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1. Introduction

In population dynamics, the optimal management of renewable resources has been one of
the interesting research topics. The optimal exploitation of renewable resources, which has
direct effect on their sustainable development, has been paid much attention [1–3]. However,
it is always hoped that we can achieve sustainability at a high level of productivity and good
economic profit, and this requires scientific and effective management of the resources.

Single-species resource management model, which is described by the impulsive
periodic logistic equations on finite-dimensional spaces, has been investigated extensively,
no matter how the harvesting occurs, continuously [1, 4] or impulsively [5–7]. However, the
associated single-species resource management model on infinite-dimensional spaces has not
been investigated extensively.

Since the end of last century, many authors including Professors Nieto and Hernández
pay great attention on impulsive differential systems. We refer the readers to [8–22].
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Particulary, Doctor Ahmed investigated optimal control problems [23, 24] for impulsive
systems on infinite-dimensional spaces. We also gave a series of results [25–34] for the first-
order (second-order) semilinear impulsive systems, integral-differential impulsive system,
strongly nonlinear impulsive systems and their optimal control problems. Recently, we
have investigated linear impulsive periodic system on infinite-dimensional spaces. Some
results [35–37] including the existence of periodic PC-mild solutions and alternative theorem,
criteria of Massera type, asymptotical stability and robustness against perturbation for a
linear impulsive periodic system are established.

Herein, we devote to studying global behaviors and optimal harvesting of the
generalized logistic single-species system with continuous periodic control strategy and
periodic impulsive perturbations:

∂

∂t
x(t, y) = A(y,D)x(t, y) + f(t, y) + C(t)u(t, y), u ∈ Uad, y ∈ Ω, t > 0, t /= τk, k ∈ Z

+
0 ,

x(t, y) = 0, y ∈ ∂Ω, t > 0,

Δx(t, y) = Δx(t + 0, y) −Δx(t, y) = Bkx(t, y) + ck, y ∈ Ω, t = τk, k ∈ Z
+
0 .

(1.1)

On infinite-dimensional spaces, where x(t, y) denotes the population number of isolated
species at time t and location y, Ω ⊂ R

2 is a bounded domain and ∂Ω ∈ C2, operator
A(y,D) =

∑
|α|≤4 aα(y)Dα. The coefficients aα(y), (y ∈ Ω, t ≥ 0) are sufficiently smooth

functions of y in Ω, where α = (α1, α2), αi > 0, i = 1, 2, |α| =
∑2

i=1αi and yα = yα
1y

α
2 ,

y = (y1, y2) ∈ Ω. Denoting Di = (∂/∂yi) (i = 1, 2), D = (D1, D2), then Dα = Dα1
1 Dα2

2 . f(t, y)
is related to the periodic change of the resources maintaining the evolution of the population
and the periodic control policy u ∈ Uad, where Uad is a suitable admissible control set. Time
sequence 0 = τ0 < τ1 < · · · < τk · · · and τk → ∞ as k → ∞, Δx(τk, y) denote mutation of the
isolate species at time τk where k ∈ Z

+
0 .

SupposeX is a Banach space and Y is a separable reflexive Banach space. The objective
functional is given by

J̃(u) =
∫T0

0

∫

Ω
l(t, x(t, y, u), u(t, y))dydt +

∫

Ω
Ψ(x(T0, y, u))dy, (1.2)

where l : [0, T0] × X × Y → R ∪ {∞} is Borel measurable, Ψ : X → R is continuous, and
nonnegative and x(·, y, u) denotes the T0-periodic PC-mild solution of system (1.1) at location
y and corresponding to the control u ∈ Uad. The Bolza problem (P̃) is to find u0 ∈ Uad such
that J̃(u0) ≤ J̃(u) for all u ∈ Uad.

Suppose that f(t + T0, y) = f(t, y), C(t + T0) = C(t), u(t + T0, y) = u(t, y), t ≥ 0 and T0 is
the least positive constant such that there are δ τks in the interval (0, T0), and τk+δ = min{τ ∈
D̃ | τ ≥ τk + T0}, where D̃ = {τk | τk+1 > τk; for all k ∈ Z

+
0}, Bk+δ = Bk, ck+δ = ck, k ∈ Z

+
0 .

The first equation of system (1.1) describes the variation of the population number x of the
species in periodically continuous controlled changing environment. The second equation of
system (1.1) shows that the species are isolated. The third equation of system (1.1) reflects
the possibility of impulsive effects on the population.

LetA(y,D) satisfy some properties (such as strongly elliptic) inΩ and setD(A) (such
asH2(Ω)∩H1

0(Ω)). For every x ∈ D(A) defineAx = A(y,D)x,A is the infinitesimal generator
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of a C0-semigroup {T(t), t ≥ 0} on the Banach space X (such as H2(Ω)). Define x(·)(y) =
x(·, y), (f)(·)(y) = f(·, y), and u(·)(y) = u(·, y) then system (1.1) can be abstracted into the
following controlled system:

ẋ(t) = Ax(t) + f(t) + C(t)u(t), u ∈ Uad, t /= τk,

Δx(τk) = Bkx
(
τk
)
+ ck, t = τk.

(1.3)

On the Banach space X, and the associated objective functional

J(u) =
∫T0

0
l(t, x(t, u), u(t))dt + Ψ(x(T0, u)), (1.4)

where x(·, u) denotes the T0-periodic PC-mild solution of system (1.3) corresponding to the
control u ∈ Uad. The Bolza problem (P) is to find u0 ∈ Uad such that J(u0) ≤ J(u) for all
u ∈ Uad. The investigation of the system (1.3) cannot only be used to discuss the system (1.1),
but also provide a foundation for research of the optimal control problems for semilinear
impulsive periodic systems. The aim of this paper is to give some new sufficient conditions
which will guarantee the existence, uniqueness, and global asymptotical stability of periodic
PC-mild solutions for system (1.3) and study the optimal control problems arising in the
system (1.3).

