\), the initial value \(u_{0}(x)\in W^{+}_{\sigma}(\mathbb{R}^{N})\) and \(\lim_{ \vert x \vert \rightarrow\infty} \vert x \vert ^{\sigma}u_{0}(x)= A\), then the solutions satisfy
$$t^{\frac{\sigma}{\sigma(p-2)+p}} \bigl\vert u(x,t) -w(x,t) \bigr\vert \rightarrow0 $$
uniformly on the cone \(\{x\in\mathbb{R}^{N}; \vert x \vert \leq Ct^{\beta}\} \) as \(t\rightarrow+\infty\), where \(\beta=\frac{q-p+1}{p(q-1)}\) and \(w(x,t)=(\frac{1}{q-1})^{\frac {1}{q-1}}\) if \(0<\sigma<\frac{p}{q-p+1}\), or \(\beta=\frac{1}{\sigma (p-2)+p}\) and \(w(x,t)\) is the solution of the Cauchy problem of the evolution p-Laplacian equation without absorption
$$\begin{aligned} &\frac{\partial w}{\partial t}-\operatorname {div}\bigl( \vert \nabla w \vert ^{p-2}\nabla w \bigr)=0 \quad \text{in }(0,\infty)\times\mathbb{R}^{N}, \end{aligned}$$
(1.3)
$$\begin{aligned} &w(x,0)=w_{0}(x)=A \vert x \vert ^{-\sigma}\quad \text{in } \mathbb{R}^{N} \end{aligned}$$
(1.4)
if \(\sigma=\frac{p}{q-p+1}\), or \(\beta=\frac{1}{\sigma(p-2)+p}\) and \(w(x,t)\) is the solution of Problem (1.1) with the initial value \(w(x,0)=A \vert x \vert ^{-\sigma}\) if \(\frac{p}{q-p+1}<\sigma <N\), see details in [7]. If \(\lambda=0\) and the initial value belongs to the bounded function space, it was first founded by Vázquez and Zuazua [8] that there exists an initial value \(u_{0}\in L^{\infty}(\mathbb{R}^{N})\) such that the rescaled solutions \(u(t_{n}^{\frac {1}{p}}x,t_{n})\) converge to different functions in the weak-star topology of \(L^{\infty}(\mathbb{R}^{N})\) along different sequences \(t_{n}\rightarrow \infty\). This result means that the bounded function space \(L^{\infty }(\mathbb{R}^{N})\) provides the work space where complicated asymptotic behavior of solutions takes place.

Since then, much attention has been paid to studying the complicated asymptotic behavior of solutions for evolution equations [911]. For example, Cazenave et al. considered the Cauchy problem of the heat equation and got a series of important results about the complicated asymptotic behavior of the rescaled solutions \(t^{\mu}(t^{\beta}x, t)\) (\(\mu, \beta>0\)) in papers [1216]. In our previous papers [1719], we investigated the complicated asymptotic behavior of solutions for the porous medium equation. One can find some other interesting results of the partial differential equations in [2023].

Inspired by the above papers, in this paper, we try to find out how the initial value belonging to \(W_{\sigma}(\mathbb{R}^{N})\) with different σ affects the complicated asymptotic behavior for the solutions of Problem (1.1)-(1.2) with \(\lambda=1\). In fact, we find that if \(0<\sigma<\frac{p}{q-p+1}\), the complicated asymptotic behavior for the solutions of Problem (1.1)-(1.2) with the initial value \(u_{0}\in W_{\sigma}^{+}(\mathbb{R}^{N})\) cannot happen. While if \(\frac{p}{q-p+1}\leq\sigma< N\), then the complicated asymptotic behavior for the solutions of Problem (1.1)-(1.2) with the initial value \(u_{0}\in W_{\sigma}^{+}(\mathbb{R}^{N})\) may happen. In fact, if \(\sigma=\frac{p}{q-p+1}\), there exists an initial value \(u_{0}\in B^{\sigma,+}_{M}\equiv\{f\in W_{\sigma}^{+}(\mathbb{R}^{N}); \Vert f \Vert _{W_{\sigma}^{+}(\mathbb{R}^{N})}\leq M\}\) such that for every \(\phi\in B^{\sigma,+}_{M}\), there exists a sequence \(\{t_{n}\}\) such that
$$\lim_{t_{n}\rightarrow\infty}t^{\frac{\sigma}{\sigma(p-2)+p}}_{n} u \bigl(t^{\frac{1}{\sigma(p-2)+p}}_{n}x,t_{n}\bigr)=v(x,1) $$
uniformly on \(\mathbb{R}^{N}\), where \(v(x,t)\) is the solution of Problem (1.1) with the initial value \(v(x,0)=\phi\); or if \(\frac{p}{q-p+1}<\sigma<N\), then there exists an initial value \(u_{0}\in B^{\sigma,+}_{M}\) such that for every \(\varphi\in B^{\sigma,+}_{M}\), there exists a sequence \(\{t_{n}\}\) such that
$$\lim_{t_{n}\rightarrow\infty}t^{\frac{\sigma}{\sigma(p-2)+p}}_{n} u \bigl(t^{\frac{1}{\sigma(p-2)+p}}_{n}x,t_{n}\bigr)=w(x,1) $$
uniformly on \(\mathbb{R}^{N}\), where \(w(x,t)\) is the solution of Problem (1.3)-(1.4) with the initial value \(w(x,0)=\varphi\). So, the complexity of asymptotic behavior of the solutions for \(\frac{p}{q-p+1}\leq\sigma< N\) occurs, according to Vázquez and Zuazua [8]. Therefore, we get that \(\sigma=\frac{p}{q-p+1}\) is the critical exponent for the complexity of asymptotic behavior of solutions. For convenience, in the rest of this paper, we define \(\gamma=\frac {1}{\sigma(p-2)+p}\) and put \(\lambda=1\) in (1.2).

The rest of this paper is organized as follows. In the next section, we give some concepts and lemmas. Section 3 is devoted to the study of the nonexistence of complexity for the asymptotic behavior of solutions. The complexity of asymptotic behavior for the solutions is considered for \(\sigma=\frac{p}{q-p+1}\) in Section 4 and for \(\frac{p}{q-p+1}<\sigma<N\) in Section 5, respectively.

