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1. Introduction

The theory of calculus on time scales (see [1, 2] and references cited therein) was ini-
tiated by Stefan Hilger in his Ph.D. thesis in 1990 [3] in order to unify continuous and
discrete analyses, and it has a tremendous potential for applications and has recently re-
ceived much attention since his foundational work. In this paper, we will study the peri-
odic boundary value problem for the first-order impulsive integrodifferential equations
of mixed-type (PBVP):

ub(t) = f(t,u(t), [Tul(t),[Sul(t)), t+t, tE]T,
u(tf) —u(ty) =L(u(ty)), k=12,...,p, (1.1)
u(0) = u(T),

where T is a time scale which has the subspace topology inherited from the standard
topology on R. For each interval ] of R, we denote by Jy =] N T, f € C[Jt xR X R X
R,R], J =[0,T], Ir € C[R,R], where u(t}) and u(t; ) represent right and left limits of
u(t) at t = tx(k = 1,2,...,p) in the sense of time scales, and in addition, if # is right
scattered, then y(f) = y(tc), whereas if #; is left scattered, then y(t) = y(t),
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O<ti<tr< - <tp<---<tp<T,

t T
(Tul(t) = Jok(t,s)u(s)As, (Sul(t) = L h(ts)u(s)As, (1.2)

k(t,s) € C[D,R*], D = {(t,s) € Jy X Jy : t = s}, h(t,s) € C[Jy X J1,R*], R* = [0,400),
ko = max{k(t,s) : (t,s) € D}, hg = max{h(t,s) : (t,s) € J;y X J1}.

The study of impulsive dynamic equations on time scales has been initiated by Hender-
son [4], Benchohra et al. [5], and Atici and Biles [6]. Extremal solutions of PBVP for im-
pulsive differential equations and difference equations has been studied by some authors
(see [7, 8]). In this paper, we will obtain an inequality on time scales. And then, using
this inequality, a comparison result is obtained. At last, we obtain an existence theorem
of minimal and maximal solutions of PBVP (1.1) by using monotone iterative technique
(see [7-9]).

2. Preliminaries and comparison principle

In this section, we will first recall some basic definitions and lemmas, which are used in
what follows.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators g,p : T — T, and the graininess p: T — R* are defined, respectively, by

o(t)=inf{se€ T:s>t}, p(t)=suplscT:s<t}, u(t)=0o(t)—t. (2.1)

A point t € T is called left dense if t > inf T and p(t) = t, left scattered if p(t) < t, right
dense if t <supT and o(t) = t, and right scattered if o(¢) > t. If T has a left-scattered
maximum m, then T = T\ {m}; otherwise T* = T. If T has a right-scattered minimum
m, then Ty = T\ {m}; otherwise Ty = T.

A function f: T — R is right-dense continuous provided it is continuous at right-
dense point in T and its left-side limits exist at left-dense points in T. If f is continuous at
each right-dense point and each left-dense point, then f is said to be continuous function
on T.

For y: T — R and t € T, we define the delta derivative of y(t), y*(t) to be the number
(if it exists) with the property that for a given € > 0, there exists a neighborhood U of ¢
such that

[[y(a(t) = y(s)] = y*(O)[a(t) —s]| <e|o(t) —s] (2.2)

forallse U.
If y is continuous, then y is right-dense continuous, and if y is delta differentiable at
t, then y is continuous at ¢.

LemmMa 2.1 (see [1]). Assume that f,g: T — R are delta differentiable at t € T*. Then,

(f)2(t) = fADg() + f(a(1) g2 (1) = fF()g* () + fA(1)g (a(D)). (2.3)
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Let y be right-dense continuous. If Y2(¢) = y(t), then we define the delta integral by

J y(s)A - Y(a). (2.4)
A function r: T — R is called regressive if
L+ p(Or(t) 0 (255)
for all t € Tk,

If r is regressive function, then the generalized exponential function e, is defined by

e, (t,s) = exp{J Euir) (r )AT} fors,te€T (2.6)

with the cylinder transformation

nlz) = h (2.7)

Log(1+hz) ith 40,
z ith=0.