The paper is organized as follows. In Section 2, the properties of the impulsive
evolution operator {S(·, ·)} are collected. Four new sufficient conditions that guarantee the
exponential stability of the {S(·, ·)} are given. In Section 3, the existence, uniqueness, and
global asymptotical stability of T0-periodic PC-mild solution for system (1.3) is obtained.
In Section 4, the existence result of periodic optimal controls for the Bolza problem (P) is
presented. At last, an academic example is given to demonstrate our result.

2. Impulsive periodic evolution operator and it’s stability

Let X be a Banach space, £(X) denotes the space of linear operators on X; £b(X) denotes the
space of bounded linear operators on X. £b(X) is the Banach space with the usual supremum
norm. Denote D̃ = {τ1, . . . , τδ} ⊂ [0, T0] and define PC([0, T0];X) ≡ {x : [0, T0] → X | x is
continuous at t ∈ [0, T0] \ D̃, x is continuous from left and has right-hand limits at t ∈ D̃} and
PC1([0, T0];X) ≡ {x ∈ PC([0, T0];X) | ẋ ∈ PC([0, T0];X)}.

Set

‖x‖PC = max

{

sup
t∈[0,T0]

‖x(t + 0)‖, sup
t∈[0,T0]

‖x(t − 0)‖
}

, ‖x‖PC1 = ‖x‖PC + ‖ẋ‖PC. (2.1)

It can be seen that endowed with the norm ‖ · ‖PC(‖ · ‖PC1), PC([0, T0];X)(PC1([0, T0];X)) is
a Banach space.
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In order to investigate periodic solutions, we introduce the following two spaces:

L
p

T0
([0,+∞);X) ≡

{

f : [0,+∞) −→ X | f(t) = f
(
t + T0

)
,

(∫T0

0
‖f(t)‖pdt

)1/p

< +∞ where 1 < p < +∞
}

,

PCT0([0,+∞);X) ≡ {
x ∈ PC([0,+∞);X) | x(t) = x

(
t + T0

)
, t ≥ 0

}
.

(2.2)

Set

‖f‖Lp

T0
=

(∫T0

0
‖f(t)‖pdt

)1/p

, ‖x‖PCT0
= max

{

sup
t∈[0,T0]

‖x(t + 0)‖, sup
t∈[0,T0]

‖x(t − 0)‖
}

. (2.3)

It can be seen that endowedwith the norm ‖·‖Lp

T0
(‖·‖PCT0

), Lp

T0
([0,+∞);X) (PCT0([0,+∞);X))

is a Banach space.
We introduce assumption [H1].

[H1.1]: A is the infinitesimal generator of a C0-semigroup {T(t), t ≥ 0} on X with domain
D(A).

[H1.2]: There exists δ such that τk+δ = min{τ ∈ D̃ | τ ≥ τk + T0}, where D̃ = {τk | τk+1 >
τk; ∀k ∈ Z

+
0}.

[H1.3]: For each k ∈ Z
+
0 , Bk ∈ £b(X), Bk+δ = Bk.

Under the assumption [H1], consider

ẋ(t) = Ax(t), t /= τk,

Δx(t) = Bkx(t), t = τk,
(2.4)

and the associated Cauchy problem

ẋ(t) = Ax(t), t ∈ [
0, T0

] \ D̃,

Δx
(
τk) = Bkx

(
τk
)
, k = 1, 2, . . . , δ,

x(0) = x.

(2.5)

For every x ∈ X, D(A) is an invariant subspace of Bk, using ([38, Theorem 5.2.2,
page 144]), step by step, one can verify that the Cauchy problem (2.5) has a unique classical
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solution x ∈ PC1([0, T0];X) represented by x(t) = S(t, 0)x, where S(·, ·) : Δ = {(t, θ) | 0 ≤ θ ≤
t ≤ T0} → £(X) given by

S(t, θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(t − θ), τk−1 ≤ θ ≤ t ≤ τk,

T
(
t − τ+

k

)(
I + Bk

)
T
(
τk − θ

)
, τk−1 ≤ θ < τk < t ≤ τk+1,

T
(
t − τ+k

)
[
∏

θ<τj<t

(
I + Bj

)
T
(
τj − τ+j−1

)
]
(
I + Bi

)
T
(
τi − θ

)
,

τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1.

(2.6)

The operator {S(t, θ), (t, θ) ∈ Δ} is called impulsive evolution operator associated with
{T(t), t ≥ 0} and {Bk; τk}∞k=1.

The following lemma on the properties of the impulsive evolution operator
{S(t, θ), (t, θ) ∈ Δ} associated with {T(t), t ≥ 0} and {Bk; τk}∞k=1 is widely used in this paper.

Lemma 2.1. Let assumption [H1] hold. The impulsive evolution operator {S(t, θ), (t, θ) ∈ Δ} has
the following properties.

(1) For 0 ≤ θ ≤ t ≤ T0, S(t, θ) ∈ £b(X), there exists a MT0 > 0 such that
sup0≤θ≤t≤T0‖S(t, θ)‖ ≤ MT0 .

(2) For 0 ≤ θ < r < t ≤ T0, r /= τk, S(t, θ) = S(t, r)S(r, θ).

(3) For 0 ≤ θ ≤ t ≤ T0, n ∈ Z+, S(t + nT0, θ + nT0) = S(t, θ).

(4) For 0 ≤ θ ≤ t ≤ T0, n ∈ Z+, S(t + nT0, 0) = S(t, 0)[S(T0, 0)]
n.

(5) For 0 ≤ θ < t, there exitsM ≥ 1, ω ∈ R such that

‖S(t, θ)‖ ≤ M exp

{

ω(t − θ) +
∑

θ≤τn<t
ln

(
M

∥
∥I + Bn

∥
∥
)
}

. (2.7)

Proof. (1) By assumption [H1.1], there exists a constant CT0 > 0 such that supt∈[0,T0]‖T(t)‖ =
CT0 < ∞. Using assumption [H1.3], it is obvious that S(t, θ) ∈ £b(X), for 0 ≤ θ ≤ t ≤ T0.
(2) By the definition of C0-semigroup and the construction of S(·, ·), one can verify the result
immediately. (3) By assumptions [H1.2], [H1.3], and elementary computation, it is easy to
obtain the result. (4) For 0 ≤ θ ≤ t ≤ T0, n ∈ Z+, by virtue of (3) again and again, we arrive at

S
(
t + nT0, 0

)
= S

(
t + nT0, T0

)
S
(
T0, 0

)
= S

(
t + (n − 1)T0, 0

)
S
(
T0, 0

)

= S
(
t + (n − 1)T0, T0

)
S
(
T0, 0

)
S
(
T0, 0

)
=
(
(t + (n − 2)T0, 0

)[
S
(
T0, 0

)]2

. . .

