Skip to main content

Existence of periodic solutions of a Liénard equation with a singularity of repulsive type

Abstract

In this paper, the problem of positive periodic solutions is studied for the Liénard equation with a singularity of repulsive type,

$$ x''+f(x)x'-\frac{\alpha(t)}{x^{\mu}}=h(t), $$

where \(f:(0,+\infty)\rightarrow R\) is continuous, α, h are continuous with T-periodic and \(\alpha(t)\ge0\) for all \(t\in R\), \(\mu \in(0,+\infty)\) is a constant. By means of a Manásevich-Mawhin’s continuation theorem, a sufficient and necessary condition is obtained for the existence of positive T-periodic solutions of the equation. The interesting point is that the weak singularity of restoring force \(\frac{\alpha(t)}{x^{\mu}}\) at \(x=0\) is allowed and f may have a singularity at \(x=0\).

1 Introduction

In the past years, much attention from researchers in differential equations was paid to investigating the problem of periodic solutions for second order differential equations with singularities. This is due to the fact that the singularity has a significant background in applied sciences and physics (see [112] and the references therein). The first study on the periodic problem for second order singular differential equations seems to be the work of Nagumo [13] in 1943. After some work [1416], the interest increased in this area with the pioneering paper of Lazer and Solimini [17]. They considered the existence of periodic solutions for the equation with a singularity of repulsive type,

$$ x''-\frac{1}{x^{\alpha}(t)}=h(t), $$
(1.1)

where \(h:R\rightarrow R\) is continuous with T-periodic, \(\alpha\in (0,+\infty)\) is a constant. For \(\alpha\in[1,+\infty)\) (called the strong force condition), by using topological degree methods, they found that the necessary and sufficient condition for the existence of positive periodic solutions for equation (1.1) is

$$\overline{h}:=\frac{1}{T} \int_{0}^{T}h(s)\,ds< 0. $$

For \(\alpha\in(0,1)\) (weak singularity condition), they produced some examples of \(h(t)\) with \(\overline {h}<0\) and such that equation (1.1) does not have any positive T-periodic solution. After that, the strong force condition \(\alpha\ge1\) was regarded as crucial assumption in [1824]. By using some fixed point theorems in cones, the existence of periodic solutions has been widely studied recently for the conservative equation of repulsive type,

$$ x''+a(t)x-\frac{b(t)}{x^{\alpha}(t)}=c(t), $$
(1.2)

where \(a,b,c\in L^{1}[0,T]\) with \(a(t)\ge0\), \(b(t)\ge0\) for a.e. \(t\in[0,T]\) and being positive in a set of positive measure [2529]. Most of them focus on the case in which the singular nonlinearity was allowed to have a weak singularity (\(\alpha \in(0,1)\)). Compared with the study of conservative equations with weak singularities, the corresponding ones of the Liénard equation with a weak singularity of repulsive type is considerably neglected. We find that the strong singularity is needed in the most recent papers associated to singular Liénard equation of repulsive type [3035]. For example, Jebelean and Mawhin in [11] considered the problem of the existence of positive periodic solutions for a p-Laplacian Liénard equation like

$$ \bigl( \bigl\vert x' \bigr\vert ^{p-2}x'\bigr)'+f(x)x'- \frac{\beta}{x^{\mu}}=h(t), $$
(1.3)

where \(p>1\), \(\beta>0\), \(\mu>0\) are constants, \(f: [0,+\infty)\rightarrow \mathbb{R}\) is continuous, \(h: \mathbb{R}\rightarrow\mathbb{R}\) is a T-periodic function with \(h\in L^{\infty}[0,T]\). Under the condition of strong singularity \(\mu\ge1\), they found that the necessary and sufficient condition for the existence of positive periodic solutions for equation (1.3) is \(\overline{h}<0\). Wang in [32] further studied the existence of positive periodic solutions for a delay Liénard equation with a strong singularity (\(\mu\in [1,+\infty)\)) of repulsive type,

$$ x''+f(x)x'+a(t)x(t-\tau)- \frac{\beta}{x^{\mu}(t-\tau)}=h(t). $$
(1.4)

Hakl, Torres and Zamora in [33] considered the periodic problem for the singular equation of repulsive type,

$$ u''(t)+f\bigl(u(t)\bigr)u'(t)+\varphi(t) \bigl(u(t)\bigr)^{\delta}+g\bigl(u(t)\bigr)=0, $$
(1.5)

where \(\delta\in(0,1]\) is a constant, φ is a T-periodic function with \(\varphi\in L([0,T],\mathbb{R})\), \(f\in C((0,+\infty ),\mathbb{R})\) may be singular at \(x=0\), \(g\in C((0,+\infty),\mathbb {R})\) has a repulsive singularity at \(x=0\), i.e., \(g(x)\rightarrow-\infty\) as \(x\rightarrow0^{+}\). By using Schauder’s fixed point theorem, some results on the existence of positive T-periodic solutions are obtained. However, a strong singularity, \(\int_{0}^{1}g(s)\,ds=-\infty\), is also required.