Let p,q: T — R be two regressive functions, we define

p®q:i=p+q+upq, ep:=—1+pyp, peq:=pa(eq). (2.8)

Then, the generalized exponential function has the following properties.

LemMA 2.2 (see [1]). Assume that p,q: T — R are two regressive functions, then
(i) eo(t,s) = 1 and ey(t,t) = 1;
(i) ep(a(t),s) = (1 +u(t) p(t))ey(t,s);
(iii) ep(t,0(s)) = ep(£,5)/(1+p(s) p(s));
(iv) 1/ey(t,s) = ecp(t,s);
(v) ep(t,5) = 1/ep(s,t) = eop(s,t);
(vi) ep(t s)ep(s,r) = ep(t,1);
(vii) ey(t,5)eq(t,s) = epaq(t,s);
(viii) ey (t,5)/e4(t,5) = epeq(t,s).

LemMa 2.3 [1]. Letr: T — R be right-dense continuous and regressive, a € T, and y, € R.
The unique solution of the initial value problem

YA =r(®)y()+h(t), y(a)= ya (2.9)
is given by
(b = er(t,a) ya + Jte,(t,a(s))h(s)As. (2.10)

Throughout this paper, we assume that, for each k = 1,..., p, the points of impulse #;
are right dense. For convenience, we introduce the notation PC[Jy,R] = {u: Jy — R,u(t)



4 Boundary Value Problems

is continuous everywhere except some t; at which u(t;) and u(t]) exist and u(f; ) =
u(ty)}. Evidently, PC[Jt, R] is a Banach space with norm |[ullpc = sup,c;, lu(t)]. Let J; =
Jo \ {ti,t2,..., 1}, CHJ1,R] = {u?(t) is continuous on Ji}, Q = PC[Jr,R] n C'[J1,R],
Tt =TnR" PCHTH,R] =PC[T",R] nC[T",R]. A function u € Q is called a solution
of PBVP (1.1) if it satisfies (1.1).

Next, we combine [10, 11] to obtain an inequality as follows.

LEMMA 2.4. Assume that
(Ap) the sequence {ti} satisfies 0 <ty <t; <ty < -+ <t <+ withlimg_,e tx = +00,
(A1) m € PC'[T*,R] is right-dense continuous at ty. for k = 1,2,...,
(Ay) infiep {u(t)p(t)} > —1. Fork =1,2,...,t = to,

m®(t) = p(hm(t) +q(t), t#t, m(t) = dem(t)+ by, (2.11)

where p,q € C(T*,R), dx = 0, and by are real constants. Then,

m(t) = m(ty) 1—[ dkep(t,t0)+Jt 1_[ die, (t,0(s))q(s)As

to<tx<t 0 s<t<t

+ Z 1_[ djep(t,tk)bk.

o<tk <t tx<tj<t

(2.12)

Proof. By condition (A;), we know that eg,(0(t), ) = 0 for t € [ty,+00)7. For the follow-
ing inequality:

m2(t) = p(t)ym(t) +q(t), (2.13)
on multiplying ec (0 (t), %) and arranging the terms, we obtain

eep(0(t),t0)m™ () — p()ym(t)esy (a(t), 1) = esp(a(t),t0)q(t), (2.14)

which is the same as

(eep (tt0)m(t))" = eap (0(t), o) q(t). (2.15)

Integrating (2.15) from t, to t;, then

t
eep(t1,to)m(t1) = m(to) +L ecp(0(s),t0)q(s)As. (2.16)