= S(t, 0)
[
S
(
T0, 0

)]n
.

(2.8)
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(5)Without loss of generality, for τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1,

‖S(t, θ)‖ =
∥
∥T

(
t − τ+k

)∥
∥
∥
∥I + Bk

∥
∥
∥
∥T

(
τk − τ+k−1

)∥
∥ · · ·∥∥I + Bi

∥
∥
∥
∥T

(
τi − θ

)∥
∥

≤ Meω(t−τ+
k
)

[
k∏

n=i+1

∥
∥I + Bn

∥
∥Me(τn−τ

+
n−1)

]
∥
∥I + Bi

∥
∥Meω(τi−θ)

≤ M exp

{

ω(t − θ) +
∑

θ≤τn<t
ln

(
M

∥
∥I + Bn

∥
∥
)
}

.

(2.9)

This completes the proof.

In order to study the asymptotical properties of periodic solutions, it is necessary to
discuss the exponential stability of the impulsive evolution operator {S(t, θ), t ≥ θ ≥ 0}. We
first give the definition of exponential stable for {S(t, θ), t ≥ θ ≥ 0}.

Definition 2.2. {S(t, θ), t ≥ θ ≥ 0} is called exponentially stable if there exist K ≥ 0 and ν > 0
such that

‖S(t, θ)‖ ≤ Ke−ν(t−θ), t > θ ≥ 0. (2.10)

Assumption [H2]: {T(t), t ≥ 0} is exponentially stable, that is, there exist K0 > 0 and
ν0 > 0 such that

‖T(t)‖ ≤ K0e
−ν0t, t > 0. (2.11)

An important criteria for exponential stability of a C0-semigroup is collected here.

Lemma 2.3 (see [38, Lemma 7.2.1]). Let {T(t), t ≥ 0} be a C0-semigroup on X, and let A be its
infinitesimal generator. Then the following assertions are equivalent:

(1) {T(t), t ≥ 0} is exponentially stable.

(2) For every x ∈ X there exits a positive constants γx < ∞ such that

∫∞

0
‖T(t)x‖pdt < γx < ∞, x ∈ X, t > 0, for some p, 1 ≤ p < ∞. (2.12)

Next, four sufficient conditions that guarantee the exponential stability of impulsive evolution
operator {S(t, θ), t ≥ θ ≥ 0} are given.

Lemma 2.4. Assumptions [H1] and [H2] hold. There exists 0 < λ < ν0 such that

δ∏

k=1

(
K0

∥
∥I + Bk

∥
∥
)
e−λT0 < 1. (2.13)

Then, {S(t, θ), t ≥ θ ≥ 0} is exponentially stable.
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Proof. Without loss of generality, for τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1, we have

‖S(t, θ)‖ ≤ K0e
−(ν0−λ)(t−θ)

[
∏

θ<τk<t

(
K0

∥
∥I + Bk

∥
∥
)
e−λ(t−θ)

]

. (2.14)

Suppose t ∈ (nT0, (n + 1)T0] and let b = maxs∈[0,T0]
∏

0<τk<s{K0‖I + Bk‖}. Then,

∏

θ<τk<t

(
K0

∥
∥I + Bk

∥
∥
)
e−λ(t−θ) ≤

∏

0≤τk<nT0

(
K0

∥
∥I + Bk

∥
∥
)
e−λnT0beλθ

≤
δ∏

k=1

(
K0

∥
∥I + Bk

∥
∥
)n
e−λnT0beλθ

=

[
δ∏

k=1

(
K0

∥
∥I + Bk

∥
∥
)
e−λT0

]n

beλθ

< beλθ.

(2.15)

Let K = K0be
λθ > 0 and ν = ν0 − λ > 0, then we obtain ‖S(t, θ)‖ ≤ Ke−ν(t−θ), t > θ ≥ 0.

Lemma 2.5. Assume that assumption [H1] holds. Suppose

0 < μ1 = inf
k=1,2,...,δ

(
τk − τk−1

) ≤ sup
k=1,2,...,δ

(
τk − τk−1

)
= μ2 < ∞. (2.16)

If there exists α > 0 such that

ω +
1
μ
ln

(
M

∥
∥I + Bk

∥
∥
) ≤ −α < 0, (2.17)

for k = 1, 2, . . . , δ, where

μ =

⎧
⎨

⎩

μ1, α +ω < 0,

μ2, α +ω ≥ 0.
(2.18)

Then, {S(t, θ), t ≥ θ ≥ 0} is exponentially stable.

Proof. It comes from (2.17) that

ln
(
M

∥
∥I + Bk

∥
∥
) ≤ −μ(α +ω) < 0, k = 1, 2, . . . , δ. (2.19)
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Further,

∑

θ≤τk<t
ln

(
M

∥
∥I + Bk

∥
∥
) ≤ −

∑

θ≤τk<t
μ(α +ω) = −μ(α +ω)N(θ, t), (2.20)

where N(θ, t) is denoted the number of impulsive points in [θ, t).
For τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1, by (2.16), we obtain the following two

inequalities:

t − θ ≥ (N(θ, t) − 1)μ1, t − θ ≤ (N(θ, t) + 1)μ2. (2.21)

This implies

μ1(N(θ, t) − 1) ≤ t − θ ≤ μ2(N(θ, t) + 1), (2.22)

that is,

1
μ2

(t − θ) − 1 ≤ N(θ, t) ≤ 1
μ1

(t − θ) + 1. (2.23)

Then,

−μ(α +ω)N(θ, t) ≤ −(α +ω)(t − θ) + μ|α +ω|. (2.24)

Thus, we obtain

ω(t − θ) +
∑

θ≤τk<t
ln

(
M

∥
∥I + Bk

∥
∥
) ≤ −α(t − θ) + μ|α +ω|. (2.25)

By (5) of Lemma 2.1, let K = Meμ|α+ω| > 0, ν = α > 0, ‖S(t, θ)‖ ≤ Ke−ν(t−θ), t > θ ≥ 0.