2 Preliminaries

In this section, we first give some concepts as [2426]. For \(f\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})\) and \(r>0\), we define
$$\Vert \!\vert f \vert \!\Vert _{r}=\sup _{R\geq r}R^{-\frac {N(p-2)+p}{p-2}} \int_{\{ \vert x \vert \leq R\}} \bigl\vert f(x) \bigr\vert \,dx. $$
The space \(X_{0}\) is given by
$$X_{0}\equiv \Bigl\{ \varphi\in L^{1}_{\mathrm{loc}} \bigl( \mathbb{R}^{N} \bigr); \Vert \!\vert \varphi \vert \!\Vert _{1}< \infty \text{ and } \lim_{r\rightarrow+\infty} \Vert \! \vert \varphi \vert \!\Vert _{r}=0 \Bigr\} $$
with the norm \(\Vert \!\vert \cdot \vert \!\Vert _{1}\). The existence and uniqueness of global weak solution for Problem (1.1)-(1.2) with the initial value \(\varphi(x)\in X_{0}\) has been shown in [24, 25] and this solution satisfies
$$\begin{aligned} u(x,t)\in C^{\frac{\alpha}{2},\alpha} \bigl((0,\infty)\times \mathbb{R}^{N} \bigr) \end{aligned}$$
(2.1)
for some \(\alpha>0\). Note that for \(0<\sigma<N\),
$$W_{\sigma}\bigl(\mathbb{R}^{N}\bigr)\subset X_{0}. $$
So we can define an operator \(T(t): W_{\sigma}(\mathbb{R}^{N})\to C(\mathbb {R}^{N})\) as
$$\begin{aligned} T(t)u_{0}(x)=u(x,t), \end{aligned}$$
(2.2)
where \(u(x,t)\) is the solution of Problem (1.1)-(1.2) with the initial value \(u_{0}(x)\).

Lemma 2.1

[24, 26]

For \(w_{0}\in X_{0}\), there exists a unique global weak solution \(w(x,t)\) of Problem (1.3)-(1.4). Moreover, the evolution p-Laplacian equation generates a bounded semigroup in \(X_{0}\) given by
$$S(t): w_{0}\rightarrow w(x,t). $$
If \(1\leq q\leq\infty\) and \(w_{0}\in L^{q}(\mathbb{R}^{N})\subset X_{0}\), then \(S(t)\) is a contraction bounded semigroup in \(L^{q}(\mathbb{R}^{N})\).

The following two lemmas appeared in [27] to study the chaotic dynamic systems in the evolution p-Laplacian equation. Let us write \(\Omega(t)=\{x\in\mathbb{R}^{N}; w(x,t)>0\}\), and let \(d(x,\Omega(t))\) be the distance from x to \(\Omega(t)\).

Lemma 2.2

Propagation speed estimate [27]

Suppose \(0<\sigma<N\). If \(w(x,t)\) is the weak solution of Problem (1.3)-(1.4) with the initial value \(w_{0}\in W_{\sigma}^{+}(\mathbb{R}^{N})\), then for \(0\leq t_{1}< t_{2}<\infty\), we have
$$\Omega(t_{2})\subset\Omega_{\rho(t_{2}-t_{1})}(t_{1}), $$
where \(\Omega_{\rho(t_{2}-t_{1})}(t_{1})\equiv\{x\in\mathbb{R}^{N}; d(x,\Omega (t_{1}))< \rho(t_{2}-t_{1})\}\) and \(\rho(t_{2}-t_{1})=C(t_{2}-t_{1})^{\frac{1}{\sigma(p-2)+p}} \Vert u_{0} \Vert _{W_{\sigma}(\mathbb{R}^{N})}^{\frac{p-2}{\gamma}}\).

The following lemma concerns the decay estimate of the solutions.

Lemma 2.3

Space-time decay estimate [27]

Let \(0<\sigma<N\). If \(u_{0}\in W_{\sigma}^{+}(\mathbb{R}^{N})\), then for \(t>0\) and \(x\in\mathbb{R}^{N}\),
$$\begin{aligned} S(t)u_{0}(x)\leq C \bigl(t^{\frac{2}{\gamma}}+ \vert x \vert ^{2} \bigr)^{-\sigma}. \end{aligned}$$
(2.3)

3 Nonexistence of complexity: \(0<\sigma<\frac{p}{q-p+1}\)

In this section, we consider the nonexistence of complicated asymptotic behavior for the solutions of Problem (1.1)-(1.2) with the initial value \(u_{0}\in W^{+}_{\sigma}(\mathbb{R}^{N})\). The ideas of the proof of the following lemma come from [1, 2, 7], we give it here for completeness.

Lemma 3.1

Let
$$q>p-1+\frac{p}{N}, \quad\quad 0< \sigma< \frac{p}{q-p+1}, $$
and let
$$\varphi\in W_{\sigma}^{+}\bigl(\mathbb{R}^{N}\bigr). $$
If \(u(x,t)\) is the solution of Problem (1.1)-(1.2) with the initial value \(u_{0}(x)=\varphi(x)\), then
$$\begin{aligned} \lim_{t\to\infty}\sup_{ \vert x \vert \leq Ct^{\frac{q-p+1}{p(q-1)}}}t^{\frac {1}{q-1}}u(x,t) \leq \biggl( \frac{1}{q-1} \biggr)^{\frac{1}{q-1}}. \end{aligned}$$
(3.1)

Proof

Let
$$u_{k}(x,t)=k^{\frac{p}{q-p+1}}u\bigl(kx,k^{\frac{p(q-1)}{q-p+1}}t\bigr), \quad k>0. $$
So, for every \(k >0\), \(u_{k}(x,t)\) is a solution of Problem (1.1)-(1.2) with the initial value
$$u_{k}(x,0)=\varphi_{k}(x)=k^{\frac{p}{q-p+1}}\varphi(kx), \quad k>0. $$
Since \(\overline{u(x,t)}=(\frac{1}{q-1})^{\frac{1}{q-1}}t^{-\frac {1}{q-1}}\) is a solution of equation (1.1), it follows from the comparison principle that for every \((x,t)\in(0,+\infty)\times\mathbb{R}^{N}\),
$$u_{k}(x,t)\leq\overline{u(x,t)}. $$
This uniform upper bound implies that the sequence \(\{u_{k}\}\) is equicontinuous on compact subsets of \((0,+\infty)\times\mathbb{R}^{N}\). So we can extract a convergent subsequence \(\{u_{k'}\}\) such that
$$u_{k'}(x,t)\stackrel{ k'\rightarrow\infty}{ \longrightarrow} U(x,t)\leq\overline{u(x,t)} $$
on compact subsets of \((0,+\infty)\times\mathbb{R}^{N}\). Therefore, for every \(C>0\), putting \(t=1\), \(kx = x'\) and \(k^{\frac {p(q-1)}{q-p+1}} = t'\), we obtain, omitting the primes,
$$\lim_{t\to\infty}t^{\frac{1}{q-1}}\sup_{\{ \vert x \vert \leq Ct^{\frac{q-p+1}{p(q-1)}}\}}u(x,t) \leq \biggl( \frac{1}{q-1} \biggr)^{\frac{1}{q-1}}. $$
The proof of this lemma is complete. □

