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1. Introduction

In this paper, we study multiplicity of solutions of the impulsive boundary value problem

y′′ + f
(
t, y(t), y′(t)

)
= 0, t /= tk,

Δy|t=tk = Ik
(
y
(
tk
))
, k = 1, 2, . . . , m,

Δy′|t=tk = Ik
(
y
(
tk
))
, k = 1, 2, . . . , m,

y(0) = 0 = y(1) − αy(η),

(1.1)

where f ∈ C(J × R
2,R), J = [0, 1], Ik, Ik ∈ C(R,R), k = 1, 2, . . . , m, Δy|t=tk = y(t+k) − y(t−k),

Δy′|t=tk = y′(t+k) − y′(t−k), 0 = t0 < t1 < · · · < tm < tm+1 = 1, α ∈ [0, 1).
Impulsive differential equations arise naturally in a wide variety of applications,

such as spacecraft control, inspection processes in operations research, drug administration,
and threshold theory in biology. In the past twenty years, a significant development in the
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theory of impulsive differential equations was seen. Many authors have studied impulsive
differential equations using a variety of methods (see [1–5] and the references therein).

The purpose of this paper is to study the multiplicity of solutions of the impulsive
boundary value problems (1.1) by the method of upper and lower solutions. The method
of lower and upper solutions has a very long history. Some of the ideas can be traced back
to Picard [6]. This method deals mainly with existence results for various boundary value
problems. For an overview of this method for ordinary differential equations, the reader is
referred to [7]. Usually, when one uses the method of upper and lower solutions to study
the existence and multiplicity of solutions of impulsive differential equations, one assumes
that the upper solution is larger than the lower solution, that is, the condition that upper and
lower solutions are well ordered. For example, Guo [1] studied the PBVP for second-order
integrodifferential equations of mixed type in real Banach space E:

−u′′ = f(t, u, Tu, Su) ∀t ∈ [0, 2π], t /= ti,

Δu|t=ti = Liu
′(ti

)
,

Δu′|t=ti = L∗
i u
(
ti
)
, i = 1, 2, . . . , m,

u(0) = u(2π), u′(0) = u′(2π),

(1.2)

where f ∈ C([0, 2π]×E×E×E, E), T and S : E �→ E are two linear operators, 0 < t1 < t2 < · · · <
tm < 1, Li, L

∗
i (i = 1, 2, . . . , m) are constants. In [1] Guo first obtained a comparison result, and

then, by establishing two increasing and decreasing sequences, he proved an existence result
for maximal and minimal solutions of the PBVP (1.2) in the ordered interval defined by the
lower and upper solutions.

However, to the best of our knowledge, only in the last few years, it was shown that
existence and multiplicity for impulsive differential equation under the condition that the
upper solution is not larger than the lower solution, that is, the condition of non-well-ordered
upper and lower solutions. In [8], Rachůnková and Tvrdý studied the existence of solutions
of the nonlinear impulsive periodic boundary value problem

u′′ = f
(
t, u, u′), t /= ti

u
(
t+i
)
= J(

u
(
ti
))
, i = 1, 2, . . . , m,

u′(t+i
)
= Mi

(
u′(ti

))
, i = 1, 2, . . . , m,

u(0) = u(T), u′(0) = u′(T),

(1.3)

where f ∈ C([0, T] × R
2), Ji,Mi ∈ C(R). Using Leray-Schauder degree, the authors of

[8] showed some existence results for (1.3) under the non-well-ordered upper and lower
solutions condition. For other results related to non-well-ordered upper and lower solutions,
the reader is referred to [7, 9–14]. Also, here we mention the main results of a very recent
paper [15]. In that paper, we studied the second-order three-point boundary value problem

y′′(t) + f(t, y) = 0, 0 ≤ t ≤ 1,

y(0) = 0, y(1) − αy(η) = 0,
(1.4)

where 0 < η < 1, 0 < α < 1, f ∈ C([0, 1] × R,R). In [15], we made the following assumption.
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Figure 1: The positions of u1, u2, v1, v2 and six solutions x1, x2, . . . , x6 in Theorem 1.1.

(A0) There exists M > 0 such that

f
(
t, x2

) − f
(
t, x1

) ≥ −M(
x2 − x1

)
, t ∈ [0, 1], x2 ≥ x1. (1.5)

Let the function e be e = e(t) = t for t ∈ [0, 1]. In [15], we proved the following theorem
(see, [15, Theorem 3.4]).

