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1. Introduction

In recent years, many papers have discussed the existence of positive solutions of right
focal boundary value problems, see [1–7]. In 2003, Ma [5] established existence results of
positive solutions for the fourth-order semipositone boundary value problems

u(4)(x)= λ f
(
x,u(x),u′(x)

)
,

u(0)= u′(0)= u′′(1)= u′′′(1)= 0.
(1.1)

Motivated by Agarwal and Wong [8] and Ma [5], the purpose of this article is to gen-
eralize and complement Ma’s work to nth-order right focal eigenvalue problems:

(−1)n−pu(n)(t)= λ f
(
t,u(t),u′(t), . . . ,u(p−1)(t)

)
(1.2)

with boundary conditions

u(i)(0)= 0, 0≤ i≤ p− 1,

u(i)(1)= 0, p ≤ i≤ n− 1,
(1.3)
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where n ≥ 2, 1 ≤ p ≤ n− 1 is fixed, f : [0,1]× [0,∞)p → (−∞,∞) is continuous with
f (t,u1,u2, . . . ,up)≥−M for some positive constantM.

We say that u(t) is positive solution of BVP (1.2), (1.3) if u(t)∈ Cn[0,1] is solution of
BVP (1.2), (1.3) and u(i)(t) > 0, t ∈ (0,1), i= 0,1, . . . , p− 1.

For other related works with focal boundary value problem, we refer to recent contri-
butions of Agarwal [1], Agarwal et al. [2], Boey and Wong [3], He and Ge [4], and Wong
and Agarwal [6, 7].

The outline of the paper is as follows: in Section 2, we will present some lemmas which
will be used in the proof of main results. In Section 3, by using Krasnoselskii’s fixed-point
theorem in a cone, we offer criteria for the existence of a positive solution and two positive
solutions of BVP (1.2), (1.3).

2. Some preliminaries

In order to abbreviate our discussion, we use Ci (i = 1,2,3,4,5) to denote the following
conditions:

(C1) f (t,u1,u2, . . . ,up) ∈ C([0,1]× [0,∞)p, (−∞,∞)) is continuous with f (t,u1,u2,
. . . ,up)≥−M for some positive constantM;

(C2) there exists constant 0 < ε < 1 such that

lim
u1,u2,...,up→∞

min
t∈[ε,1]

f
(
t,u1,u2, . . . ,up

)
+M

up
=∞; (2.1)

(C3) there exists constant α > 0 such that

lim
up→0+

min
(t,u1,u2,...,up−1)∈[0,1]×[0,α]p−1

f
(
t,u1,u2, . . . ,up

)

up
=∞; (2.2)

(C4) there exists constant α > 0 such that

f
(
t,u1,u2, . . . ,up−1,0

)
> 0,

(
t,u1,u2, . . . ,up−1

)∈ [0,1]× [0,α]p−1; (2.3)

(C5) h(s) = sn−p/(n− p)!, D1 = (
∫ 1
0 h(s)ds)

−1, D2 = (
∫ 1
ε h(s)ds)

−1, where 0 < ε < 1 is
constant.

Let B = {u ∈ Cp−1[0,1] : u(i)(0) = 0, 0 ≤ i ≤ p − 2} with the norm ‖u‖ =
supt∈[0,1] |u(p−1)(t)|. It is easy to prove that B is a Banach space.

Lemma 2.1. Let

C ≡ {u∈ B : u(p−1)(t)≥ t‖u‖, t ∈ [0,1]
}
. (2.4)

Then C is a cone in B and for all u∈ C,

tp−i‖u‖
(p− i)!