Theorem 3.2

Suppose
$$q>p-1+\frac{p}{N} \quad\textit{and}\quad 0< \sigma< \frac{p}{q-p+1}. $$
Let \(u(x,t)\) be the solutions of Problem (1.1)-(1.2) with the initial value \(u_{0}\in W_{\sigma}^{+}(\mathbb{R}^{N})\). Then the complexity cannot occur in the asymptotic behavior of the rescaled solutions \(t^{\frac{\sigma}{\gamma}}u(t^{\frac{1}{\gamma}} x,t)\) in \(L^{\infty }(\mathbb{R}^{N})\). In other words, if there exists a function \(\phi\in W_{\sigma}(\mathbb{R}^{N})\) and a sequence \(t_{n}\to\infty\) such that
$$\begin{aligned} & \lim_{t_{n}\to\infty}t_{n}^{\frac{\sigma}{\gamma}}u \bigl(t_{n}^{\frac{1}{\gamma}} x,t_{n} \bigr)=\varphi(x) \end{aligned}$$
(3.2)
uniformly on \(\mathbb{R}^{N}\), then
$$\varphi(x)\equiv0. $$

Proof

Suppose that (3.2) holds for some \(\varphi(x)\not\equiv0\). And, without loss of generality, we assume that for some \(x_{0}\in\mathbb{R}^{N}\),
$$\begin{aligned} \varphi(x_{0})>0. \end{aligned}$$
(3.3)
It follows from (3.2) that there exists an integer \(n_{1}\) such that if \(n\ge n_{1}\), then
$$\begin{aligned} t_{n}^{{\frac{\sigma}{\gamma}}}u \bigl(t_{n}^{\frac{1}{\gamma }}x_{0},t_{n} \bigr)\ge\frac{1}{2}\varphi(x_{0}). \end{aligned}$$
(3.4)
Note that \(u_{0}\in W_{\sigma}^{+}(\mathbb{R}^{N})\). By using Lemma 3.1, we obtain that
$$\begin{aligned} \lim_{t\to\infty}t^{\frac{1}{q-1}}u(x,t) \leq \biggl( \frac{1}{q-1} \biggr)^{\frac{1}{q-1}} \end{aligned}$$
(3.5)
uniformly on the sets \(\{x\in\mathbb{R}^{N}; \vert x \vert \leq Ct^{\frac{q-p+1}{p(q-1)}}\}\) for \(C>0\). It follows from (3.3) and the fact \({\frac{\sigma}{\gamma}}-\frac {1}{q-1}<0\) that there exists an integer \(n_{2}\) such that if \(n\ge n_{2}\), then
$$t_{n}^{{\frac{\sigma}{\gamma}}-\frac{1}{q-1}} {\biggl(\frac{1}{q-1}\biggr)^{\frac{1}{q-1}}}< \frac{1}{2}\varphi(x_{0}). $$
So, from (3.5), we have
$$\begin{aligned} t_{n}^{{\frac{\sigma}{\gamma}}}u(x,t_{n})=t_{n}^{{\frac{\sigma }{\gamma}}-\frac{1}{q-1}} t^{\frac{1}{q-1}}u(x,t_{n})< \frac{1}{2} \varphi(x_{0}) \quad \text{for } x\in \bigl\{ y; \vert y \vert \leq Ct_{n}^{\frac{q-p+1}{p(q-1)}} \bigr\} . \end{aligned}$$
(3.6)
Taking \(n=\max(n_{1}, n_{2})\), and then letting \(C=2 \vert x_{0} \vert t_{n}^{\frac{1}{\gamma}-{\frac{q-p+1}{p(q-1)}}}\) and \(x=t_{n}^{\frac {1}{\gamma}}x_{0}\), we have
$$x\in\bigl\{ y; \vert y \vert \leq Ct_{n}^{\frac{q-p+1}{p(q-1)}}\bigr\} . $$
Thus we deduce from (3.4) and (3.6) that
$$\frac{1}{2} \varphi(x_{0})\leq t_{n}^{{\frac{\sigma}{\gamma}}}u \bigl(t_{n}^{\frac {1}{\gamma}}x_{0},t_{n}\bigr)< \frac{1}{2} \varphi(x_{0}). $$
So we get a contradiction. Therefore, (3.2) cannot hold for \(\varphi(x)\not\equiv0\). This means that if (3.2) holds with \(0<\sigma<\frac{p}{q-p+1}\), then
$$\varphi(x)\equiv0\quad\text{for } x\in\mathbb{R}^{N}, $$
and the proof is complete. □

4 Complexity: \(\sigma=\frac{p}{q-p+1}\)

To give the result about the complicated asymptotic behavior of solutions, we need introduce some concepts. For \(0<\sigma<N\) and \(M>0\), the convex closed set \(B^{\sigma,+}_{M}\) is defined as
$$B^{\sigma,+}_{M}\equiv\bigl\{ \varphi\in W^{+}_{\sigma}\bigl( \mathbb{R}^{N}\bigr)\cap C\bigl(\mathbb {R}^{N}\bigr); \Vert \varphi \Vert _{W^{+}_{\sigma}(\mathbb{R}^{N})}\leq M\bigr\} . $$
For \(\lambda>0\), \(0<\sigma<N\), \(\varphi(x)\in L^{1}(\mathbb{R}^{N})\), we define
$$D^{\sigma}_{\lambda}\varphi(x)=\lambda^{\frac{2\sigma}{\gamma}}\varphi \bigl( \lambda^{\frac{2}{\gamma}}x\bigr). $$
For \(\sigma=\frac{p}{q-p+1}\), it follows from this definition and (2.2) that the following commutative relation holds [28]:
$$\begin{aligned} D^{\sigma}_{\lambda} \bigl[T \bigl( \lambda^{2} t \bigr)u_{0} \bigr]=T(t) \bigl[D^{\sigma}_{\lambda}u_{0} \bigr]. \end{aligned}$$
(4.1)
Now we give the result that for \(\sigma=\frac{p}{q-p+1}\), the complicated asymptotic behavior for the solutions of Problem (1.1)-(1.2) with the initial value \(u_{0}\in W_{\sigma}^{+}(\mathbb {R}^{N})\) can happen.

Theorem 4.1

Suppose \(q>p+\frac{p}{N}\) and \(M>0\). Let
$$\sigma=\frac{p}{q-p+1}. $$
Then there exists a function \(u_{0}\in B^{\sigma,+}_{M}\) such that for every \(\varphi\in B^{\sigma,+}_{M}\), there exists a sequence \(t_{n}\to \infty\) satisfying
$$\begin{aligned} \lim_{n\to\infty}t^{\frac{\sigma}{\gamma}}_{n}u \bigl(t^{\frac{1}{\gamma}}_{n}x, t_{n} \bigr)=T(1)\varphi(x) \end{aligned}$$
(4.2)
uniformly on \(\mathbb{R}^{N}\), where \(u(x,t)\) is the solution of Problem (1.1)-(1.2) with the initial value \(u_{0}(x)\).