Lemma 2.6. Assume that assumption [H1] holds. The limit

lim
T0 →∞

N
(
θ, θ + T0

)

T0
exists and is equal to

δ

T0
≡ p is finite. (2.26)

Suppose there exists γ > 0 such that

ω + p ln
(
M

∥
∥I + Bk

∥
∥
) ≤ −γ < 0, k = 1, 2, . . . , δ. (2.27)

Then, {S(t, θ), t ≥ θ ≥ 0} is exponentially stable.

Proof. Let t, θ ∈ R
+ with t > θ. It comes from

lim
T0 →∞

N
(
θ, θ + T0

)

T0
=

δ

T0
≡ p (2.28)
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that there exits a h > 0 enough small such that

∣
∣
∣
∣
∣

N(θ, t)
t − θ

− p

∣
∣
∣
∣
∣
< ph, (2.29)

that is,

(1 − h)(t − θ) <
N(θ, t)

p
< (1 + h)(t − θ). (2.30)

From (2.27), we know that

∑

θ<τk<t

ln
(
M

∥
∥I + Bk

∥
∥
) ≤ −

∑

θ<τk<t

1
p
(γ +ω) = −N(θ, t)

p
(γ +ω). (2.31)

Then, we have

−N(θ, t)
p

(γ +ω) ≤

⎧
⎪⎪⎨

⎪⎪⎩

− (1 + h)
p

(t − θ)(γ +ω), γ +ω < 0

− (1 − h)
p

(t − θ)(γ +ω), γ +ω ≥ 0
= −[(γ +ω) − h|γ +ω|](t − θ).

(2.32)

Hence,

(ω + h)(t − θ) +
∑

θ<τk<t

ln
(
M

∥
∥I + Bk

∥
∥
) ≤ −[γ − h(1 + |γ +ω|)](t − θ). (2.33)

Here, we only need to choose h > 0 small enough such that γ − h(1 + |γ + ω|) > 0, by (5) of
Lemma 2.1 again, let K = M > 0, ν = γ − h(1 + |γ +ω|) > 0, we have ‖S(t, θ)‖ ≤ Ke−ν(t−θ), t >
θ ≥ 0.

Lemma 2.7. Assume that assumption [H1] holds. For some p, 1 ≤ p < +∞,

∫∞

0
‖S(t, θ)ξ‖pdt < ∞, ξ ∈ X, t > θ ≥ 0, θ is fixed,

∑

θ≤τk<t

∥
∥I + Bk

∥
∥ is convergent.

(2.34)

Imply the exponential stability of {S(t, θ), t ≥ θ ≥ 0}.

Proof. It comes from the continuity of t → T(t)ξ, the inequality

‖S(t, θ)‖ ≤
(

M2
∑

θ≤τk<t

∥
∥I + Bk

∥
∥

)

eω(t−θ) (2.35)
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and the boundedness of Bk,
∑

θ≤τk<t‖I + Bk‖ are convergent, that limt→∞S(t, θ)ξ = 0 for every
ξ ∈ X and fixed θ ≥ 0. This shows that S(t, θ)ξ is bounded for each ξ ∈ X and fixed θ ≥
0 and hence, by virtue of uniform boundedness principle, there exists a constant M2 ≥ 1
such that ‖S(t, θ)‖ ≤ M2 for all t > θ ≥ 0. Let L denote the operator given by (Lx)(t) =
S(t, θ)x, x ∈ X and θ is fixed. Clearly, L is defined every where on X and by assumption it
maps X → Lp((0,∞);X) and it is a closed operator. Hence, by closed graph theorem, it is a
bounded linear operator from X to Lp((0,∞);X). Thus, there exits a constant M3 > 0 such
that ‖Lx‖Lp((0,∞);X) ≤ M3 for all x ∈ and t > θ ≥ 0, θ is fixed.

Let 0 < κ < M−1
2 , ξ ∈ X and t ≥ 0 and define τ ≡ τ(κ, ξ) as

τ = sup{t ≥ 0 : ‖S(s, θ)ξ‖ ≥ κ‖ξ‖ ∀0 ≤ θ < s ≤ t}. (2.36)

Then,

τ(κ‖ξ‖)p ≤
∫ τ

0
‖S(t, θ)ξ‖pdt ≤

∫∞

0
‖S(t, θ)ξ‖pdt = ‖Lξ‖p

Lp((0,∞);X) ≤
(
M3‖ξ‖

)p
, (2.37)

and hence,

τ ≤
(

M3

κ

)p

≡ t0. (2.38)

Thus, for t > (t0 + θ) /= τk,

‖S(t, θ)ξ‖ ≤ ‖S(t, t − τ)S(t − τ, θ)ξ‖ ≤ M2κ‖ξ‖ ≡ β‖ξ‖, (2.39)

where β = M2κ < 1. Fix t1 = N0T0 > t0 + θ. Then, for any t ∈ [0,∞)we can write t− θ = nt1 + s
for some n ∈ N0 and s ∈ [0, t1) and we have

‖S(t, θ)ξ‖ =
∥
∥S

(
nN0T0 + s, θ

)
ξ
∥
∥ = ‖S(s, θ)‖∥∥S(T0, 0

)
ξ
∥
∥nN0 ≤ M2e

nN0 ln β‖ξ‖ = M1e
−νt‖ξ‖,

(2.40)

where M1 = M2β
s/t1 and ν = −(ln β/t1). Since β < 1, this shows that our result.