Now, the question is how to study the periodic problem of equation (1.5) under the condition of weak singularity \(\int _{0}^{1}g(s)\,ds>-\infty\). Motivated by this, the purpose of this paper is to investigate the existence of positive T-periodic solutions for Liénard equation with a singularity of repulsive type

$$ x''+f(x)x'- \frac{\alpha(t)}{x^{\mu}}=h(t), $$
(1.6)

where \(f:(0,+\infty)\rightarrow R\) is continuous, α, h are continuous T-periodic functions with \(\alpha(t)\ge0\) for all \(t\in R\) and \(\alpha(t)\not\equiv0\), \(\mu\in(0,+\infty)\) is a constant. By using a continuation theorem established by Mawhin and Manásevich [36], some new results are obtained. The interesting point is that the weak singularity of restoring force term \(\frac{\alpha (t)}{x^{\mu}}\) at \(x=0\) is allowed and f may have a singularity at \(x=0\). Furthermore, under the condition of \(\int_{0}^{1}f(s)\,ds=\infty\), a sufficient and necessary condition is obtained for the existence of positive T-periodic solutions of equation (1.6).

2 Preliminary lemmas

Let \(C_{T}=x\in C(\mathbb{R},\mathbb{R}):x(t+T)=x(t)\) for all \(t\in\mathbb{R}\) with the norm defined by \(|x|_{\infty}=\max_{t\in [0,T]}|x(t)|\). For any T-periodic solution \(h(t)\) with \(h \in C_{T}\), \(h_{+}(t)\) and \(h_{-}(t)\) is denoted by \(\max\{(h(t),0)\}\) and \(-\min\{ (h(t),0)\}\), respectively, and \(\overline{h}=\frac{1}{T}\int ^{T}_{0}h(s)\,ds\). Clearly, \(h(t)=h_{+}(t)-h_{-}(t)\) for all \(t\in \mathbb{R}\), and \(\overline{h}=\overline{h}_{+}-\overline{h}_{-}\). Furthermore, \(\|\varphi\|_{p}:=(\int_{0}^{T}|\varphi(t)|^{p}\,dt)^{\frac{1}{p}}\), \(p\in[1,+\infty)\), \(\varphi\in C_{T}\).

The following lemma is a corollary of Theorem 3.1 in [36].

Lemma 2.1

Assume that there exist positive constants \(M_{0}\), \(M_{1}\) and \(M_{2}\) with \(0< M_{0}< M_{1}\), such that the following conditions hold:

  1. 1.

    for each \(\lambda\in(0,1]\), each possible positive T-periodic solution x to the equation

    $$ u''+\lambda f(u)u'-\lambda \frac{\alpha(t)}{u^{\mu}}=\lambda h(t), $$

    satisfies the inequalities \(M_{0}< x(t)< M_{1}\) and \(|x'(t)|< M_{2}\) for all \(t\in[0,T]\);

  2. 2.

    each possible solution \(x\in(0,+\infty)\) to the equation

    $$ \frac{\overline{\alpha}}{x^{\mu}}+\overline{h}=0 $$

    satisfies the inequality \(M_{0} < x < M_{1}\);

  3. 3.

    the inequality

    $$ \biggl(\frac{\overline{\alpha}}{M_{0}^{\mu}}+\overline{h}\biggr) \biggl(\frac{\overline {\alpha}}{M_{1}^{\mu}}+ \overline{h}\biggr) < 0 $$

holds. Then equation (1.6) has at least one positive T-periodic solution \(x(t)\) such that \(M_{0} < x(t) < M_{1}\) for all \(t \in [0,T]\).