Proof

By the definition of \(B^{\sigma,+}_{M}\), there exists a countable set \(F=\{\phi_{i}; \phi_{i}\in B^{\sigma ,+}_{M}\bigcap L^{1}(\mathbb{R}^{N}), i=1,2,\ldots\}\) such that for every \(\epsilon>0\) and \(\varphi\in B^{\sigma,+}_{M}\), there exists a function \(\phi_{\epsilon}\in F\) satisfying
$$\begin{aligned} \Vert \phi_{\epsilon}-\varphi \Vert _{L^{\infty}(\mathbb{R}^{N})}< \epsilon. \end{aligned}$$
(4.3)
Therefore, there exists a sequence \(\{\varphi_{j}\}_{j\geq1}\subset F\) such that
  1. I.
    For every \(\phi_{i}\in F\), there exists a subsequence \(\{\varphi_{i_{k}}\} _{k\geq1}\) of the sequence \(\{\varphi_{j}\}_{j\geq1}\) such that
    $$\begin{aligned} \varphi_{j_{k}}(x)=\phi_{j}\quad\text{for all } k\geq1; \end{aligned}$$
    (4.4)
     
  2. II.
    There exists a constant \(C>0\) such that
    $$\begin{aligned} \max{ \bigl( \Vert \varphi_{j} \Vert _{L^{\infty}(\mathbb{R}^{N})}, \Vert \varphi_{j} \Vert _{L^{1}(\mathbb {R}^{N})} \bigr)} \leq Cj \quad\text{for } j\geq1. \end{aligned}$$
    (4.5)
     