3. Periodic solutions and global asymptotical stability

Consider the following controlled system:

.
x (t) = Ax(t) + f(t) + C(t)u(t), u ∈ Uad, t /= τk,

Δx
(
τk
)
= Bkx

(
τk
)
+ ck, t = τk,

(3.1)
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and the associated Cauchy problem

.
x (t) = Ax(t) + f(t) + C(t)u(t), u ∈ Uad, t ∈

[
0, T0

] \ D̃,

Δx
(
τk
)
= Bkx

(
τk
)
+ ck, k = 1, 2, . . . , δ,

x(0) = x.

(3.2)

In addition to assumption [H1], we make the following assumptions:

[H3]: f : [0, T0] → X is measurable and f(t + T0) = f(t) for t ≥ 0.

[H4]: For each k ∈ Z
+, there exists δ ∈ N and ck ∈ X, ck+δ = ck.

[H5]: U(·) : [0, T0] → 2Y \ {Ø} has bounded, closed, and convex values and is graph
measurable, U(·) ⊆ Ω and Ω are bounded, where Y is a separable reflexive Banach
space.

[H6]: Operator C ∈ £∞([0, T0]; £(Y,X)) and C(t + T0) = C(t), for t ≥ 0. Obviously, C :
Lp([0, T0];Y ) → Lp([0, T0];X)(1 < p < +∞).

Denote the set of admissible controls

Uad =
{
u(·) : [0, T0

] −→ Y measurable | u(t + T0
)
= u(t), u(t) ∈ U(t) a.e. for t ≥ 0

}
. (3.3)

Obviously, Uad /= Ø and Uad ⊆ Lp([0, T0];Y )(1 < p < ∞), Uad is bounded, convex, and
closed.

We introduce PC-mild solution of Cauchy problem (3.2) and T0-periodic PC-mild
solution of system (3.1).

Definition 3.1. A function x ∈ PC([0, T0];X), for finite interval [0, T0], is said to be a PC-mild
solution of the Cauchy problem (3.2) corresponding to the initial value x ∈ X and u ∈ Uad if
x is given by

x
(
t, x, u

)
= S(t, 0)x +

∫ t

0
S(t, θ)[f(θ) + C(θ)u(θ)]dθ +

∑

0≤τk<t
S
(
t, τ+k

)
ck. (3.4)

A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution of system
(3.1) if it is a PC-mild solution of Cauchy problem (3.2) corresponding to some x and x(t +
T0, x, u) = x(t, x, u) for t ≥ 0.

Theorem 3.2. Assumptions [H1], [H3], [H4], [H5], and [H6] hold. Suppose {S(t, θ), t ≥ θ ≥ 0} is
exponentially stable, for every u ∈ Uad, system (3.1) has a unique T0-periodic PC-mild solution:

xT0

(
t, x, u

)
= S(t, 0)x +

∫ t

0
S(t, θ)gu(θ)dθ +

∑

0≤τk<t
S
(
t, τ+k

)
ck ≡ P

(
gu, ck

)
(t), (3.5)
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where gu(·) = f(·) + C(·)u(·) ∈ L
p

T0
([0,∞);X),

x =
[
I − S

(
T0, 0

)]−1
z, z =

∫T0

0
S
(
T0, θ

)
gu(θ)dθ +

∑

0≤τk<T0
S
(
t, τ+k

)
ck. (3.6)

Further,

P : Lp

T0
([0,∞);X) ×Xδ −→ PCT0([0,∞);X) (3.7)

is a bounded linear operator and

∥
∥P

(
gu, ck

)∥
∥
PCT0 ([0,∞);X) ≤ B̃

(

‖f‖Lp

T0
+ ‖C‖∞‖u‖Lp

T0
+

δ∑

k=1

∥
∥ck

∥
∥

)

, (3.8)

where B̃ = K(K‖Q‖ + 1) and Q = [I − S(T0, 0)]
−1.

Further, for arbitrary x0 ∈ X, the PC-mild solution x(·, x0, u) of the Cauchy problem (3.2)
corresponding to the initial value x0 ∈ X and control u ∈ Uad, satisfies the following inequality:

∥
∥x

(
t, x0, u

) − xT0

(
t, x, u

)∥
∥ ≤ B̂e−νt

(

‖f‖Lp

T0
+ ‖C‖∞‖u‖Lp

T0
+

δ∑

k=1

∥
∥ck

∥
∥

)

, (3.9)

where xT0(·, x, u) is the T0-periodic PC-mild solution of system (3.1), B̂ > 0 is not dependent on x0,
f , u, and ck. That is, x(·, x0, u) can be approximated to the T0-periodic PC-mild solution xT0(·, x, u)
according to exponential decreasing speed.

Proof. Consider the operator Q =
∑∞

n=0[S(T0, 0)]
n. By (4) of Lemma 2.1 and the stability of

{S(·, ·)}, we have

∥
∥
[
S
(
T0, 0

)]n∥∥ =
∥
∥S

(
nT0, 0

)∥
∥ ≤ Ke−νnT0 −→ 0 as n −→ ∞. (3.10)

Thus, ‖Q‖ ≤ ∑∞
n=0‖[S(T0, 0)]n‖ ≤ ∑∞

n=0Ke−νnT0 . Obviously, the series
∑∞

n=0Ke−νnT0 is
convergent, thus operator Q ∈ £b(X). It comes from [I − S(T0, 0)]Q = Q[I − S(T0, 0)] = I
that Q = [I − S(T0, 0)]

−1 ∈ £b(X). It is well known that system (3.1) has a periodic PC-mild
solution if and only if x(T0) = x(0). Since I − S(T0, 0) is invertible, we can uniquely solve

x(0) =
[
I − S

(
T0, 0

)]−1
[∫T0

0
S
(
T0, θ

)
gu(θ)dθ +

∑

0≤τk<T0
S
(
t, τ+k

)
ck

]

. (3.11)