≤ u(i)(t)≤ ‖u‖, t ∈ [0,1], i= 0,1, . . . , p− 1. (2.5)
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Proof. For all u,v ∈ C and for all α≥ 0, β ≥ 0, we have

(
αu(t) +βv(t)

)(p−1) = αu(p−1)(t) +βv(p−1)(t)

≥ αt‖u‖+βt‖v‖
≥ t‖αu+βv‖,

(2.6)

so αu+ βv ∈ C. In addition, if u ∈ C, −u ∈ C, and u 
= θ (where θ denotes the zero ele-
ment of B), then

u(p−1)(t)≥ t‖u‖ ≥ 0, t ∈ [0,1],

−u(p−1)(t)≥ t‖u‖ ≥ 0, t ∈ [0,1].
(2.7)

Thus u(p−1)(t)= 0, t ∈ [0,1]. It follows that ‖u‖ = 0, which contradicts the assumption.
Hence C is a cone in B.

For all u∈ C, 0≤ i≤ p− 1, due to Taylor’s formula, we have ξ ∈ (0, t) such that

u(i)(t)= u(i)(0)+u(i+1)(0)t+ ···+ u(p−2)(0)tp−i−2

(p− i− 2)!
+
u(p−1)(ξ)tp−i−1

(p− i− 1)!
. (2.8)

It follows from u∈ C that for i= 0,1, . . . , p− 1,

‖u‖ ≥ u(i)(t)= u(p−1)(ξ)tp−i−1

(p− i− 1)!

≥ t‖u‖tp−i−1
(p− i− 1)!

= tp−i‖u‖
(p− i− 1)!

≥ tp−i‖u‖
(p− i)!

.

(2.9)

�

Lemma 2.2 [6]. Let K(t,s) be Green’s function of the differential equation (−1)n−pu(n)(t)= 0
subject to the boundary conditions (1.3). Then

K(t,s)= (−1)n−p
(n− 1)!

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p−1∑

i=0

(
n− 1
i

)

ti(−s)n−i−1, 0≤ s≤ t ≤ 1,

−
n−1∑

i=p

(
n− 1
i

)

ti(−s)n−i−1, 0≤ t ≤ s≤ 1,

∂i

∂ti
K(t,s)≥ 0, (t,s)∈ [0,1]× [0,1], 0≤ i≤ p.

(2.10)

Lemma 2.3. Assume that (C5) holds. Let k(t,s) be Green’s function of the differential equa-
tion

(−1)n−pu(n−p+1)(t)= 0 (2.11)

subject to the boundary conditions

u(0)= 0, u(i)(1)= 0, 1≤ i≤ n− p. (2.12)
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Then

th(s)≤ k(t,s)≤ h(s), (t,s)∈ [0,1]× [0,1]. (2.13)

Proof. It is clear that

k(t,s)= ∂p−1

∂tp−1
K(t,s)= 1

(n− p)!

⎧
⎨

⎩
sn−p, 0≤ s≤ t ≤ 1,

sn−p− (s− t)n−p, 0≤ t ≤ s≤ 1.
(2.14)

Obviously,

th(s)≤ 1
(n− p)!

sn−p ≤ h(s), 0≤ s≤ t ≤ 1. (2.15)

For 0≤ t ≤ s≤ 1,

h(s)≥ 1
(n− p)!

[
sn−p− (s− t)n−p

]

= 1
(n− p)!

[
s− (s− t)

]
n−p−1∑

i=0
sn−p−1−i(s− t)i

≥ 1
(n− p)!

tsn−p−1

≥ 1
(n− p)!

tsn−p = th(s).

(2.16)

Thus,

th(s)≤ k(t,s)≤ h(s), (t,s)∈ [0,1]× [0,1]. (2.17)
�

Lemma 2.4. The boundary value problem

(−1)(n−p)u(n)(t)= 1, t ∈ [0,1],

u(i)(0)= 0, 0≤ i≤ p− 1,

u(i)(1)= 0, p ≤ i≤ n− 1,

(2.18)

has unique solution w(t)∈ Cn[0,1] and

0≤w(i)(t)≤ tp−i

(n− p)!(p− i)!
, t ∈ [0,1], 0≤ i≤ p− 1. (2.19)

Proof. It is clear that the boundary value problem

(−1)(n−p)u(n)(t)= 1, t ∈ [0,1],

u(i)(0)= 0, 0≤ i≤ p− 1,

u(i)(1)= 0, p ≤ i≤ n− 1,

(2.20)
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has unique solution

w(t)=
∫ 1

0
K(t,s)ds, (2.21)

where K(t,s) is as in Lemma 2.2.
Obviously, for 0≤ s≤ t ≤ 1,

1
(n− p)!

sn−p ≤ tsn−p−1

(n− p− 1)!
. (2.22)

For 0≤ t ≤ s≤ 1,

1
(n− p)!