Lemma 2.2

[29]

Let \(x(t)\) be a continuously differentiable T-periodic function. Then, for any \(\tau\in[0,T]\),

$$ \biggl( \int_{0}^{T}x^{2}(t)\,dt \biggr)^{\frac{1}{2}}\leq\frac{T}{\pi} \biggl( \int_{0}^{T}x^{\prime 2}(t)\,dt \biggr)^{\frac{1}{2}}+\sqrt{T} \bigl\vert x(\tau) \bigr\vert . $$

In order to study the existence of positive periodic solutions to equation (1.6), we list the following assumptions:

(H1):

\(\lim_{x\rightarrow0^{+}}|\int_{x}^{1}f(s)\,ds|=+\infty\).

(H2):

\((-\frac{\overline{\alpha}}{\overline{h}})^{\frac{1}{\mu }}>T^{\frac{1}{2}}[\frac{T}{\pi}\|h\|_{2} +(T^{\frac{1}{2}}(-\frac{\overline{\alpha}}{\overline{h}})^{\frac{1}{\mu }}\|h\|_{2})^{\frac{1}{2}}]\).

Remark 2.1

If \(\overline {h}<0\), then there are constants \(D_{1}\) and \(D_{2}\) with \(0 < D_{1} < D_{2}\) such that

$$ \frac{\overline{\alpha}}{x^{\mu}}+\overline{h} > 0\quad \forall x \in(0,D_{1}) $$

and

$$ \frac{\overline{\alpha}}{x^{\mu}}+\overline{h} < 0\quad \forall x \in (D_{2},\infty). $$

Now, we embed equation (1.6) into the following equations family with a parameter \(\lambda\in(0,1]\),

$$ x''+\lambda f(x)x'-\lambda \frac{\alpha(t)}{x^{\mu}}=\lambda h(t),\quad \lambda\in(0,1]. $$
(2.1)

3 Main results

Theorem 3.1

If (H1) holds, then equation (1.6) has a positive T-periodic solution if and only if \(\overline{h}<0\).

Proof

Suppose that equation (1.6) has a positive T-periodic solution \(y(t)\), then

$$ y''+f(y)y'- \frac{\alpha(t)}{y^{\mu}}=h(t). $$
(3.1)

Integrating (3.1) on the interval \([0,T]\), and by using

$$\int_{0}^{T}y''(s)\,ds= \int_{0}^{T}f\bigl(y(s)\bigr)y'(s) \,ds=0, $$

we have

$$\int_{0}^{T} \frac{\alpha(s)}{y^{\mu}(s)}\,ds=-T\overline {h}, $$

which together with the assumption of \(\alpha(t)\ge0\) and \(y(t)>0\) for all \(t\in[0,T]\) gives a necessary condition for the existence of a positive T-periodic solution of equation (1.6): \(\overline {h}<0\).

Below, we will show the proof of sufficiency. In order to do it, suppose that \(\overline {h}<0\), and let u be an arbitrary positive T-periodic solution of (2.1). Then

$$ u''+\lambda f(u)u'-\lambda \frac{\alpha(t)}{u^{\mu}}=\lambda h(t),\quad \lambda\in(0,1]. $$
(3.2)

Integrating (3.2) over the interval \([0,T]\), we have

$$ \int^{T}_{0}\frac{\alpha(t)}{u^{\mu}}\,dt=- \int^{T}_{0} h(t)\,dt=-T\overline{h}. $$
(3.3)

Due to the fact that \(\alpha(t)\) is non-negative, \(\frac{1}{u_{M}^{\mu }}\int_{0}^{T}\alpha(t)\,dt\leq\int^{T}_{0}\frac{\alpha(t)}{u^{\mu}(t)}\,dt\leq\frac{1}{u_{m}^{\mu}}\int_{0}^{T}\alpha(t)\,dt\), where \(u_{m}\), \(u_{M}\) are the global minimum and maximum, respectively, of u. Then there is a point \(\eta\in[0,T]\) such that

$$ \frac{1}{u^{\mu}(\eta)} \int^{T}_{0}\alpha(t)\,dt=-T\overline{h}, $$

which results in

$$ T\overline{\alpha}=-u^{\mu}(\eta)T\overline{h}, $$

and then

$$ u(\eta)=\biggl(-\frac{\overline{\alpha}}{\overline{h}}\biggr)^{\frac{1}{\mu}}. $$
(3.4)

Multiplying (3.2) with \(u(t)\), and integrating it over the interval \([0,T]\), we obtain

$$ \int^{T}_{0}u''(t)u(t) \,dt-\lambda \int^{T}_{0}\frac{\alpha(t)u(t)}{u^{\mu }(t)}\,dt=\lambda \int^{T}_{0}h(t)u(t)\,dt. $$