Let x = [I − S(T0, 0)]
−1z, where

z =
∫T0

0
S
(
T0, θ

)
gu(θ)dθ +

∑

0≤τk<T0
S
(
t, τ+k

)
ck. (3.12)
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Note that

∫ t+T0

T0

S
(
t + T0, s

)
C(s)u(s)ds =

∫ t

0
S(t, s)C(s)u(s)ds, (3.13)

it is not difficult to verify that the PC-mild solution of the Cauchy problem (3.2)
corresponding to initial value x(0) = x given by

x(t, u) = S(t, 0)
[
I − S

(
T0, 0

)]−1
z +

∫ t

0
S(t, θ)gu(θ)dθ +

∑

0≤τk<t
S
(
t, τ+k

)
ck (3.14)

is just the unique T0-periodic of system (3.1).
It is obvious that P : Lp

T0
([0,∞);X) × Xδ → PCT0([0,∞);X) is linear. Next, verify the

estimation (3.8). In fact, for t ∈ [0, T0],

∥
∥xT0

(
t, x, u

)∥
∥ ≤ ‖S(t, 0)‖∥∥x∥∥ +

∫ t

0
‖S(t, θ)‖∥∥gu(θ)

∥
∥dθ +

∑

0≤τk<t

∥
∥S

(
t, τ+k

)∥
∥
∥
∥ck

∥
∥. (3.15)

On the other hand,

‖x‖ ≤ ∥
∥
[
I − S

(
T0, 0

)]−1∥∥
[∫T0

0

∥
∥S

(
T0, θ

)∥
∥
∥
∥gu(θ)

∥
∥dθ +

∑

0≤τk<T0

∥
∥S

(
T0, τ

+
k

)∥
∥
∥
∥ck

∥
∥

]

≤ ‖Q‖
[∫T0

0
Ke−ν(T0−θ)

∥
∥gu(θ)

∥
∥dθ +Ke−ν(T0−τ

+
k
)

δ∑

k=1

∥
∥ck

∥
∥

]

≤ K‖Q‖
(

‖f‖Lp

T0
+ ‖C‖∞‖u‖Lp

T0
+

δ∑

k=1

∥
∥ck

∥
∥

)

.

(3.16)

Let B̃ = K(K‖Q‖ + 1), next the estimation (3.8) is verified.
System (3.1) has a unique T0-periodic PC-mild solution xT0(·, x, u) given by (3.5) and

(3.6). The PC-mild solution x(·, x0, u) of the Cauchy problem (3.2) corresponding to initial
value x0 and control u ∈ Uad can be given by (3.4). Then,

∥
∥x

(
t, x0, u

) − xT0

(
t, x, u

)∥
∥ ≤ ∥

∥S(t, 0)
(
x − x0

)∥
∥ ≤ Ke−νt

(∥
∥x0

∥
∥ +

∥
∥x

∥
∥
)

≤ Ke−νt
[∥
∥x0

∥
∥ +K‖Q‖

(

‖f‖L1
T0
+ ‖C‖∞‖u‖LP

T0
+

δ∑

k=1

∥
∥ck

∥
∥

)]

.
(3.17)

Let B̂ = max{K,K2‖Q‖} > 0, one can obtain (3.9) immediately.
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Definition 3.3. The T0-periodic PC-mild solution xT0(·, x, u) of the system (3.1) is said to be
globally asymptotically stable in the sense that

lim
t→+∞

∥
∥x

(
t, x0, u

) − xT0

(
t, x, u

)∥
∥ = 0, (3.18)

where x(·, x0, u) is any PC-mild solutions of the Cauchy problem (3.2) corresponding to
initial value x0 ∈ X and control u ∈ Uad.

By Theorem 3.2 and the stability of the impulsive evolution operator {S(·, ·)} in
Section 2, one can obtain the following results.

Corollary 3.4. Under the assumptions of Theorem 3.2, the system (3.1) has a unique T0-periodic
PC-mild solution xT0(·, x, u) which is globally asymptotically stable.

4. Existence of periodic optimal harvesting policy

In this section, we discuss existence of periodic optimal harvesting policy, that is, periodic
optimal controls for optimal control problems arising in systems governed by linear
impulsive periodic system on Banach space.

By the T0-periodic PC-mild solution expression of system (3.1) given in Theorem 3.2,
one can obtain the result.

Theorem 4.1. Under the assumptions of Theorem 3.2, the T0-periodic PC-mild solution of system
(3.1) continuously depends on the control on Lp([0, T0];Y ), that is, let x1(x2) be T0-periodic PC-
mild solution of system (3.1) corresponding to u1(u2) ∈ Uad ⊆ Lp([0, T0];Y ). There exists constant
K̃ > 0 such that

∥
∥x1 − x2∥∥

PC([0,T0];X) ≤ K̃
∥
∥u1 − u2

∥
∥
Lp([0,T0];Y )

. (4.1)

Proof. Since x1 and x2 are the T0-periodic PC-mild solution corresponding to u1 and u2 ∈ Uad,
respectively, then we have

xi(t) ≡ x
(
t, ui

)
= S(t, 0)

[
I − S

(
T0, 0

)]−1
zi +

∫ t

0
S(t, θ)

[
f(θ) + C(θ)ui(θ)

]
dθ, i = 1, 2, (4.2)

where

zi =
∫T0

0
S
(
T0, θ

)[
f(θ) + C(θ)ui(θ)

]
dθ, i = 1, 2. (4.3)

Further,

∥
∥x1(t) − x2(t)

∥
∥ ≤ (∥

∥S(t, 0)
[
I − S

(
T0, 0

)]−1∥∥ + 1
)
∫T0

0

∥
∥S

(
T0, θ

)∥
∥‖C‖∞

∥
∥u1(θ) − u2(θ)

∥
∥dθ

≤ K̃
∥
∥u1 − u2

∥
∥
Lp([0,T0];Y )

,

(4.4)

where K̃ = MT0(MT0‖Q‖ + 1)‖C‖∞. This completes the proof.
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Lemma 4.2. Suppose C is a strong continuous operator. The operator Θ : Lp([0, T0];Y ) →
PC([0, T0];X), given by

(Θu)(·) =
∫ ·

0
S(·, θ)C(θ)u(θ)dθ (4.5)

is strongly continuous.

Proof. Without loss of generality, for τk−1 ≤ s < τk < t ≤ τk+1,

(Θu)(t) =
∫ t

0
T
(
t − τ+k

)
[
∏

θ<τj<t

(
I + Bj

) · T(τj − τ+j−1
)(
I + Bi

)
T
(
τi − θ

)
C(s)u(s)

]

ds. (4.6)

By virtue of strong continuity of C, boundedness of Bk, supt∈[0,T0]‖T(t)‖ = CT0 < ∞, Θ is
strongly continuous.