[
sn−p− (s− t)n−p

]= 1
(n− p)!

[s− (s− t)]
n−p−1∑

i=0
sn−p−1−i(s− t)i

≤ (n− p)
tsn−p−1

(n− p)!
= tsn−p−1

(n− p− 1)!
.

(2.23)

So

0≤ k(t,s)≤ tsn−p−1

(n− p− 1)!
, (2.24)

where k(t,s) is as in Lemma 2.3. Since w(p−1)(t)= ∫ 10 k(t,s)ds, then

0≤w(p−1)(t)=
∫ 1

0
k(t,s)ds≤

∫ 1

0

tsn−p−1

(n− p− 1)!
ds= t

(n− p)!
. (2.25)

Further, since w(i)(0)= 0, 0≤ i≤ p− 1, we get

0≤w(i)(t)≤ tp−i

(n− p)!(p− i)!
, t ∈ [0,1], 0≤ i≤ p− 1. (2.26)

�

Lemma 2.5 [8]. Let E be a Banach space, and let C ⊂ E be a cone in E. Assume that Ω1, Ω2

are open subsets of E with 0∈Ω1 ⊂Ω1 ⊂Ω2, and let T : C∩ (Ω2 \Ω1)→ C be a completely
continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u∈ C∩ ∂Ω1, ‖Tu‖ ≥ ‖u‖, u∈ C∩ ∂Ω2 or
(ii) ‖Tu‖ ≥ ‖u‖, u∈ C∩ ∂Ω1, ‖Tu‖ ≤ ‖u‖, u∈ C∩ ∂Ω2.

Then, T has a fixed point in C∩ (Ω2 \Ω1).

3. Main results

In this section, by using Lemma 2.5, we offer criteria for the existence of positive solutions
for two-point semipositone right focal eigenvalue problem (1.2), (1.3).

Theorem 3.1. Assume (C1), (C2), and (C5) hold. Then BVP (1.2), (1.3) has at least one
positive solution if λ > 0 is small enough.
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Proof. We consider BVP

(−1)n−pu(n)(t)= λ f ∗
(
t,u(t)−φ(t), . . . ,u(p−1)(t)−φ(p−1)(t)

)
,

u(i)(0)= 0, 0≤ i≤ p− 1,

u(i)(1)= 0, p ≤ i≤ n− 1,

(3.1)

where

φ(t)= λMw(t)
(
w(t) is as in Lemma 2.4

)
,

f ∗
(
t,u1,u2, . . . ,up

)= f
(
t,ρ1,ρ2, . . . ,ρp

)
+M,

(3.2)

and for all i= 1,2, . . . , p,

ρi =
⎧
⎨

⎩
ui, ui ≥ 0;

0, ui < 0.
(3.3)

We will prove that (3.1) has a solution u1(t). Obviously, (3.1) has a solution in C if and
only if

u(t)=
∫ 1

0
K(t,s)λ f ∗

(
s,u(s)−φ(s),u′(s)−φ′(s), . . . ,u(p−1)(s)−φ(p−1)(s)

)
ds

:= (T1u)(t)
(3.4)

or

u(p−1)(t)=
∫ 1

0
k(t,s)λ f ∗

(
s,u(s)−φ(s),u′(s)−φ′(s), . . . ,u(p−1)(s)−φ(p−1)(s)

)
ds

:= (T1u
)(p−1)

(t)

(3.5)

has a solution in C. From Lemma 2.3, we know that

(
T1u

)(p−1)
(t)

=
∫ 1

0
k(t,s)λ f ∗

(
s,u(s)−φ(s),u′(s)−φ′(s), . . . ,u(p−1)(s)−φ(p−1)(s)