Note that \(\frac{p}{q-p+1}=\sigma< N\). So the following inequality holds:
$$N\gamma-\sigma{\bigl(N(p-2)+p\bigr)}>0. $$
Let
$$\begin{aligned} \lambda_{j}= \textstyle\begin{cases} 2,& j=1,\\ \max(j^{\frac{3\gamma}{N\gamma-\sigma[N(p-2)+p]}}\lambda_{j-1}, (2^{j}\lambda_{j-1}^{\frac{2}{\gamma}}+C2^{j}M^{\frac{p-2}{\gamma}})^{\frac {\gamma}{2}} ), &j>1. \end{cases}\displaystyle \end{aligned}$$
(4.6)
Now we can follow the methods given in [9, 10, 12] to construct an initial value by
$$\begin{aligned} u_{0}(x)= =\sum_{j=1}^{\infty}D^{\sigma}_{\lambda_{j}^{-1}} \bigl[\chi_{j}(x)\varphi_{j}(x) \bigr]=u_{n}+v_{n}+w_{n}, \end{aligned}$$
(4.7)
where
$$\begin{aligned} \begin{gathered} u_{n} =\sum _{j=1}^{n-1} D^{\sigma}_{\lambda_{j}^{-1}} \bigl[ \chi_{j}(x)\varphi_{j}(x) \bigr],\quad \quad v_{n}=D^{\sigma}_{\lambda_{n}^{-1}} \bigl[ \chi_{n}(x)\varphi_{n}(x) \bigr], \\ w_{n} =\sum_{j=n+1}^{\infty} D^{\sigma}_{\lambda_{j}^{-1}} \bigl[\chi_{j}(x)\varphi_{j}(x) \bigr], \end{gathered} \end{aligned}$$
(4.8)
and \(\chi_{j}(x)\) is the cut-off function defined on \(\{x\in\mathbb {R}^{N}; 2^{-j}< \vert x \vert <2^{j}\}\) relatively to \(\{x\in\mathbb {R}^{N}; 2^{-j+1}< \vert x \vert <2^{j-1}\}\). Note first that if \(\varphi\in B^{\sigma,+}_{M}\), then
$$\Vert \varphi \Vert _{W_{\sigma}(\mathbb{R}^{N})}\leq M $$
and
$$0\leq\varphi\in C\bigl(\mathbb{R}^{N}\bigr). $$
By (4.6) and (4.7), we have
$$\Vert u_{0} \Vert _{L^{\infty}(\mathbb{R}^{N})}\leq \Vert u_{0} \Vert _{W_{\sigma}(\mathbb{R}^{N})}\leq\sup_{j\geq1} \bigl\Vert { \lambda_{j}}^{-{\frac{2\sigma}{\gamma}}} \chi_{j} \bigl(x/ \lambda_{j}^{\frac{2}{\gamma}} \bigr) \varphi_{j} \bigl(x/ \lambda_{j}^{\frac{2}{\gamma}} \bigr) \bigr\Vert _{{W_{\sigma}(\mathbb {R}^{N})}}\leq M, $$
so
$$u_{0}\in B^{\sigma,+}_{M}. $$
It follows from (4.1) that
$$D^{\sigma}_{\lambda_{n}} \bigl[T \bigl( \lambda_{n}^{2}t \bigr)u_{0} \bigr]= T(t) \bigl[D^{\sigma}_{\lambda_{n}}u_{0} \bigr] = T(t) \bigl[D^{\sigma}_{\lambda_{n}}u_{n}+ D^{\sigma}_{\lambda_{n}}v_{n}+D^{\sigma}_{\lambda_{n}}w_{n} \bigr]. $$
We thus conclude from the definition of \(\lambda_{j}\), comparison principle [29] and Lemma 2.2 that
$$\operatorname {supp}\bigl(T(1) \bigl[D^{\sigma}_{n}(w_{n}) \bigr] \bigr)\subset \bigl\{ x\in\mathbb{R}^{N}; \vert x \vert >2^{n}+CM^{\frac{p-2}{\gamma}} \bigr\} $$
and
$$\operatorname {supp}\bigl({T(1)} \bigl[D^{\sigma}_{n}(v_{n}+u_{n}) \bigr] \bigr)\subset \bigl\{ x\in\mathbb{R}^{N}; \vert x \vert < 2^{n}+CM^{\frac{p-2}{\gamma}} \bigr\} , $$
so
$$\operatorname {supp}\bigl(T(1)\bigl[D^{\sigma}_{n}(w_{n})\bigr] \bigr)\cap \operatorname {supp}\bigl({T(1)}\bigl[D^{\sigma}_{n}(v_{n}+u_{n}) \bigr]\bigr)=\emptyset, $$
hence
$$T(1) \bigl[D^{\sigma}_{\lambda_{n}}u_{n}+ D^{\sigma}_{\lambda_{n}}v_{n}+D^{\sigma}_{\lambda_{n}}w_{n} \bigr] = T(1) \bigl[D^{\sigma}_{\lambda_{n}}u_{n}+D^{\sigma}_{\lambda_{n}}v_{n} \bigr] +T(1) \bigl[D^{\sigma}_{\lambda_{n}}w_{n} \bigr]. $$
The same result holds for \(0< t<1\),
$$T(t) \bigl[D^{\sigma}_{\lambda_{n}}u_{n}+ D^{\sigma}_{\lambda_{n}}v_{n}+D^{\sigma }_{\lambda_{n}}w_{n} \bigr] = T(t) \bigl[D^{\sigma}_{\lambda_{n}}u_{n}+D^{\sigma}_{\lambda_{n}}v_{n} \bigr] +T(t) \bigl[D^{\sigma}_{\lambda_{n}}w_{n} \bigr]. $$
From the comparison principle [25, 29], Lemma 2.1, (4.5) and (4.6), we have
$$ \begin{aligned}[b] \bigl\Vert T(1) \bigl[D^{\sigma}_{\lambda_{n}}w_{n} \bigr] \bigr\Vert _{L^{\infty}(\mathbb{R}^{N})} &\leq \bigl\Vert S(1) \bigl[D^{\sigma}_{\lambda_{n}}w_{n} \bigr] \bigr\Vert _{L^{\infty}(\mathbb{R}^{N})} \leq C \bigl\Vert D^{\sigma}_{\lambda_{n}}w_{n} \bigr\Vert _{L^{\infty}(\mathbb{R}^{N})} \\ & \leq C\lambda_{n}^{{\frac{2\sigma}{\gamma}}}\lambda_{n+1}^{-{\frac {2\sigma}{\gamma}}} \sum_{i=n+1}^{\infty}2^{-i}i \leq C2^{-n}\to0 \end{aligned} $$
(4.9)