By using \(\int^{T}_{0}u''(t)u(t)\,dt=-\int_{0}^{T}|u'(t)|^{2}\,dt\), we have

$$ \int^{T}_{0} \bigl\vert u'(t) \bigr\vert ^{2}\,dt+\lambda \int^{T}_{0} \alpha(t)u^{1-\mu }(t)\,dt=- \lambda \int^{T}_{0}h(t)u(t)\,dt, $$

which together with the fact of \(\alpha(t)\ge0\) for all \(t\in[0,T]\) and \(\alpha(t)\not\equiv0\) gives

$$ \int^{T}_{0} \bigl\vert u'(t) \bigr\vert ^{2}\,dt< \int^{T}_{0} \bigl\vert h(t) \bigr\vert u(t) \,dt\le \biggl( \int ^{T}_{0}h^{2}(t)d \biggr)^{\frac{1}{2}} \biggl( \int^{T}_{0}u^{2}(t)\,dt \biggr)^{\frac{1}{2}}. $$
(3.5)

By Lemma 2.2, we have

$$ \biggl( \int^{T}_{0}u^{2}(t)\,dt \biggr)^{\frac{1}{2}}< \frac{T}{\pi} \biggl( \int ^{T}_{0} \bigl\vert u'(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}}+\sqrt{T}u(\eta). $$

It follows from (3.4) that

$$ \biggl( \int^{T}_{0}u^{2}(t)\,dt \biggr)^{\frac{1}{2}}< \frac{T}{\pi} \biggl( \int ^{T}_{0} \bigl\vert u'(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}}+\sqrt{T} \biggl(- \frac{\overline {\alpha}}{\overline{h}} \biggr)^{\frac{1}{\mu}}. $$

Substituting it into (3.5), we have

$$\begin{aligned} \int^{T}_{0} \bigl\vert u'(t) \bigr\vert ^{2}\,dt&< \biggl( \int^{T}_{0}h^{2}(t)\,dt \biggr)^{\frac {1}{2}} \biggl[\frac{T}{\pi} \biggl( \int^{T}_{0} \bigl\vert u'(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}} +\sqrt{T} \biggl(- \frac{\overline{\alpha}}{\overline{h}} \biggr)^{\frac{1}{\mu }} \biggr] \\ &=\frac{T}{\pi} \biggl( \int^{T}_{0}h^{2}(t)\,dt \biggr)^{\frac{1}{2}} \biggl( \int ^{T}_{0} \bigl\vert u'(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}} +T^{\frac{1}{2}} \biggl(- \frac{\overline{\alpha}}{\overline{h}} \biggr)^{\frac {1}{\mu}} \biggl( \int^{T}_{0}h^{2}(t)\,dt \biggr)^{\frac{1}{2}}, \end{aligned}$$

by the inequality \(X^{2}-AX-B<0\), we can obtain \(X< A+B^{\frac{1}{2}}\). Let \(X= (\int^{T}_{0}|u'(t)|^{2}\,dt )^{\frac{1}{2}}\), \(A=\frac{T}{\pi } (\int^{T}_{0}h^{2}(t)\,dt )^{\frac{1}{2}}\), \(B=T^{\frac{1}{2}} (-\frac{\overline{\alpha}}{\overline{h}} )^{\frac{1}{\mu}} (\int ^{T}_{0}h^{2}(t)\,dt )^{\frac{1}{2}}\), we have

$$ \biggl( \int^{T}_{0} \bigl\vert u'(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}}< \frac{T}{\pi}\|h\| _{2}+T^{\frac{1}{4}} \biggl(-\frac{\overline{\alpha}}{\overline{h}} \biggr)^{\frac{1}{2\mu}} \|h\|_{2}^{\frac{1}{2}}:=\rho_{1}. $$
(3.6)

Combined (3.4) with (3.6), we have

$$ u(t)\le u(\eta)+\sqrt{T} \bigl\Vert u' \bigr\Vert _{2}< \biggl(-\frac{\overline{\alpha }}{\overline{h}} \biggr)^{\frac{1}{\mu}}+T^{\frac{1}{2}} \rho_{1}:=M. $$
(3.7)