)
ds

≤
∫ 1

0
h(s)λ f ∗

(
s,u(s)−φ(s),u′(s)−φ′(s), . . . ,u(p−1)(s)−φ(p−1)(s)

)
ds,

(3.6)

so

∥
∥T1u

∥
∥≤

∫ 1

0
h(s)λ f ∗

(
s,u(s)−φ(s),u′(s)−φ′(s), . . . ,u(p−1)(s)−φ(p−1)(s)

)
ds. (3.7)
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From Lemma 2.3 again,

(
T1u

)(p−1)
(t)

=
∫ 1

0
k(t,s)λ f ∗

(
s,u(s)−φ(s),u′(s)−φ′(s), . . . ,u(p−1)(s)−φ(p−1)(s)

)
ds

≥
∫ 1

0
th(s)λ f ∗

(
s,u(s)−φ(s),u′(s)−φ′(s), . . . ,u(p−1)(s)−φ(p−1)(s)

)
ds

= t
∫ 1

0
h(s)λ f ∗

(
s,u(s)−φ(s),u′(s)−φ′(s), . . . ,u(p−1)(s)−φ(p−1)(s)

)
ds

≥ t
∥
∥T1u

∥
∥.

(3.8)

Hence, T1(C)⊆ C. Further, it is clear that T1 : C→ C is completely continuous.
Let

λ∈ (0,Λ) (3.9)

be fixed, where

Λ=min
{
2D1

M1
,
(n− p)!

M

}
, (3.10)

M1 =max
{
f ∗
(
t,u1,u2, . . . ,up

)
:
(
t,u1,u2, . . . ,up

)∈ [0,1]× [0,2]p
}
. (3.11)

We separate the rest of the proof into the following two steps.

Step 1. Let

Ω1 =
{
u∈ B : ‖u‖ < 2

}
. (3.12)

From the definition of f ∗, we know

M1 =max
{
f ∗
(
t,u1,u2, . . . ,up

)
:
(
t,u1,u2, . . . ,up

)∈ [0,1]× [0,2]p
}

=max
{
f ∗
(
t,u1,u2, . . . ,up

)
:
(
t,u1,u2, . . . ,up

)∈ [0,1]× (−∞,2]p
}
.

(3.13)

It follows from Lemma 2.3 and (C5) that for all u∈ ∂Ω1∩C,

(
T1u

)(p−1)
(t)

=
∫ 1

0
k(t,s)λ f ∗

(
s,u(s)−φ(s),u′(s)−φ′(s), . . . ,u(p−1)(s)−φ(p−1)(s)

)
ds

≤
∫ 1

0
h(s)λM1ds= λM1D

−1
1 < 2= ‖u‖.

(3.14)

Hence,

∥
∥T1u

∥
∥≤ ‖u‖, u∈ ∂Ω1∩C. (3.15)
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Step 2. From (C2), we know that there exists η > 2 (η can be chosen arbitrarily large) such
that

σ := 1− λM

(n− p)!η
> 1− λM

2(n− p)!
>
1
2
, (3.16)

and for all (u1,u2, . . . ,up)∈ [(εpση)/p!,∞)p−1× [εση,∞),

min
t∈[ε,1]

f
(
t,u1,u2, . . . ,up

)
+M

up
≥ 2D2

λε
≥ D2

λεσ
. (3.17)

Then, for all (t,u1,u2, . . . ,up)∈ [ε,1]× [(εpση)/p!,η]p−1× [εση,η],

f
(
t,u1,u2, . . . ,up

)
+M ≥ D2up

λεσ
≥ D2η

λ
. (3.18)

It follows from Lemmas 2.1 and 2.4 that for u∈ C and ‖u‖ = η,

u(i)(t)−φ(i)(t)= u(i)(t)− λMw(i)(t)

≥ u(i)(t)− λMtp−i

(n− p)!(p− i)!