Let x(·, u) denote the T0-periodic PC-mild solution of system (3.1) corresponding to
the control u ∈ Uad, we consider the Bolza problem (P).

Find u0 ∈ Uad such that J(u0) ≤ J(u), for all u ∈ Uad, where

J(u) =
∫T0

0
l(t, x(t, u), u(t))dt + Ψ

(
x
(
T0, u

))
. (4.7)

We introduce the following assumption on l and Ψ.
Assumption [H7].

[H7.1] The functional l : [0, T0] ×X × Y → R ∪ {∞} is Borel measurable.

[H7.2] l(t, ·, ·) is sequentially lower semicontinuous on X × Y for almost all t ∈ [0, T0].

[H7.3] l(t, x, ·) is convex on Y for each x ∈ X and almost all t ∈ [0, T0].

[H7.4] There exist constants d ≥ 0, e > 0, ϕ is nonnegative and ϕ ∈ L1([0, T0];R) such that

l(t, x, u) ≥ ϕ(t) + d‖x‖ + e‖u‖pY . (4.8)

[H7.5] The functional Ψ → R is continuous and nonnegative.

Now we can give the following results on existence of periodic optimal controls for
Bolza problem (P).

Theorem 4.3. Suppose C is a strong continuous operator and assumption [H7] holds. Under the
assumptions of Theorem 3.2, the problem (P) has a unique solution.

Proof. If inf{J(u) | u ∈ Uad} = +∞, there is nothing to prove.
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We assume that inf{J(u) | u ∈ Uad} = � < +∞. By assumption [H7], we have

J(u) ≥
∫T0

0
ϕ(t)dt + d

∫T0

0
‖x(t)‖dt + e

∫T0

0
‖u(t)‖pY dt + Ψ

(
x
(
T0, u

)) ≥ −η > −∞, (4.9)

where η > 0 is a constant. Hence � ≥ −η > −∞.
By the definition of infimum there exists a sequence {un} ⊂ Uad ⊆ Lp([0, T0], Y )(1 <

p < ∞), such that limn→∞J(un) = �.
Since {un} is bounded in Lp([0, T0];Y )(1 < p < ∞), there exists a subsequence,

relabeled as {un}, and u0 ∈ U such that limn→∞un = u0 weakly convergence in Lp([0, T0];Y ),
and J(un) < � + ε. Because of Uad is the closed and convex set, thanks to the Mazur lemma,
u0 ∈ Uad. Suppose x(·, un) and x(·, u0) are the T0-periodic PC-mild solution of system (3.1)
corresponding to un (n = 1, 2, . . .) and u0, respectively, then x(·, un) and x(·, u0) can be given
by

xn(t) ≡ x
(
t, un

)
= S(t, 0)

[
I − S

(
T0, 0

)]−1
zn +

∫ t

0
S(t, θ)gun(θ)dθ +

∑

0≤τk<t
S
(
t, τ+k

)
ck,

x0(t) ≡ x
(
t, u0) = S(t, 0)

[
I − S

(
T0, 0

)]−1
z0 +

∫ t

0
S(t, θ)gu0(θ)dθ +

∑

0≤τk<t
S
(
t, τ+k

)
ck,

(4.10)

where

zn =
∫T0

0
S
(
T0, θ

)
gun(θ)dθ +

∑

0≤τk<T0
S
(
t, τ+k

)
ck,

z0 =
∫T0

0
S
(
T0, θ

)
gu0(θ)dθ +

∑

0≤τk<T0
S
(
t, τ+k

)
ck.

(4.11)

Define

ηn(t) =
(
Θun

)
(t) − (

Θu0)(t) =
∫ t

0
S(t, θ)C(θ)

[
un(θ) − u0(θ)

]
dθ, (4.12)

then by Lemma 4.2, we have

ηn −→ 0 in PC
([
0, T0

]
;X

)
with strongly convergence, (4.13)

as un
w→ u0 weakly convergence in Lp([0, T0];Y ).
Next, we show that

xn −→ x0 in PC
([
0, T0

]
;X

)
with strongly convergence as n −→ ∞. (4.14)
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In fact, for t ∈ [0, τ1], we have

∥
∥xn(t) − x0(t)

∥
∥ ≤ (

MT0

∥
∥Q‖ + 1

)∥
∥ηn(t)

∥
∥
C([0,τ1];X) ≤ C1

∥
∥ηn

∥
∥
C([0,τ1];X). (4.15)

By elementary computation, we arrive at

∥
∥xn

(
τ+1 − x0(τ+1

)∥
∥ ≤ (∥

∥B1
∥
∥ + 1

)∥
∥xn

(
τ1
) − x0(τ1

)∥
∥ ≤ C

′
1

∥
∥ηn

∥
∥
C([0,τ1];X). (4.16)

Consider the time interval (τ1, τ2], similarly we obtain

∥
∥xn(t) − x0(t)

∥
∥ ≤ C2

∥
∥ηn

∥
∥
C((τ1,τ2],X),

∥
∥xn

(
τ+2

) − x0(τ+2
)∥
∥ ≤ C

′
2

∥
∥ηn

∥
∥
C((τ1,τ2];X). (4.17)

In general, given any τk ∈ D̃, k = 1, 2, . . . , n, and the xn(τk), x0(τk), prior to the jump at time
τk, we immediately follow the jump as

xn

(
τ+k

)
= xn

(
τk
)
+ Bkxn

(
τk
)
+ ck, x0(τ+k

)
= x0(τk

)
+ Bkx

0(τk
)
+ ck, (4.18)

the associated interval (τk, τk+1], we also similarly obtain

∥
∥xn(t) − x0(t)

∥
∥ ≤ Ck+1

∥
∥ηn

∥
∥
C([τk,τk+1];X),

∥
∥xn

(
τ+k+1

) − x0(τ+k+1
)∥
∥ ≤ C

′
k+1

∥
∥ηn

∥
∥
C([τk,τk+1];X).