Let \(t_{1}\), \(t_{2}\) be the maximum point and the minimum point of \(u(t)\) on \([0,T]\), respectively, then

$$ \int_{t_{1}}^{t_{2}}u''(t)\,dt+ \lambda \int _{t_{1}}^{t_{2}}f\bigl(u(t)\bigr)u'(t) \,dt-\lambda \int_{t_{1}}^{t_{2}}\frac{\alpha (t)}{u^{\mu}(t)}\,dt=\lambda \int_{t_{1}}^{t_{2}}h(t)\,dt, $$

which together with \(u'(t_{1})=u'(t_{2})=0\) yields

$$ F\bigl(u(t_{2})\bigr)-F\bigl(u(t_{1})\bigr)= \int_{t_{1}}^{t_{2}}\frac{\alpha(t)}{u^{\mu }(t)}\,dt+ \int_{t_{1}}^{t_{2}}h(t)\,dt, $$

where \(F(x)=\int_{1}^{x}f(s)\,ds\), and then

$$ \bigl\vert F\bigl(u(t_{2})\bigr) \bigr\vert \leq \bigl\vert F \bigl(u(t_{1})\bigr) \bigr\vert + \int_{0}^{T}\frac{\alpha(t)}{u^{\mu }(t)}\,dt+ \int_{0}^{T} \bigl\vert h(t) \bigr\vert \,dt. $$

It follows from (3.4) and (3.7) that

$$\begin{aligned} \bigl\vert F\bigl(u(t_{2})\bigr) \bigr\vert &\leq\max _{(-\frac{\overline{\alpha}}{\overline {h}})^{\frac{1}{\mu}}\leq z\leq M} \bigl\vert F(z) \bigr\vert -T\overline{h}+T \overline{|h|} \\ &\leq\max_{(-\frac{\overline{\alpha}}{\overline{h}})^{\frac{1}{\mu }}\leq z\leq M} \bigl\vert F(z) \bigr\vert +2T \overline{h}_{-}. \end{aligned}$$
(3.8)

It is easy to see from (H1) that there is a constant \(\gamma_{0}>0\), such that

$$\bigl\vert F(z) \bigr\vert = \biggl\vert \int_{1}^{z}f(s)\,ds \biggr\vert >\max _{(-\frac{\overline{\alpha}}{\overline {h}})^{\frac{1}{\mu}}\leq z\leq M} \bigl\vert F(z) \bigr\vert +2T\overline{h}_{-} \quad \mbox{for } z\in(0,\gamma_{0}]. $$

By (3.8), we have

$$ u(t_{2})>\gamma_{0}, $$

and then

$$ u(t)>\gamma_{0}\quad \mbox{for all } t\in[0,T]. $$
(3.9)

Next, if u attains its maximum over \([0,T]\) at \(t_{1}\in[0,T]\), then \(u'(t_{1})=0\) and we see from (3.2) that

$$ u'(t)=\lambda \int_{t_{1}}^{t}\biggl[-f(u)u'+ \frac{\alpha(t)}{u^{\mu}}+h(t)\biggr]\,dt\quad \mbox{for all }t\in[t_{1},t_{1}+T]. $$

Therefore,

$$\begin{aligned} \bigl\vert u'(t) \bigr\vert & \leq\lambda \bigl\vert F \bigl(u(t)\bigr)-F\bigl(u(t_{1})\bigr) \bigr\vert + \lambda \int _{t_{1}}^{t_{1}+T} \frac{\alpha(t)}{u^{\mu}(t)}\,dt+ \lambda \int_{t_{1}}^{t_{1}+T} h_{+}(s)\,ds \\ &\leq2 \lambda\max_{\gamma_{0} \leq u\leq M} \bigl\vert F(u) \bigr\vert + \lambda \int _{0}^{T}\frac{\alpha(t)}{u^{\mu}(t)}\,dt+T \overline{h}_{+}. \end{aligned}$$
(3.10)

Substituting (3.3) into (3.10), we have

$$ \bigl\vert u'(t) \bigr\vert \leq2 \max_{\gamma_{0} \leq u\leq M} \bigl\vert F(u) \bigr\vert - T\overline {h}+T\overline{h}_{+}:=M^{*} \quad \mbox{for all } t\in[0,T] $$

and then

$$ \bigl\vert u'(t) \bigr\vert \leq M^{*} \quad \mbox{for all } t\in[0,T]. $$
(3.11)

From (3.7), (3.9), (3.11) and Remark 2.1, we can choose \(M_{0}:=\min\{\gamma_{0}, D_{1}\}\) where \(D_{1}\) is determined in Remark 2.1, \(M_{1}=M\) and \(M_{2}=M^{*}\) such that all the conditions of Lemma 2.1 are satisfied. Thus, by using Lemma 2.1, we see that equation (1.6) has at least one positive T-periodic solution. The proof is complete. □

Theorem 3.2

Suppose that \(\overline {h}<0\) and (H2) holds. Then equation (1.6) has at least one positive T-periodic solution.