Again integrating (2.15) from #; to t, where t € (t;,1,], then

eop (tt0)m(t) = eqp(tr,to) m(t]) + L eop(0(s),t0)q(s)As

t

> coplinyto) (dim(t) +b1) + | eap(0(5) ) q(e)s

t

) (2.17)
>d, (m(to) +L eep(a(s),to)q(s)As> +bresp(ti,t)

t
+ L eop (0(s)10)q(s)AAs,
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that is,

t

m(t) = m(ty)dye, (t,to) + t 1_[ diey (t,0(s))q(s)As+bie, (t,11). (2.18)
0 s<tp<t
Repeating the above procession for t € [ty,+0c0)y, we have

m(t) = m(ty) 1_[ dkep(t,to)+J 1_[ die, (t,0(s))q(s)As

to<ti<t 1

0 s<tr<t (2‘19)
+ Z l_[ djep(t,tk)bk.

to<te<t tk<t;<t

Thus the proof of Lemma 2.4 is complete. O
The following comparison result plays an important role in this paper.

LEMMA 2.5. Let tg = 0, tpy) = T. Assume that u € Q) satisfies

ub(t) = —a(t)u(t) = b()[Tul(t) — c()[Sul(t), t+#t, tETT,
u(t,:“) —u(ty) = —Liu(ty), k=12,...,p, (2.20)
u(0) > u(T),
where a,b,c € C[J1,R"], a is not identically vanishing, and sup,c, fu(t)a(t)} <1,0 < Lg <
L(k=12,...,p). If

2

| Mocwer 1= 10}
IOT Hs<tk<T(1 _Lk)AS

(Bk()-f—Ch())ee(fa)(T,O) < (2.21)

with B = sup,; {b(t) fotee(,a)(a(t),s)As} and C = sup,; {c(t) fOTee(,a)(a(t),s)As},
then u(t) = 0 fort € Jy.

Proof. Let p(t) = u(t)ec(—q)(t,0) for t € Jy. Then p € Q satisties

P20 = —b(t) JO cora (1), $)k(t,5) p(s)As

T
—et) L eora (0(0,)h(L,5) p()As, 4t £ E T, o)

() — p(te) = —Lep(tk), k=1,2,...,p,
P(0) = e(—o)(T,0)p(T).

We now prove

p(t)=0 forte]y. (2.23)
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Assume that (2.23) is not true. Then, there are two cases:
(a) there exists ¢ € Jy such that p(#{") < 0 and p(t) < 0 for t € J;
(b) there exists t],t5° € Jy such that p(#{) <0 and p(t5) > 0.
In case (a), (2.22) implies that

pA(t)ZO) t:’étk) te]‘[)

(2.24)
p(t) = p(te) 20, k=1,2,...,p.
This means that p(t) is nondecreasing in Jy; therefore,
p(0) = p(£) <0
(2.25)

p(0) < p(T) <0,

which contradicts p(T) < eo(—a)(T,0)p(0) < 0.

In case (b) let SUp;cy, p(t) = A. Then, A > 0 and there exists ¢; < f§ < t;; for some i such
that p(t;) = A or p(t]) = A. We may assume that p(f5) = A (since, in case of p(¢]) = A,
the proof is similar). From (2.22), we have

t T
pA(t) = —Akob(t) L es(—q) (0(£),s) As — Ahoc(t) L es(—q)(0(1),5)As

(2.26)
—/\(Bko-l'Cho), t#+ te, t € J7.
Forte [ty,Tlr,k=i+1,i+2,...,p,
p2(t) = —A(Bko+Chy), t#t, p(tf) = (1—Lg)p(t). (2.27)
By Lemma 2.4, we have
p=p(t) [] (1-Lo)+ ]_[ (1 —Lg) (= A(Bko + Chyg) ) As. (2.28)
ty <tp<t ) s<tp<t
Let t = T in (2.28), then
p(T)=A [] (1—Li) —A(Bko+ Chy) ]_[ (1-Ly)As. (2.29)
ty<ty<T 5 s<te<T
If p(T) <0, then (2.29) gives
« 1-L 1-L
(Bko+Ch0) S Hto<tk<T( k) - l_[0<tk<T( k) (2.30)