as \(n\to\infty\). For every \(\phi\in F\), it follows from (4.4) and (4.8) that there exists a sequence \(\{\varphi_{n_{k}}\}_{k\geq1}\) such that if
$$x\in E_{k}\equiv\bigl\{ y\in\mathbb{R}^{N}; 2^{-n_{k}+1}< \vert y \vert < 2^{n_{k}-1}\bigr\} , $$
then
$$\begin{aligned} D^{\sigma}_{\lambda_{n_{k}}}u_{n_{k}}(x)=D^{\sigma}_{\lambda_{n_{k}}} \bigl[D^{\sigma}_{\lambda_{n_{k}}^{-1}}\chi_{n_{k}}\varphi_{n_{k}} \bigr](x)=\chi_{n_{k}}(x)\varphi_{n_{k}}(x) =\phi(x). \end{aligned}$$
(4.10)
By the \(L^{1}\)-contraction principle [25, 26], we conclude from (4.6) and (4.10) that
$$ \begin{aligned}[b] & \biggl\Vert T(1/2) \bigl[D^{\sigma}_{\lambda _{n}}(u_{n_{k}}+v_{n_{k}}) \bigr]- T \biggl(\frac{1}{2} \biggr)\phi \biggr\Vert _{L^{1}(\mathbb{R}^{N})} \\ &\quad \leq \bigl\Vert \bigl[D^{\sigma}_{\lambda_{n_{k}}}(u_{n_{k}}+v_{n_{k}}) \bigr]- \phi \bigr\Vert _{L^{1}(\mathbb{R}^{N})} \\ &\quad = C \bigl\Vert D^{\sigma}_{\lambda_{n_{k}}}u_{n_{k}} \bigr\Vert _{L^{1}(\mathbb{R}^{N})} +C \Vert \phi \Vert _{L^{1}(\mathbb {R}^{N}\setminus E_{n_{k}})} \\ &\quad \leq C {n_{k}} \biggl(\frac{\lambda_{{n_{k}}-1}}{\lambda_{n_{k}}} \biggr)^{{\frac{2\sigma}{\gamma}}(N(q-p+1)+p)} +C \Vert \phi \Vert _{L^{1}(\mathbb{R}^{N}\setminus E_{n_{k}})} \\ &\quad \leq C{n_{k}}^{-2}+C \Vert \phi \Vert _{L^{1}(\mathbb{R}^{N}\setminus E_{n_{k}})} \to0 \end{aligned} $$
(4.11)
as \(k\to\infty\). Note that
$$\begin{aligned} \begin{aligned}[b] & \biggl\Vert T \biggl( \frac{1}{2} \biggr) \bigl[D^{\sigma}_{\lambda_{n}}(u_{n_{k}}+v_{n_{k}}) \bigr] \biggr\Vert _{L^{\infty}(\mathbb{R}^{N})} \\ &\quad \leq \biggl\Vert S \biggl(\frac{1}{2} \biggr)D^{{\frac{2\sigma}{\gamma }},\beta}_{\lambda_{n_{k}}}[u_{n_{k}-1}+v_{n_{k}}] \biggr\Vert _{L^{\infty}} \\ &\quad \leq C \bigl\Vert D^{\sigma}_{\lambda_{n_{k}}}[u_{n_{k}-1}+v_{n_{k}}] \bigr\Vert _{L^{1}(\mathbb{R}^{N})}^{\frac{2}{N(m-1)+2}}\leq C \bigl( \Vert \phi \Vert _{L^{1}} \bigr). \end{aligned} \end{aligned}$$
(4.12)
Thus we deduce from (4.11) and (4.12) that there exists a subsequence, which we still denote as \(T(\frac{1}{2})D^{\sigma}_{\lambda_{n_{k}}}[u_{n_{k}-1}+v_{n_{k}}]\), which satisfies
$$T \biggl(\frac{1}{2} \biggr)D^{\sigma}_{\lambda_{n_{k}}}[u_{n_{k}-1}+v_{n_{k}}] \stackrel{w*}{\longrightarrow} T \biggl(\frac{1}{2} \biggr)\phi \quad \text{in } L^{\infty} \bigl(\mathbb{R}^{N} \bigr) \text{ as } k\rightarrow \infty. $$
Therefore, the regularity of the solutions (see (2.1)) indicates that
$$\begin{aligned} T(1)D^{\sigma}_{\lambda_{n_{k}}}[u_{n_{k}-1}+v_{n_{k}}] \xrightarrow{k\rightarrow\infty} T(1)\phi\quad\text{in } L^{\infty }_{\mathrm{loc}} \bigl(\mathbb{R}^{N} \bigr). \end{aligned}$$
(4.13)
Note that
$$D^{\sigma}_{\lambda_{n_{k}}}[u_{n_{k}}+v_{n_{k}}], \quad \phi\in B^{\sigma,+}_{M}. $$
So, for every \(\varepsilon>0\), we obtain from Lemma 2.2 and the comparison principle that there exists \(k_{1}>0\) such that if \(\vert x \vert \geq2^{n_{k1}}\), then
$$\begin{aligned} T(1) \bigl[D^{\sigma}_{\lambda_{n_{k}}}u_{n_{k}}+v_{n_{k}} \bigr](x)\leq S(1) \bigl[D^{\sigma}_{\lambda_{n_{k}}}u_{n_{k}}+v_{n_{k}} \bigr](x)< \frac{\varepsilon}{3} \end{aligned}$$
(4.14)
and
$$\begin{aligned} T(1)\phi(x)\leq S(1)\phi(x)< \frac{\varepsilon}{3}. \end{aligned}$$
(4.15)
Therefore, from (4.13), (4.14) and (4.15), we get
$$T(1) \bigl[D^{\sigma}_{\lambda_{n_{k}}}u_{n_{k}}+v_{n_{k}} \bigr](x)\xrightarrow{k\to\infty} T(1)\phi(x) $$
uniformly on \(\mathbb{R}^{N}\). Combining this with (4.9), we get that for every \(\phi\in F\), there exists a sequence \(n_{k}\to\infty\) as \(k\to\infty\) such that
$$\begin{aligned} D^{\sigma}_{\lambda_{n_{k}}} \bigl[T \bigl( \lambda_{n_{k}}^{2} \bigr)u_{0} \bigr]\xrightarrow{k \to\infty}T(1) \phi \end{aligned}$$
(4.16)
uniformly on \(\mathbb{R}^{N}\). Taking \(t_{k}=\lambda_{n_{k}}^{\frac{1}{2}}\) in (4.16), we can conclude from (4.3) that (4.2) holds, and the proof is complete. □