Proof

Suppose that u is an arbitrary positive T-periodic solution of equation (2.1), then

$$ u''+\lambda f(u)u'-\lambda \frac{\alpha(t)}{u^{\mu}}=\lambda h(t),\quad \lambda\in(0,1]. $$
(3.12)

Similar to the proof of (3.4) and (3.6), we find that there is a point \(\xi\in[0,T]\) such that

$$ u(\xi)= \biggl(-\frac{\overline{\alpha}}{\overline{h}} \biggr)^{\frac{1}{\mu}} $$
(3.13)

and

$$ \biggl( \int^{T}_{0} \bigl\vert u'(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}}< \frac{T}{\pi}\|h\| _{2}+T^{\frac{1}{4}} \biggl(-\frac{\overline{\alpha}}{\overline{h}} \biggr)^{\frac{1}{2\mu}} \|h\|_{2}^{\frac{1}{2}}:=\rho_{1}. $$
(3.14)

In view of the inequality

$$\begin{aligned} u(t)&=u(\xi)+ \int^{t}_{\xi}u'(s)\,ds\leq u(\xi)+ \int^{\xi+T}_{\xi } \bigl\vert u'(s) \bigr\vert \,ds \\ &=u(\xi)+ \int^{T}_{0} \bigl\vert u'(s) \bigr\vert \,ds,\quad t\in[\xi,\xi+T], \end{aligned}$$

and by using (3.13), together with Schwarz inequality, we have

$$ \max_{t\in[0,T]}u(t)\leq \biggl(-\frac{\overline{\alpha}}{\overline{h}} \biggr)^{\frac{1}{\mu}}+T^{\frac{1}{2}} \biggl( \int^{T}_{0} \bigl\vert u'(s) \bigr\vert ^{2}\,ds \biggr)^{\frac{1}{2}} $$
(3.15)

and

$$ \min_{t\in[0,T]}u(t)\geq u(\xi)- \biggl\vert \int^{t}_{\xi}u'(s)\,ds \biggr\vert \geq \biggl(-\frac {\overline{\alpha}}{\overline{h}} \biggr)^{\frac{1}{\mu}}-T^{\frac {1}{2}} \biggl( \int^{T}_{0} \bigl\vert u'(s) \bigr\vert ^{2}\,ds \biggr)^{\frac{1}{2}}. $$
(3.16)

Substituting (3.14) into (3.15) and (3.16), respectively, we have

$$ \max_{t\in[0,T]}u(t)\leq \biggl(-\frac{\overline{\alpha}}{\overline{h}} \biggr)^{\frac{1}{\mu}}+T^{\frac{1}{2}} \biggl[\frac{T}{\pi}\|h \|_{2} +T^{\frac{1}{4}} \biggl(-\frac{\overline{\alpha}}{\overline{h}} \biggr)^{\frac {1}{2\mu}}\|h\|_{2}^{\frac{1}{2}} \biggr] $$
(3.17)

and

$$ \min_{t\in[0,T]}u(t)\geq \biggl(-\frac{\overline{\alpha}}{\overline {h}} \biggr)^{\frac{1}{\mu}}-T^{\frac{1}{2}} \biggl[\frac{T}{\pi}\|h \|_{2} +T^{\frac{1}{4}} \biggl(-\frac{\overline{\alpha}}{\overline{h}} \biggr)^{\frac {1}{2\mu}}\|h\|_{2}^{\frac{1}{2}} \biggr]. $$
(3.18)

The rest of the proof works almost analogously to the corresponding ones of Theorem 3.1. □

Example 3.1

Considering the following equation:

$$ x''(t)+\frac{x'(t)}{x^{2}(t)}- \frac{\sin^{2}t}{x^{\frac{2}{3}}}=-1+\cos t. $$
(3.19)

Corresponding to equation (1.6), we have \(f(x)=\frac{1}{x^{2}}\), \(\mu=\frac{2}{3}\), \(\alpha(t)=\sin^{2}t\), \(h(t)=-1+\cos t\), and then \(T=2\pi\), \(\int_{0}^{1}f(s)\,ds=+\infty\). This implies that assumption (H1) holds. Since \(\overline{h}=-1<0\), by using Theorem 3.1, we find that equation (3.19) has at least one positive 2π-periodic solution.