T = T 4
J.tg‘ Hs<tk<T (1 - Lk)AS fO Hs<tk<T (1 - Lk)AS

which contradicts (2.21), so, we have p(T) = 0, and by (2.22), p(0) = p(T)e_,(T,0) = 0.
Hence, 0 < t < T. Let t; < t{ < tj;; for some j. We first assume that #5 <t soi < j. Let
t =] in (2.28), we have

0>p(tF)=A [] (-Ly)+ J [T (1-L)[ —A(Bko+Chy)]As, (2.31)

I <tp<tf 0 s<t<ty
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which gives

Ht0<tk<t1 ( Lk) H0<tk<T(1 Lk)
ffo 1_[s<tk<t1 (1 _Lk)AS IO H5<tk<T( Lk)As

(Bko + Chyg) > , (2.32)

which contradicts (2.21).
Next we assume that t; <t;. So j <i.Fort € Jt, k =1,2,...,p,

p2(t) = =A(Bko+Cho), t#t, p(t)=(1—Li)p(t). (2.33)
By Lemma 2.4, we have
pt)=p0) [] (1-Ly)+ J [T (1-Li) (= A(Bko+ Chy))As. (2.34)
O<tr<t s<tp<t
Let t = t{ in (2.34), then
£
0>p(t)=p0) [] (1-Lp) - Bk0+Cho)J [T (1-Las, (2.35)

0<ty<ty s<tp<tf

which implies

*

5
»0 T[] (1—Lk)<A(Bk0+ChO)J [T (1-Loas. (2.36)
0<ti<t; 0 s<tr<tf
By (2.22), we obtain
t*
A(Bk0+Ch0J [T (1-Loas>ea(T0)p(T) [] (1-L). (2.37)
s<tr<tf O<tp<tf

From (2.29), (2.37), we have
tf
A(Bky + Chy) j [T (1-Loas

s<tp<tf

>ea(T,0) [ (1-Lg) {A [T (1-Ly) - Bko+Ch0J [T ( l—Lk)As}

0<t<tf 5 <ty<T fo s<ty<T
(2.38)
or
[T =Lx) J] (1-L) < (Bko+Chy) (1—-Lg) 1_[ (1—Li)As
O<tp<tf to<tk<T O<tk<t1 f s<ty<T

+ (Bky + Cho)ew (o (T, 0)j [T (1-Loas
s<tp<tf

(2.39)
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Hence
2
{ [ (I_Lk)} < [] G-y [T O-Lo [] (1—-Ls)
0<ty<T 0<ty<tf t5<ty<T 0<tx<T
T
<(Bko+Cho) [] (1-1) [] (1—Lk)L [T (1-L)As
0<t<ty 0<tx<T lo s<ty<T

*

0
+ (Bko+ Cho)eo(a(T,0) [] (l—Lk)J [T (1-Loas

0<ty<T 0 s<tp<tf

T
< (Bk0+Ch0)ee(,u)(T,0)J 1_[ (1—Lg)As,
0 s<ty<T

(2.40)
which contradicts (2.21).
Thus the proof of Lemma 2.5 is complete. O

For any §(¢) € PC[Jy,R] and 5 € Q, a,b,c € C[Jy,R*], a is not identically vanishing,
and0<Lr<1(k=12,...,p), Ir € C[R,R] (k =1,2,...,p), we consider the linear peri-
odic boundary value problem for a linear impulsive integrodifferential equation(PBVP):

ub () +a(tu(t) = —b() [Tul(t) — c()[Sul(t) +8(t), t+t, t €],
u(ty) —u(te) = —Liu(te) +Ie(n(te)) + Ly (te), k=1,2...,p, (2.41)
u(0) = u(T).