≥ u(i)(t)− λMu(i)(t)
(n− p)!η

=
[
1− λM

(n− p)!η

]
u(i)(t)

≥
[
1− λM

(n− p)!η

]
tp−iη
(p− i)!

= σ
tp−iη
(p− i)!

, t ∈ [0,1] (by (3.16))

≥
⎧
⎪⎨

⎪⎩

εpση

p!
, 0≤ i≤ p− 2, t ∈ [ε,1],

εση, i= p− 1, t ∈ [ε,1].

(3.19)

Using Lemma 2.3 and (3.18), we know that

(
T1u

)(p−1)
(1)

=
∫ 1

0
k(1,s)λ f ∗

(
s,u(s)−φ(s),u′(s)−φ′(s), . . . ,u(p−1)(s)−φ(p−1)(s)

)
ds

≥
∫ 1

ε
h(s)λ

D2η

λ
ds=

∫ 1

ε
h(s)D2ηds= η = ‖u‖.

(3.20)

Hence, let

Ω2 =
{
u∈ B : ‖u‖ < η

}
, (3.21)
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then

∥
∥T1u

∥
∥≥ ‖u‖, u∈ ∂Ω2∩C. (3.22)

Thus, it follows from the first part of Lemma 2.5 that T1(u)= u has one fixed point u(t)
in C, such that 2≤ ‖u‖ ≤ η.

Let

u1(t)= u(t)−φ(t). (3.23)

From Lemmas 2.1, 2.4, and (3.16), we know that for i= 0,1, . . . , p− 1,

u(i)1 (t)= u(i)(t)−φ(i)(t)

= u(i)(t)− λMw(i)(t)

≥ u(i)(t)− λMtp−i

(n− p)!(p− i)!

≥ u(i)(t)− λMu(i)1 (t)
2(n− p)!

=
[
1− λM

2(n− p)!

]
u(i)(t)

≥
[
1− λM

2(n− p)!

]
2tp−i

(p− i)!

>
tp−i

(p− i)!
> 0, t ∈ (0,1].

(3.24)

This implies that

u(i)1 (t) > 0, t ∈ (0,1], i= 0,1, . . . , p− 1. (3.25)

Further, we get

(−1)n−pu(n)1 (t)= (−1)n−pu(n)(t)− λM

= λ f ∗
(
t,u(t)−φ(t),u′(t)−φ′(t), . . . ,u(p−1)(t)−φ(p−1)(t)

)− λM

= λ f
(
t,u(t)−φ(t),u′(t)−φ′(t), . . . ,u(p−1)(t)−φ(p−1)(t)

)

= λ f
(
t,u1(t),u′1(t), . . . ,u

(p−1)
1 (t)

)
.

(3.26)

So, u1(t)= u(t)−φ(t) is a positive solution of BVP (1.2), (1.3).

Thus, for λ∈ (0,Λ), BVP (1.2), (1.3) has at least one positive solution. �

Theorem 3.2. Assume (C1), (C2), (C3), and (C5) hold. Then BVP (1.2), (1.3) has at least
two positive solutions if λ > 0 is small enough.
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Proof. It follows from Theorem 3.1 that, for λ∈ (0,Λ), where Λ is as in (3.10), BVP (1.2),
(1.3) has positive solution u1(t) such that

∥
∥u1

∥
∥ > 1. (3.27)

Next, we will find the second positive solution. From (C3), we know that there exists
a∈ (0,∞) such that

f
(
t,u1,u2, . . . ,up

)≥ 0,
(
t,u1,u2, . . . ,up

)∈ [0,1]× [0,a]p. (3.28)

We consider the following BVP:

(−1)(n−p)u(n)(t)= λ f ∗∗
(
t,u(t),u′(t), . . . ,u(p−1)

)
, t ∈ [0,1],

u(i)(0)= 0, 0≤ i≤ p− 1,

u(i)(1)= 0, p ≤ i≤ n− 1,

(3.29)

where

f ∗∗
(
t,u1,u2, . . . ,up

)= f
(
t,ρ1,ρ2, . . . ,ρp

)
,

ρi =
⎧
⎨

⎩
ui, ui ∈ [0,a],

a, ui ∈ (a,∞),
i= 1,2, . . . , p.