Example 3.2

Considering the following equation:

$$ x''(t)+\frac{x'(t)}{x^{\frac{1}{2}}(t)}- \frac{\sin^{2}8t}{x^{\frac {3}{4}}}=-\cos^{2}8t. $$
(3.20)

Corresponding to equation (1.6), f can be regarded as \(f(x)=\frac{1}{x^{\frac{1}{2}}}\), \(\mu=\frac{3}{4}\), \(\alpha(t)=\sin ^{2}8t\) and \(h(t)=-\cos^{2}8t\). Since \(\int_{0}^{1}f(s)\,ds=2\), it follows that assumption (H1) does not hold. This implies that Theorem 3.1 cannot be used to study the existence of periodic solutions to (3.20). But, by simple calculating, we can verify that

$$ -\frac{\overline{h}}{\overline{\alpha}}=1,\qquad \|h\|^{2}_{2}= \frac{3T}{8}, $$

where \(T=\frac{\pi}{8}\), and then

$$ \biggl(-\frac{\overline{\alpha}}{\overline{h}}\biggr)^{\frac{1}{\mu}}-T^{\frac {1}{2}}\biggl[ \frac{T}{\pi}\|h\|_{2} +\biggl(T^{\frac{1}{2}}\biggl(- \frac{\overline{\alpha}}{\overline{h}}\biggr)^{\frac{1}{\mu }}\|h\|_{2}\biggr)^{\frac{1}{2}} \biggr]= 1-\biggl(\frac{\sqrt{6}\pi}{256}+\frac{\sqrt[4]{6}\pi}{16}\biggr)>0, $$

which implies that assumption (H2) holds. Thus, by using Theorem 3.2, we find that (3.20) has at least one positive \(\frac{\pi}{8}\)-periodic solution.

Remark

The above two examples can neither be studied by using the results in [31, 32, 34] and [35], since \(f(x)\) in (3.19) and in (3.20) are all singular at \(x=0\), nor be studied by using the results in [33], since the restoring force terms of \(\frac{\sin^{2}t}{x^{\frac{2}{3}}}\) in (3.19) and \(\frac{\sin^{2}8t}{x^{\frac{3}{4}}}\) in (3.20) have weak singularities at \(x=0\).

References

  1. Lei, J, Zhang, M: Twist property of periodic motion of an atom near a charged wire. Lett. Math. Phys. 60(1), 9-17 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bevc, V, Palmer, JL, Süsskind, C: On the design of the transition region of axi-symmetric magnetically focused beam valves. J. Br. Inst. Radio Eng. 18, 696-708 (1958)

    Google Scholar 

  3. Ye, Y, Wang, X: Nonlinear differential equations in electron beam focusing theory. Acta Math. Appl. Sin. 1, 13-41 (1978) (in Chinese)

    Google Scholar 

  4. Huang, J, Ruan, S, Song, J: Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response. J. Differ. Equ. 257(6), 1721-1752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Plesset, MS: The dynamics of cavitation bubbles. J. Appl. Mech. 16, 228-231 (1949)

    Google Scholar 

  6. Habets, P, Sanchez, L: Periodic solutions of some Liénard equations with singularities. Proc. Am. Math. Soc. 109, 1035-1044 (1990)

    MATH  Google Scholar 

  7. Tanaka, K: A note on generalized solutions of singular Hamiltonian systems. Proc. Am. Math. Soc. 122, 275-284 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Terracini, S: Remarks on periodic orbits of dynamical systems with repulsive singularities. J. Funct. Anal. 111, 213-238 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaeta, S, Manásevich, R: Existence of a pair of periodic solutions of an ode generalizing a problem in nonlinear elasticity via variational methods. J. Math. Anal. Appl. 123, 257-271 (1988)

    Article  MATH  Google Scholar 

  10. Fonda, A: Periodic solutions for a conservative system of differential equations with a singularity of repulsive type. Nonlinear Anal. 24, 667-676 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jebelean, P, Mawhin, J: Periodic solutions of singular nonlinear differential perturbations of the ordinary p-Laplacian. Adv. Nonlinear Stud. 2(3), 299-312 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Torres, PJ: Mathematical Models with Singularities - A Zoo of Singular Creatures. Atlantis Press, Amsterdam (2015). ISBN:978-94-6239-105-5