LEmMA 2.6. u € Q is a solution of PBVP (2.41) if and only if u € PC[Jy,R] is a solution of
the following impulsive integral equation:

T
u(t) = L G(t,5){0(s) — b(s)[Tul(s) — c(s)[Sul(s)} As

+ 2 G(t,tr)e—a) (0 (tk),te) (= Leu(te) + I ((tk)) + Lin (&), t € Jr,

O<ty<T

(2.42)

where

G(t,s) = (2.43)

1 e(-a) (t,0(5)), 0<s<t<T,
1 —e—)(T,0)

e(—a)(T,0)e(—q) (t,o(s)), 0<t<s<T
Proof. Assume that u € Q) is a solution of (2.41). For the first equation of (2.41), using
Lemma 2.3 on t € [0,1;]1, we have

t

u(t) = e(—a)(£,0)u(0) + J e—a) (£,0(5)){8(s) = b(s)[Tul(s) — c(s)[Sul(s)}As.  (2.44)

0
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Then
t
w(tr) = e(—a (11,0)u(0) + L o (£1,0(5)) (8(s) = b(s) [ Tul (s) — c(s)[Su) ()} As. (2.45)

Again using Lemma 2.3 on t € (t1,%,]7, then

u(t) = u(t))e o (b)) + j o (6,0(5)) {8(s) — b($) [ Tul(s) — c()[Sul(s)} As
=u(t))ea (tt) + L e(—a)(£,0(5)) {8(s) — b(s)[Tul(s) — c(s)[Sul(s)} As
tea (tt)(—Liu(ty) +1Ii(n(t1)) +Lin(t1))

—e(_a)(t,O)u(O)JrJ o (6,5()) (8(s) = b(s) [ Tul(s) — c(s)[Sul(s)} As
+ea(tt) (= Liu(ty) + L (n(t)) +Lin(t)).

(2.46)

Repeating the above procession for ¢ € Jy, we have

t
u(t) = u(0)e—q(t,0) + J o (1,0()) {8(s) — b(s)[Tu](s) — c(s)[Sul(s)} As

+ > e (tte) (= Liu(te) + Ie(n(te)) + Lin ().

0<tr<t

(2.47)

Setting t = T in (2.47) and using the boundary condition u(0) = u(T'), we obtain

T
u0) = T J, €0 (1016 (609 = b Tul(s) = (s)[Sul(5)As
cnn (2.48)

+ 3 o (Tote) (~ Lt + 1 (1)) + Lin (1)) |

0<tx<T

Substituting (2.48) into (2.47), we see that u € PC[Jy, R] satisfies (2.42).
If u € PC[Jt,R] is a solution of (2.42), then u € C'(J1,R) and
ut(t) +a(t)u(t) = —b(t) [Tu](t) — c(t) [Sul(t) +8(t), t#t, t €],
(2.49)
u(ty) —ulte) = —Lu(te) + I (n(t)) + Lin (), k=1,2...,p.

Setting t = 0, T in (2.42), respectively, we have

T
UT) = 1y, oo (To(9) @06) - b Tul(9) —eto)[5ul ) s

# S e (Tut) (= L) + 1 (1)) + Lin(8)) | = u(o)

0<tx<T

(2.50)

Therefore, u € Q is a solution of (2.41). Thus Lemma 2.6 is proved. O
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LEmMA 2.7. Assume that a,b,c € C[J7,R*] and 0 < L <1 (k= 1,2,...,p), Ir € C[R,R]
(k=1,2...,p), 6 € PC[J1,R], n € Q, and the following inequality holds:

1

p
m({ (kosb(s) + Thoc(s))As+ ZLk)<1. (2.51)

k=1
Then PBVP (2.41) possesses a unique solution in Q.