(4.19)

Step by step , we repeat the procedures till the time interval is exhausted. Let Ĉ =
max{C1, C

′
1, C2, C

′
2, . . ., Ck+1}, thus we obtain

∥
∥xn − x0∥∥

PC([0,T0];X) ≤ Ĉ∥∥ηn
∥
∥
PC([0,T0];X), (4.20)

that is,

xn −→ x0 in PC
([
0, T0

]
;X

)
, (4.21)

with strongly convergence as n → ∞.
Since PC([0, T0];X) ↪→ L1([0, T0];X), using the assumption [H7] and Balder’s

theorem, we can obtain

� = lim
n→∞

∫T0

0
l(t, xn(t), un(t))dt + Ψ

(
xn

(
T0
)) ≥

∫T0

0
l
(
t, x0(t), u0(t)

)
dt + Ψ

(
x0(T0

)) ≥ �. (4.22)

This shows that J attains its minimum at u0 ∈ Uad. This completes the proof.
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5. Example

Last, an academic example is given to illustrate our theory.
Let X = U = Y = L2(0, 1) and consider the following population evolution equation

with impulses:

∂

∂t
x(t, y) + a

∂

∂y
x(t, y) = kx(t, y) + b sin(t, y) + u(t, y),

u ∈ Uad ⊆ U, y ∈ (0, 1), t ∈ (0, 2kπ] \
{
1
2
π,π,

3
2
π, . . .

}

, k ∈ Z
+
0 ,

x(0, y) = x(2π, y) = 0, y ∈ (0, 1),

x(t, 0) = x(t, 1) = 0, t > 0,

Δx
(
τk, y

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.05 Ix
(
τk, y

)
, k = 1,

−0.05 Ix(τk, y
)
, k = 2, y ∈ (0, 1), t > 0,

0.05 Ix(t, y), k = 3,

(5.1)

where t denotes time, y denotes age, x(t, y) is called age density function, a and b are positive
constants, k is a boundedmeasurable function, that is, k ∈ L∞(0, 1). k denotes the age-specific
death rate, b sin(t, y) denotes the age density of migrants, and u(t, y) denotes the control. The
admissible control setUad = {u ∈ Y |‖u‖L2([0,T0];Y ) ≤ 1}.

A linear operator A defined on X by

Ax = −adx
dy

+ kx, ∀x ∈ D(A), (5.2)

where the domain of A is given by

D(A) =

{

x ∈ X : x is a absolutely continuous,
dx

dy
∈ X, x(0) = x(2π) = 0

}

. (5.3)

By the fact that the operator −(d · /dy) is an infinitesimal generator of a C0-semigroup (see
[39, Example 2.21]) and [38, Theorem 4.2.1], then A is an infinitesimal generator of a C0-
semigroup since the operator kI is bounded.

Now let us consider the following operators family:

(T(t)x)(y) =

⎧
⎪⎨

⎪⎩

exp

(
1
a

∫y

y−at
k(s)ds

)

· x(y − at), if 0 ≤ t ≤ y

a
,

0, otherwise.
(5.4)

It is not difficult to verify that {T(t), t ≥ 0} defines a C0-semigroup and A is just the
infinitesimal generator of the C0-semigroup {T(t), t ≥ 0}. Since k ∈ L∞(0, 1), then there exits
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a constant m > 0 such that |k(s)| ≤ m a.e. s ∈ [0, 1]. For an arbitrary function x ∈ L2(0, 1), by
using the expression (5.4) of the semigroup {T(t), t ≥ 0}, the following inequality holds:

∫∞

0

∥
∥T(t)x

∥
∥2
dt ≤

∫y/a

0
exp

(

2

∥
∥
∥
∥
∥

1
a

∫y

y−at
mds

∥
∥
∥
∥
∥

)

ds · ‖x‖2
L2(0,1)

≤
∫1/a

0
exp (2mt)ds · ‖x‖2

L2(0,1)

≤ exp
(
2ma−1) − 1
2m

‖x‖2
L2(0,1).

(5.5)

Hence, Lemma 2.3 leads to the exponential stability of {T(t), t ≥ 0}. That is, there existK0 > 0
and ν0 > 0 such that ‖T(t)‖ ≤ K0e

−ν0t, t > 0.
Let

J̃(u) =
∫2π

0

∫1

0

(|x(t, ξ)|2 + |u(t, ξ)|2)dξdt +
∫1

0
|x(2π, ξ)|2dξ. (5.6)

Define x(·)(y) = x(·, y), sin(·)(y) = sin(·, y), B(·)u(·)(y) = u(·, y), B1 = B3 = 0.05I,
B2 = −0.05I. Thus system (5.1) can be rewritten as

ẋ(t) = Ax(t) + b sin t + u(t), u ∈ Uad, t ∈ (0, 2kπ] \
{
1
2
π,π,

3
2
π, . . .

}

, k ∈ Z
+
0 ,

Δx

(
i

2
π

)

= Bix

(
i

2
π

)

, i = 1, 2, 3, . . . ,
(5.7)

with the cost function

J(u) =
∫2π

0

(‖x(t)‖2 + ‖u(t)‖2)dt + ‖x(2π)‖2. (5.8)

By Lemma 2.4, for ν0 > λ > 3 ln K0 + 2 ln 1.05 + ln 0.95, {S(t, θ), t ≥ θ ≥ 0} is
exponentially stable. Now, all the assumptions are met in Theorems 3.2 and 4.3, our results
can be used to system (5.1). Thus, system (5.1) has a unique 2π-periodic PC-mild solution
x2π(·, y, u) ∈ PC2π([0 +∞);L2(0, 1)) which is globally asymptotically stable and there exists
a periodic control u0 ∈ Uad such that J(u0) ≤ J(u) for all u ∈ Uad.

The results show that the optimal population level is truly the periodic solution of the
considered system, and hence, it is globally asymptotically stable. Meanwhile, it implies that
we can achieve sustainability at a high level of productivity and good economic profit by
virtue of scientific, effective, and continuous management of the resources.
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