5 Complexity: \(\frac{p}{q-p+1}<\sigma<N\)

In this section, we investigate the complicated asymptotic behavior of solutions for Problem (1.1)-(1.2) with the initial value \(u_{0}\in W_{\sigma}(\mathbb{R}^{N})\) (\(\frac{p}{q-p+1}<\sigma<N\)).

Theorem 5.1

Suppose \(q>p+\frac{p}{N}\) and \(M>0\). Let
$$\frac{p}{q-p+1}< \sigma< N. $$
Then there exists a function \(u_{0}\in B^{\sigma,+}_{M}\) such that for every \(\phi\in B^{\sigma,+}_{M}\), there exists a sequence \(t_{n}\to\infty \) satisfying
$$\begin{aligned} \lim_{n\to\infty}t^{\frac{\sigma}{\gamma}}_{n}u \bigl(t^{\frac{1}{\gamma}}_{n}x, t_{n} \bigr)=S(1)\phi(x) \end{aligned}$$
(5.1)
uniformly on \(\mathbb{R}^{N}\), where \(u(x,t)\) is the solution of Problem (1.1)-(1.2) with the initial value \(u_{0}\).

Proof

In our previous paper [27], we have obtained the result that there exists a function \(u_{0}\in B^{\sigma,+}_{M}\) such that for every \(\phi\in B^{\sigma,+}_{M}\), there exists a sequence \(t_{n}\to\infty\) satisfying
$$\begin{aligned} \lim_{n\to\infty}t^{\frac{\sigma}{\gamma}}_{n}w \bigl(t^{\frac{1}{\gamma}}_{n}x, t_{n} \bigr)=S(1)\phi(x) \end{aligned}$$
(5.2)
uniformly on \(\mathbb{R}^{N}\), where \(w(x,t)\) is the solution of Problem (1.3)-(1.4) with the initial value \(w_{0}(x)=u_{0}(x)\). To get Theorem 5.1, we only need to prove that if \(u_{0}(x)=\varphi(x)\in W^{+}_{\sigma}(\mathbb{R}^{N})\), then for every sequence \(t_{n}\rightarrow\infty\), the following limit holds:
$$\begin{aligned} \lim_{{t_{n}}\rightarrow\infty} {t_{n}}^{\frac{\sigma}{p+\sigma(p-2)}} \bigl\vert u \bigl({t_{n}}^{\frac{1}{p+\sigma(p-2)}}x,{t_{n}} \bigr) -w \bigl({t_{n}}^{\frac{1}{p+\sigma(p-2)}}x,{t_{n}} \bigr) \bigr\vert =0 \end{aligned}$$
(5.3)
uniformly on \(\mathbb{R}^{N}\). The ideas of the following proof come from [1, 2, 7].
Without loss of generality, assuming that \(\Vert \varphi \Vert _{W_{\sigma}(\mathbb{R}^{N})}\leq M\), we consider the following problem:
$$\begin{aligned}& \frac{\partial V}{\partial t}-\operatorname {div}\bigl( \vert \nabla V \vert ^{p-2}\nabla V \bigr)=0\quad\text{in }\mathbb{R}^{N}\times(0,T), \\& V(x,0)=M \vert x \vert ^{-\sigma}\quad\text{in } \mathbb{R}^{N}\setminus\{0\}. \end{aligned}$$
Then we define the functions
$$w_{k}(x,t)=k^{\sigma}w\bigl(kx,k^{\gamma}t\bigr),\quad\quad u_{k}(x,t)=k^{\sigma}u\bigl(kx,k^{\gamma}t\bigr) $$
and
$$V_{k}(x,t)=k^{\sigma}V\bigl(kx,k^{\gamma}t\bigr). $$
It follows from the comparison principle that
$$V(x,t)=V_{k}(x,t)\geq w_{k}(x,t)\geq u_{k}(x,t). $$
Therefore
$$u_{k}(x,t)\leq w_{k}(x,t)\leq CV_{k} \biggl(x,t+ \frac{1}{k^{\gamma}} \biggr),\quad k>0. $$
It is well known that
$$V(x,t)=t^{-\frac{\sigma}{\gamma}}f\biggl(\frac{ \vert x \vert }{t^{\frac {1}{\gamma}}}\biggr), $$
where \(f(x)\) is the positive solution of the equation
$$f''(\eta)+\biggl(\frac{n-1}{\eta}+ \frac{\eta}{\gamma}\biggr)f'(\eta) +\frac{\sigma}{\gamma}f(\eta)=0. $$
As in [7], there exists a constant \(C>0\) such that if \(k>0\), \(x\in \mathbb{R}^{N}\), \(t\geq\tau>0\), then
$$V_{k}(x,t)\leq C\tau^{-\frac{\sigma}{\gamma}}, $$
and
$$\lim_{\eta\rightarrow\infty}\eta^{\frac{\sigma}{\gamma}}f(\eta)=M. $$
From these, we can get that
$$\begin{aligned} \int _{0}^{\tau} \int_{B_{1}}V(x,t)\,dx\,dt\leq C\tau \end{aligned}$$
(5.4)
and
$$\begin{aligned} \int _{0}^{\tau} \int_{B_{1}}V^{q}(x,t)\,dx\,dt\leq C\tau+ C \textstyle\begin{cases}\tau^{\frac{N-\sigma q+\gamma}{\gamma}}&\text{if } N-\sigma q+\gamma>0, N\neq \sigma q,\\ \tau\log{\frac{1}{\tau}}&\text{if } N=\sigma q,\\ \log{(1+k^{\gamma}\tau)}&\text{if } N-\sigma q+\gamma=0,\\ k^{-N+\sigma q-\gamma}&\text{if } N-\sigma q+\gamma< 0, \end{cases}\displaystyle \end{aligned}$$
(5.5)
where \(k^{\gamma}\tau\geq1\). Let \(\xi\in C^{\infty}({Q_{T}})\) which vanishes at large x and at \(t=T\), then \(u_{k}\) and \(w_{k}\) satisfy the integral identity
$$\begin{aligned} & \iint _{Q_{T}} \biggl[\xi_{t} (w_{k}-u_{k})- \frac{1}{\gamma}k^{-\alpha}\xi u_{k}^{q} \biggr]\,dx\,dt+ \iint _{Q_{T}}a^{ij}\frac{\partial(w_{k}-u_{k})}{\partial x_{i}} \frac{\partial\xi }{\partial x_{j}}\,dx\,dt =0, \end{aligned}$$
(5.6)
where
$$\alpha=\sigma(q-p+1)-p>\frac{p}{q-p+1}(q-p+1)-p=0 $$
and
$$\begin{aligned} a^{i,j}_{k}(x,t)&=\delta_{ij}\cdot \int^{1}_{0} \bigl\vert s\nabla u_{k}+(1-s)\nabla w_{k} \bigr\vert ^{p-2}\,ds \\ &\quad{} +(p-2) \int^{1}_{0} \bigl\vert s\nabla u_{k}+(1-s)\nabla w_{k} \bigr\vert ^{p-4} \bigl(su_{k}+(1-s)w_{k} \bigr)_{x_{i}} \bigl(su_{k}+(1-s)w_{k} \bigr)_{x_{j}}\,ds. \end{aligned}$$
Note that \(\{w_{k}\}\), \(\{u_{k}\}\) are uniformly bounded on any compact subsets of \(Q_{T}\setminus\{(0, 0)\}\), and that \(\{\nabla w_{k}\}\), \(\{ \nabla u_{k}\}\) are Hölder continuous on any compact subsets of \(Q_{T}\), see [25]. Then there exist subsequences \(\{v_{k_{\ell}}\}\) of \(\{w_{k}\}\) and \(\{u_{k_{\ell}}\}\) of \(\{u_{k}\}\), and two functions \(w'(x,t), u'(x,t)\in C(Q_{T})\cap L^{1}_{\mathrm{loc}}(0,T; W^{1}_{\mathrm{loc}}(\mathbb{R}^{N}))\) such that
$$\begin{aligned} &w_{k_{\ell}}(x,t)\rightarrow w'(x,t), \qquad u_{k_{\ell}}(x,t)\rightarrow u'(x,t), \\ &\nabla w_{k_{\ell}}(x,t)\rightarrow\nabla w'(x,t),\quad\quad \nabla u_{k_{\ell}}(x,t)\rightarrow\nabla u'(x,t), \end{aligned} $$
in \(C(\mathbb{K})\) as \(k_{\ell}\rightarrow\infty\), where \(\mathbb{K}\) is a compact subset of \({S}_{T}\). So, letting \(k=k_{\ell}\rightarrow+\infty\) in (5.6) and applying (5.4), (5.5), we have
$$\begin{aligned} & \iint _{Q_{T}}\xi_{t} \bigl(w'-u' \bigr)\,dx\,dt+ \iint _{Q_{T}}a^{ij}\frac{\partial(w'-u')}{\partial x_{i}} \frac{\partial\xi }{\partial x_{j}}\,dx\,dt =0, \end{aligned}$$
(5.7)
where
$$\begin{aligned} a^{i,j}(x,t)& =\delta_{ij}\cdot \int^{1}_{0} \bigl\vert s\nabla u'+(1-s)\nabla w' \bigr\vert ^{p-2}\,ds \\ &= (p-2) \int^{1}_{0} \bigl\vert s\nabla u'+(1-s)\nabla w' \bigr\vert ^{p-4} \bigl(su_{k}+(1-s)w' \bigr)_{x_{i}} \bigl(su'+(1-s)w' \bigr)_{x_{j}}\,ds. \end{aligned}$$
Applying the existence and uniqueness theorem [25, 26] to (5.7), we obtain that
$$u'(x,t)-w'(x,t)=0 \quad \text{a.e. on }Q_{T}, $$
hence the entire sequence
$$\begin{aligned} u_{k}(\cdot,t)-w_{k}(\cdot,t)\rightarrow0 \end{aligned}$$
(5.8)
uniformly on any compact subset of \(\mathbb{R}^{N}\) as \(k\rightarrow\infty \). Put \(t=1\) and \(k=t_{n}^{\frac{1}{\gamma}}\) in (5.8), then
$$\begin{aligned} t_{n}^{\frac{\sigma}{\gamma}} \bigl\vert u \bigl(t_{n}^{\frac {1}{\gamma}} \cdot,t_{n} \bigr)- w \bigl(t_{n}^{\frac{1}{\gamma}} \cdot,t_{n} \bigr) \bigr\vert \rightarrow0 \end{aligned}$$
(5.9)
uniformly on any compact subset of \(\mathbb{R}^{N}\) as \(t_{n}\rightarrow \infty\). Note that \(0<\frac{p}{q-p+1}<\sigma<N\). It now follows from Lemma 3.1 that
$$t_{n}^{\frac{\sigma}{\gamma}}V\bigl(t_{n}^{\frac{1}{\gamma}}x,t_{n} \bigr)\leq C\bigl(1+ \vert x \vert ^{2}\bigr)^{-\frac{\sigma}{2}} $$
for all \(t_{n}>0\) and all \(x\in\mathbb{R}^{N}\). Then, for every \(\epsilon>0\), there exists \(R>0\) such that
$$\bigl\Vert t_{n}^{\frac{\sigma}{\gamma}}V \bigl(t_{n}^{\frac{1}{\gamma}} \cdot,t \bigr) \bigr\Vert _{L^{\infty}(\mathbb{R}^{N}\setminus B_{R})}< \epsilon. $$
Using the comparison principle, we obtain that
$$\begin{aligned} \begin{aligned}[b] \bigl\Vert t_{n}^{\frac{\sigma}{\gamma}}u \bigl(t_{n}^{\frac{1}{\gamma}}\cdot,t \bigr) \bigr\Vert _{L^{\infty }(\mathbb{R}^{N}\setminus B_{R})} &\leq \bigl\Vert t_{n}^{\frac{\sigma}{\gamma}}w \bigl(t_{n}^{\frac{1}{\gamma}} \cdot,t \bigr) \bigr\Vert _{L^{\infty}(\mathbb{R}^{N}\setminus B_{R})} \\ & \leq \bigl\Vert t_{n}^{\frac{\sigma}{\gamma}}V \bigl(t_{n}^{\frac {1}{\gamma}} \cdot,t \bigr) \bigr\Vert _{L^{\infty}(\mathbb{R}^{N}\setminus B_{R})}< \epsilon. \end{aligned} \end{aligned}$$
(5.10)
Therefore, (5.9) and (5.10) indicate that (5.3) holds. Combining this with (5.2), we can get (5.1), and the proof is complete. □