Proof. For any u € Q, consider the operator F defined by the formula

(Fu)(1) = JGts{cS(s (5)[T2)(s) — c(s)[Su] (s) } As

+ Z G(t,tx e(_a)( (tk) ) (— Lku(tk)+1k(11( ))+Lk11(tk)), teJr.
0<ty<T

(2.52)

Then Fu € Q, thatis, FQ c Q.
For every u,v € Q,t € Jy, we have

T
| (Fu)(t) — (Fv)(1)| < JO G(t,s){b(s) [ [Tul(s) = [Tv](s) | +c(s) | [Sul(s) — [Sv](s) |} As

+ > G(tt)ea (o(t), ) Lic|u(te) — v(t) |

O<ty<T
p
ﬁ(J (Kosh(s) + Thac($) A+ 2, Lk) = vilpc.
(2.53)
Hence
|Fu—Fvlpc = su}p | (Fu)(t) = (Fv)(1)| < allu—vllpc, (2.54)
where
1 J4
m(f (kosb(s) + Thoc(s) )AS+k§Lk) <L (2.55)

Thus the operator F is a contraction on Q. That is, there is a unique element u € Q) such
that u = Fu. Therefore, u is the unique solution of PBVP (2.41). The proof of Lemma 2.7
is complete. O

LemMa 2.8. u € Qis a solution of PBVP (1.1) if and only if u € PC[Jy,R] is solution of the
following integral equation:

T
t) = Jo G(t,s)[ f (s,u(s), [Tu](s), [Sul(s)) +a(s)u(s)]As
+ > Gltti)ea (0(t),ti) Ik (u(tk)),

0<tr<1

(2.56)
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where

G(t,s) =

1 {e(a)(t>0(s))’ (257)

1—ea)(T,0) |ea)(T,0)ea(t,0(s)),
The proof of Lemma 2.8 is similar to that of Lemma 2.6 and we will omit it here.

3. Main results

In this section, we will use the monotone iterative technique to prove the existence of
minimal and maximal solutions of the PBVP (1.1).

THEOREM 3.1. Assume that the following conditions hold.
(H,) There exist functions ug,vo € Q, uo(t) < vy(t) for all t € Jy such that

uf (1) < f (t,uo (), [ Tuo] (1), [Suo] (1)),  t+t, t €],

uo () —uo(te) < Ie(uo(te)), k=12,...,p,

up(0) < uy(T),

vo (£) = f(tvo (0, [T (1), [Svo] (1)), t# b t € Jr,
vo(t) —vo(ti) = I(vo(t)), k=1,2,...,p,

v0(0) = vo(T).

(3.1)

(H,) The function f € C[Jy X R X R x R,R] satisfies
[t uz,va,wa) = f(Hur,vi,wr) = —a(t) (up —uy) — b(t) (va —v1) — c(8) (wa — wy), (3.2)

whenever ug(t) < uy < uy < vo(t),[Tugl(t) < vi < vy < [Tvo](t),[Sup](t) < wi < wy
< [Sw](2), t € Jv, where for a,b,c € C[J7,R*], sup,; {u(t)a(t)} < 1, a is not identically
vanishing.

(H3) The function I € C[R,R] satisfies

I(x) = Ik(y) = —Li(x = y), (33)

whenever ug(ty) <y <x <vo(tx) (k=1,2,...,p),and0 < Ly <1 (k= 1,2,...,p).

Further, assume that the inequalities (2.21) and (2.51) hold. Then PBVP (1.1) has the
minimal solution u™ and maximal v* in [ugy,vo]. Moreover, there exist monotone iteration
sequences {u,(t)}, {va(t)} C [uo,vo] such that

Uy(t) — u*(t),va(t) — v*(t) asn— oo uniformly ont € Jr, (3.4)
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where {u,(t)}, {va(t)} satisfy

ub (t) = f (1 (1), [Tuin—1 1(8), [Sttn—1] (1)) — a(t) (4 — up—1) (£)

b T (ty — ty_1) () = c(O)[S(thy — un_1) | (t), t#tx, tEJT,

un(t,'(*) =ty (te) = =Lty (te) + I (o1 () + Leun—1 (tx),  k=1,2,...,p,

u,(0) = u,(T) (n=123,...),

va(t) = f (v (0, [Tva-11(8), [Svn (1) = a(t) (v = vu1) (1)

bW [T(vw=vu1) () =c(O)[S(vy —vu1) [(1), t# 1, tE]T,

Vn(t,:) —vn(tx) = —Livn (tx) + Ie (Vo1 () ) + Livi1 (),  k=1,2,...