(3.30)

It is easy to prove that (3.29) has a solution in C if and only if operator

u(t)=
∫ 1

0
K(t,s)λ f ∗∗

(
s,u(s),u′(s), . . . ,u(p−1)(s)

)
ds := (T2u

)
(t) (3.31)

or

u(p−1)(t)=
∫ 1

0
k(t,s)λ f ∗∗

(
s,u(s),u′(s), . . . ,u(p−1)(s)

)
ds= (T2u

)(p−1)
(t) (3.32)

has a fixed point in C. Moreover, it is easy to check that T2 : C→ C is completely contin-
uous.

Let

H =min{1,a},

Λ1 =min
{
Λ,

D1H

M2

}
,

(3.33)

where Λ is as in (3.10) and

M2 :=max
{
f ∗∗

(
t,u1,u2, . . . ,up

)
:
(
t,u1,u2, . . . ,up

)∈ [0,1]× [0,a]p
}
. (3.34)
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Let

λ∈ (0,Λ1
)

(3.35)

be fixed.
Let

Ω3 =
{
u∈ B : ‖u‖ <H

}
. (3.36)

Then for u∈ C∩ ∂Ω3, we have from Lemma 2.3 and (C5) that

(
T2u

)(p−1)
(t)= λ

∫ 1

0
k(t,s) f ∗∗

(
t,u(s),u′(s), . . . ,u(p−1)(s)

)
ds

≤ λ
∫ 1

0
h(s) f ∗∗

(
t,u(s),u′(s), . . . ,u(p−1)(s)

)
ds

≤ λD−11 M2 <H.

(3.37)

Therefore,

∥
∥T2u

∥
∥≤ ‖u‖, u∈ C∩ ∂Ω3. (3.38)

From (C3), there exist η, r0, where λη
∫ 1
0 sh(s)ds > 1 with r0 <H such that

f ∗∗
(
t,u1,u2, . . . ,up

)≥ ηup,
(
t,u1,u2, . . . ,up

)∈ [0,1]× [0,r0
]p
. (3.39)

For u∈ C and ‖u‖ = r0, we have from Lemma 2.3 and (3.39) that

(
T2u

)(p−1)
(1)= λ

∫ 1

0
k(1,s) f ∗∗

(
s,u(s),u′(s), . . . ,u(p−1)(s)

)
ds

= λ
∫ 1

0
h(s) f ∗∗

(
s,u(s),u′(s), . . . ,u(p−1)(s)

)
ds

≥ λ
∫ 1

0
h(s)ηu(p−1)(s)ds

≥ λ
∫ 1

0
h(s)ηs‖u‖ds (by the definition of C)

= λη
∫ 1

0
sh(s)ds‖u‖

> ‖u‖.

(3.40)

Thus, let

Ω4 =
{
u∈ B : ‖u‖ < r0

}
, (3.41)

then

∥
∥T2u

∥
∥≥ ‖u‖, u∈ C∩ ∂Ω4. (3.42)
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Therefore, it follows from the first part of Lemma 2.5 that BVP (3.29) has a solution
u2 such that

r0 ≤ ‖u2‖ ≤H. (3.43)

From the definition of f ∗∗ and Lemma 2.1, we know that u2 is positive solution of BVP
(1.2), (1.3).

Thus, from (3.27), (3.33), and (3.43), we find that for λ∈ (0,Λ1), BVP (1.2), (1.3) has
two distinct positive solutions u1 and u2. �

Corollary 3.3. Assume (C1), (C2), (C4), and (C5) hold. Then BVP (1.2), (1.3) has at least
two positive solutions if λ > 0 is small enough.

Proof. It is easy to prove from (C4) that (C3) holds. By using Theorem 3.2, we know that
the result holds. �

Remark 3.4. By letting n = 4, p = 2 in Theorem 3.1 and Corollary 3.3, we get Ma [5,
Theorems 1 and 2].
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