Declarations

Acknowledgements

This research was supported by the National Natural Science Foundation of China (11071099 and 11371153), Chongqing Fundamental and Frontier Research Project (cstc2016jcyjA0596) and the Chongqing Municipal Commission of Education (KJ1401003, KJ1601009), Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601035).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Mathematics and Statistics, Chongqing Three Gorges University
(2)
School of Mathematical Sciences, South China Normal University

References

  1. Kamin, S, Peletier, LA: Large time behaviour of solutions of the heat equation with absorption. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 12, 393-408 (1985) MathSciNetMATHGoogle Scholar
  2. Kamin, S, Peletier, LA: Large time behaviour of solutions of the porous medium equation with absorption. Isr. J. Math. 55(2), 129-146 (1986) View ArticleMATHGoogle Scholar
  3. Herraiz, L: Asymptotic behaviour of solutions of some semilinear parabolic problems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16, 49-105 (1999) MathSciNetView ArticleMATHGoogle Scholar
  4. Lee, K, Petrosyan, A, Vazquez, JL: Large-time geometric properties of solutions of the evolution p-Laplacian equation equation. J. Differ. Equ. 229, 389-411 (2006) MathSciNetView ArticleMATHGoogle Scholar
  5. Iagar, RG, Vázquez, JL: Asymptotic analysis of the p-Laplacian flow in an exterior domain. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26(2), 497-520 (2009) MathSciNetView ArticleMATHGoogle Scholar
  6. Kamin, S, Vázquez, JL: Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoam. 4, 339-354 (1988) MathSciNetView ArticleMATHGoogle Scholar
  7. Zhao, JN: The asymptotic behavior of solutions of a quasilinear degenerate parabolic equations. J. Differ. Equ. 102, 35-52 (1993) View ArticleGoogle Scholar
  8. Vázquez, JL, Zuazua, E: Complexity of large time behaviour of evolution equations with bounded data. Chin. Ann. Math., Ser. B 23, 293-310 (2002) MathSciNetView ArticleMATHGoogle Scholar
  9. Cazenave, T, Dickstein, F, Weissler, FB: Chaotic behavior of solutions of the Navier-Stokes system in \(\mathbb{R}^{N}\). Adv. Differ. Equ. 10, 361-398 (2005) MathSciNetMATHGoogle Scholar
  10. Vázquez, JL, Winkler, M: Highly time-oscillating solutions for very fast diffusion equations. J. Evol. Equ. 11(3), 725-742 (2011) MathSciNetView ArticleMATHGoogle Scholar
  11. Wang, LW, Yin, JX: Critical exponent for the asymptotic behavior of rescaled solutions to the porous medium equation. Electron. J. Differ. Equ. 10, 1 (2017) MathSciNetMATHGoogle Scholar
  12. Cazenave, T, Dickstein, F, Weissler, FB: Universal solutions of a nonlinear heat equation on \(\mathbb{R}^{N}\). Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 2, 77-117 (2003) MathSciNetMATHGoogle Scholar
  13. Cazenave, T, Dickstein, F, Weissler, FB: A solution of the constant coefficient heat equation on \(\mathbb{R}\) with exceptional asymptotic behavior: an explicit construction. J. Math. Pures Appl. 85(1), 119-150 (2006) MathSciNetView ArticleMATHGoogle Scholar
  14. Cazenave, T, Dickstein, F, Weissler, FB: Nonparabolic asymptotic limits of solutions of the heat equation on \(\mathbb{R}^{N}\). J. Dyn. Differ. Equ. 19, 789-818 (2007) MathSciNetView ArticleMATHGoogle Scholar
  15. Cazenave, T, Dickstein, F, Weissler, FB: Multi-scale multi-profile global solutions of parabolic equations in \(\mathbb{R}^{N}\). Discrete Contin. Dyn. Syst., Ser. S 5(3), 449-472 (2012) MathSciNetView ArticleMATHGoogle Scholar
  16. Mouajria, H, Tayachi, S, Weissler, FB: The heat semigroup on sectorial domains, highly singular initial values and applications. J. Evol. Equ. 16(2), 341-364 (2016) MathSciNetView ArticleMATHGoogle Scholar
  17. Yin, JX, Wang, LW, Huang, R: Complexity of asymptotic behavior of solutions for the porous medium equation with absorption. Acta Math. Sci. Ser. B Engl. Ed. 6(30B), 1865-1880 (2010) MathSciNetMATHGoogle Scholar
  18. Yin, JX, Wang, LW, Huang, R: Complexity of asymptotic behavior of the porous medium equation in \(\mathbb{R}^{N}\). J. Evol. Equ. 11, 429-455 (2011) MathSciNetView ArticleMATHGoogle Scholar
  19. Wang, LW, Yin, JX, Jin, CH: ω-Limit sets for porous medium equation with initial data in some weighted spaces. Discrete Contin. Dyn. Syst., Ser. B 18(1), 223-236 (2013) MathSciNetView ArticleMATHGoogle Scholar
  20. Bougherara, B, Giacomoni, J: Existence of mild solutions for a singular parabolic equation and stabilization. Adv. Nonlinear Anal. 4(2), 123-134 (2015) MathSciNetMATHGoogle Scholar
  21. Ghergu, M, Rădulescu, V: Ground state solutions for the singular Lane-Emden-Fowler equation with sublinear convection term. J. Math. Anal. Appl. 333(1), 265-273 (2007) MathSciNetView ArticleMATHGoogle Scholar
  22. Papageorgiou, N, Rădulescu, V, Repovs, D: Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions. Adv. Nonlinear Anal. 6(2), 199-235 (2017) MathSciNetMATHGoogle Scholar
  23. Mihăilescu, M, Rădulescu, V: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. A, Math. Phys. Eng. Sci. 462(462), 2625-2641 (2006) MathSciNetView ArticleMATHGoogle Scholar
  24. DiBenedetto, E, Herrero, MA: On the Cauchy problem and initial traces for a degenerate parabolic equation. Trans. Am. Math. Soc. 314(1), 187-224 (1989) MathSciNetView ArticleMATHGoogle Scholar
  25. DiBenedetto, E: Degenerate Parabolic Equations. Springer, New York (1993) View ArticleMATHGoogle Scholar
  26. Vázquez, JL: The Porous Medium Equation: Mathematical Theory. Oxford Mathematical Monographs. Clarendon, Oxford (2007) MATHGoogle Scholar
  27. Wang, LW, Yin, JX: Chaotic dynamical system in evolution p-Laplacian equation. Preprint (2016)
  28. Yin, JX, Wang, LW, Huang, R: Classifications of Γ-limit set of solutions for evolution p-Laplacian equation. Preprint (2016)
  29. Pucci, P, Serrin, J: The Maximum Principle. Progress in Nonlinear Differential Equations and Their Applications, vol. 73. Birkhäuser, Basel (2007) MATHGoogle Scholar

Copyright

© The Author(s) 2017