Vn(o):VH(T) (n: 112)3)---))

U< < - <uU, <---<u*<yv*<...<y,<--- <y <.

(3.5)

(3.6)

Proof. For any u,_1,v,-1 € Q, by Lemma 2.7, we know that (3.5) has unique solution u,

and v, in Q, respectively.
In the following, we will show by induction that

Up 1 S U, <V, <Vy1, n=123....

By (3.5) and the conditions (H; ), (H,), and (H3), we have

(1 — o)™ (1) = —a(t) (ur — uo) (£) — b(O)[ T (1 — o) 1(£)
—c(®)[S(u —uo) (1), t#t, tE]T,

(ur —uo) (8) = (w1 — uo) (tx) = =L (w1 — o) (tx), k=1,2,...

(11— 10) (0) = (1 — up) (T),

(vo—v1) (1) = —a(t) (vo — 1) (£) = b() [ T (v — v1) ] (1)
—c(t)[S(vo—w1)](t), t+t tE]T,

(VO_VI)(t}j)_(VO_Vl)(tk)Z_Lk(VO_VI)(tk)ﬂ k=1.2,..,p,

(vo =v1)(0) = (vo —w1)(T),

(v =) 2(8) = —a(t) (vi — wr) (1) = B[ T (v — w1) ] (1)
—c(O[Svi —u) (), t#t, te]T,

(i —ur) () = (vi =) (&) = =L (vi —w1) (), k=1,2,...

(vi —u1)(0) = (vi —u)(T).

Thus, by Lemma 2.5, we have uy < u; <v; < .

(3.7)

(3.8)



Y. Li and H. Zhang 13

Now we assume that (3.7) is true for i > 1, that is, u;—1 < u; < v; < v;_1, and we prove
that (3.7) is true for i + 1 too. In fact, by (3.5), and the conditions H, and Hs, we have
that

(s =) () = =a(t) (wier =) (8) = O[T (i1 = ) (1)
_C(t)[s(llel —Ui)](t): t:/é Ik, te]T:

(ui+1 — u,)(t,j) - (u,-ﬂ - ui)(tk) > —Lk(u,-ﬂ — ui) (l’k), k= L2,...,p,

(tir1 — 1) (0) = (i1 — ;) (T),

(vier = i) (1) = =a(t) (viey = vi) (£) = B[ T (virs —vi) ] (1)
_C(t)[S(VHl _Vi)](t)) t:/é tk) tEI]I,

(Vi+1 — Vi)(t;(r) - (V,'+1 — V,‘) (tk) = —Lk(V,'H — V,’) (tk), k= 1,2,...,p,
(Vier = vi)(0) = (visa —vi)(T),

(Vi1 — ir1) (8) = —a(t) (vier — wi1) () = bO[T (vigr — wi1) ] ()
—c(O[S(iw1 —uir1) (1), t#t, tE T,

(3.9)

(vier — uic1) () — (Vier = tie1) (t6) = —Lic(vier — i) (56),  k=1,2,...,p,
(Visr — ti+1) (0) = (Vi1 — uisr ) (T).
Thus, by Lemma 2.5, we have that u; < u;1 < vi41 < vi. So, by induction, (3.7) holds for

any positive integer n.
It is easy to know by (3.7) that

UpS U< SU S-SV < -+ <V <. (3.10)