    Book  MATH  Google Scholar 

  13. Nagumo, M: On the periodic solution of an ordinary differential equation of second order. In: Zenkoku Shijou Suugaku Danwakai, pp. 54-61 (1944) (in Japanese). English translation in Mitio Nagumo Collected Papers, Sringer, Berlin (1993)

    Google Scholar 

  14. Derwidué, L: Systemes différentiels non linéaires ayant solutions périodiques. Acad. R. Belg., Cl. Lett. Sci., V Ser. 49, 11-32 (1963)

    MathSciNet  MATH  Google Scholar 

  15. Fauré, R: Solutions périodiques d’équations différentielles et méthode de Leray-Schauder. Ann. Inst. Fourier 14(1), 195-204 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gordon, WB: Conservative dynamical systems involving strong forces. Trans. Am. Math. Soc. 204, 113-135 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lazer, AC, Solimini, S: On periodic solutions of nonlinear differential equations with singularities. Proc. Am. Math. Soc. 99, 109-114 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Torres, PJ: Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskii fixed point theorem. J. Differ. Equ. 190, 643-662 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Torres, PJ, Zhang, M: Twist periodic solutions of repulsive singular equations. Nonlinear Anal. 56, 591-599 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Torres, PJ: Bounded solutions in singular equations of repulsive type. Nonlinear Anal. 32, 117-125 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, D, Chu, J, Zhang, M: Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J. Differ. Equ. 211, 282-302 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. del Pino, M, Manásevich, R: Infinitely many T-periodic solutions for a problem arising in nonlinear elasticity. J. Differ. Equ. 103, 260-277 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. del Pino, M, Manásevich, R, Montero, A: T-Periodic solutions for some second order differential equations with singularities. Proc. R. Soc. Edinb., Sect. A 120(3-4), 231-243 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fonda, A, Manasevich, R, Zanolin, F: Subharmonics solutions for some second order differential equations with singularities. SIAM J. Math. Anal. 24, 1294-1311 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Torres, PJ: Weak singularities may help periodic solutions to exist. J. Differ. Equ. 232, 277-284 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chu, J, Torres, PJ, Zhang, M: Periodic solutions of second order non-autonomous singular dynamical systems. J. Differ. Equ. 239, 196-212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, X, Zhang, Z: Periodic solutions for second order differential equations with a singular nonlinearity. Nonlinear Anal. 69, 3866-3876 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hakl, R, Torres, PJ, Zamora, M: Periodic solutions of singular second order differential equations: upper and lower functions. Nonlinear Anal. 74, 7078-7093 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hakl, R, Torres, PJ: On periodic solutions of second order differential equations with attractive-repulsive singularities. J. Differ. Equ. 248, 111-126 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, M: Periodic solutions of Liénard equations with singular forces of repulsive type. J. Math. Anal. Appl. 203(1), 254-269 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Martins, R: Existence of periodic solutions for second-order differential equations with singularities and the strong force condition. J. Math. Anal. Appl. 317, 1-13 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Z: Periodic solutions of Liénard equation with a singularity and a deviating argument. Nonlinear Anal., Real World Appl. 16(1), 227-234 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hakl, R, Torres, PJ, Zamora, M: Periodic solutions of singular second order differential equations: the repulsive case. Topol. Methods Nonlinear Anal. 39, 199-220 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Lu, S: A new result on the existence of periodic solutions for Liénard equations with a singularity of repulsive type. J. Inequal. Appl. 2017, 37 (2017). doi:10.1186/s13660-016-1285-8

    Article  MATH  Google Scholar 

  35. Lu, S, Zhong, T, Gao, Y: Periodic solutions of p-Laplacian equations with singularities. Adv. Differ. Equ. 2016, 146 (2016). doi:10.1186/s13662-016-0875-6

    Article  MathSciNet  Google Scholar 

  36. Manásevich, R, Mawhin, J: Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Differ. Equ. 145, 367-393 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for valuable comments. This research is supported by the NSF of China (No. 11271197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajiao Wang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All the authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Wang, Y. & Guo, Y. Existence of periodic solutions of a Liénard equation with a singularity of repulsive type. Bound Value Probl 2017, 95 (2017). https://doi.org/10.1186/s13661-017-0826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-017-0826-5

Keywords