Furthermore, by (3.5), and Lemma 2.6, we have

T
(1) = jo G5 f (51 tn1 (), [ Titnr 18 [Sttn—11(5)) + ()t (5)
—b($)[ T (un — tn-1)1(s) = c()[S(tt — thn—1) | (s)} As

+ > Gt t)e—a) (o (te),tk) (= Lt (ti) + I (1 () + Litba—1 (), t € J1,
0<ty<T

T
valt) = jo G(£,5) LF (5 v 1 (5, [ Tvn 11(5), [Sv 1 1(5)) + als)va1(5)
—b($S)[T(va—=vu-1)1(s) = c()[S(v — vu-1) ()} As
+ Z G(t, tk)E(,a)(J(tk),tk) ( - Lkvn(tk) +Ik(v,,,1 (tk)) +Lkvn,1(tk)), te .

O<ty<T

(3.11)
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By (3.5) and the condition (H,), we have

f(tuo(t), Tluo](t),S[uo](2)) — a(t) (vo — ug) (£)
—b(t)T[(vo — o) | () — c(t)S[ (vo — o) ] (£)
<, (1) < f(t,v0(1), T[vo] (1), [0 (1))
+a(t) (vo— uo) (8) + b(t) T [ (vo — o) | () + c(£)S[ (vo — uo) | (2).

(3.12)

Thus, {¢4(t)} is uniformly bounded. Also, similarly to the above we can show that {v}(¢)}
is uniformly bounded. Using Lemma 2.4 [12], we know that there exist u™,v* such that
limy— oo ty () = u*(t),limy— 0 v, () = v*(¢) uniformly on Jy.

Taking limits as n — o, by (3.11), we have that

T
= JO G(t,s)[ f (s,u™(s), [Tu*](s),[Su™](s)) +a(s)u*(s)]As
+ > Gt ti)ea (o (t), i) Ik (u* (),

0<tx<l1

(3.13)
T
t) = JO G(t,)[f (;v* (), [Tv*](5), [Sv*](s)) +a(s)v* ()] As

+ > G(ttk)ea (o(t), i) I (v¥ (1)),

0<tr<1

From the above, by Lemma 2.8, we know that u* and v* are solutions of PBVP (1.1) in

[0, V0]
Next we prove that u* and v* are the minimal and maximal solutions of PBVP (1.1)

in [uo,Vo].
In fact, let w € [up,vo] be a solution of PBVP(1.1), that is,
wh(t) = f(tw(t), [Tw](0),[Sw](1)), t#t, tE T,
w(th) —w(t) =Lk(w(t)), k=12,...,p, (3.14)
w(0) = w(T).

Using induction, suppose that there exists a positive integer n such that u,(t) < w(t) <
v,(t) on Jt. Then,

(W= tn1) (1) = (£, w(D), [Tw](£), [Sw] (1))
—{f (tun (), [Tun ] (1), [Sun ] (1)) — a(t) (4 — 1) (1)
—bO[T (un — thni1) ] () = () [S(tn — thns1) [ ()}
> —a(t)(w(t) = tp1 (1) = B[ T (W — th11) ] ()
—c(O[S(w—unr) (1), t#t, ter,
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(W= tp1) () + Ie(w(tx)) — [ = Lictdnsr () + T (4 (1) ) + Licun () ]
(1=Li) (W —upi1) (), k=1,2,...,p,
(W = ttui ) (T).

(w = un1) ()

2

(W —up41)(0)

(3.15)

By Lemma 2.5, it follows that w(t) > u,1(¢) on Jy. Similarly, we obtain v,.41 (f) = w(t) on
Jr. Since uo(t) < w(t) < vo(t) on Jy, by induction we get

Up1 (8) < w(t) < v (1), n=1,2,3,.... (3.16)

Thus, letting n — oo in (3.16), we have that

u* <w<v*, (3.17)

that is, u™ and v* are the minimal and maximal solutions of the PBVP (1.1) in the interval
[10,V0].
The proof of Theorem 3.1 is complete. O
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