Theorem 1.1. Suppose that (A0) holds, u1 and u2 are two strict lower solutions of (1.4), v1 and v2

are two strict upper solutions of (1.4), and u1 < v1, u2 < v2, u2 /≤v1, u1 /≤v2. Moreover, assume

−ς0e ≤ u2 − u1 ≤ ς0e, −ς0e ≤ v2 − v1 ≤ ς0e (1.6)

for some ς0 > 0. Then the three-point boundary value problem (1.4) has at least six solutions
x1, x2, . . . , x6.

Theorem 1.1 establishes the existence of at least six solutions of the three-point
boundary value problem (1.4) only under the condition of two pairs of strict lower and upper
solutions. The positions of u1, u2, v1, v2 and six solutions x1, x2, . . . , x6 in Theorem 1.1 can be
illustrated roughly by Figure 1.

In some sense, we can say that these two pairs of lower and upper solutions are parallel
to each other. The position of these two pairs of lower and upper solutions is sharply different
from that of the lower and upper solutions of the main results in [14, 16, 17]. The technique
to prove our main results of [15] is to use the fixed-point index of some increasing operator
with respect to some closed convex sets, which are translations of some special cones (see Qc,
Qc of [15]).

This paper is a continuation of the paper [15]. The aim of this paper is to study the
multiplicity of solutions of the impulsive boundary value problem (1.1) under the conditions
of non-well-ordered upper and lower solutions. In this paper, we will permit the presence
of impulses and the first derivative. The main ideas of this paper are to associate a Leray-
Schauder degree with the lower or upper solution. We will give some multiplicity results
for at least eight solutions. To obtain this multiplicity result, an additional pair of lower
and upper solutions is needed, that is, we will employ a condition of three pairs of lower
and upper solutions. The position of these three pairs of lower and upper solutions will be
illustrated in Remark 2.16.
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2. Results for at least eight solutions

Let J ′ = J \{t1, t2, . . . , tm}, PC[J,R] = {x | x is a map from J into R such that x(t) is continuous
at t /= tk, left continuous at t = tk and its right-hand limit x(t+k) at t = tk exits}, and PC1[J,R] =
{x | x is a map from J into R such that x(t) and x′(t) are continuous at t /= tk, left continuous
at t = tk and their right-hand limits x(t+

k
) and x′(t+

k
) at t = tk exits}. For each x ∈ PC1[J,R], let

‖x‖PC1 = max
{‖x‖PC,

∥
∥x′∥∥

PC

}
, (2.1)

where ‖x‖PC = supt∈J |x(t)| and ‖x′‖PC = supt∈J |x′(t)|. Then, PC1[J,R] is a real Banach space
with the norm ‖·‖PC1 . The function x ∈ PC1[J,R]∩C2[J ′,R] is called a solution of the boundary
value problem (1.1) if it satisfies all the equalities of (1.1).

Now, for convenience, we make the following assumptions.
(H0) 0 = t0 < t1 < · · · < tm < η < tm+1 = 1, α ∈ [0, 1).
(H1) Ik (k = 1, 2, . . . , m) is increasing on R.
Let x, y ∈ PC[J,R]. Now, we define the ordering ≺ by

x ≺ y iff x(t) < y(t) ∀t ∈ J, x(t+k) < y(t+k) for each k = 1, 2, . . . , m. (2.2)

Definition 2.1. The function u ∈ PC1[J,R] ∩C2[J ′,R] is called a strict lower solution of (1.1) if

u′′(t) + f
(
t, u(t), u′(t)

)
> 0, t /= tk,

u(0) < 0, u(1) − αu(η) < 0,
(2.3)

whenever Ii0(x)/= 0 or Ij0(x)/= 0 for some i0, j0 ∈ {1, 2, . . . , m} and some x ∈ R

Δu|t=tk = Ik
(
u
(
tk
))
, k = 1, 2, . . . , m,

Δu′|t=tk > Ik
(
u
(
tk
))
, k = 1, 2, . . . , m,

(2.4)

whenever Ik(x) = Ik(x) = 0 for each x ∈ R and k ∈ {1, 2, . . . , m}, Δu|t=tk = Δu′|t=tk = 0 for each
k ∈ {1, 2, . . . , m}.

The function v ∈ PC1[J,R] ∩ C2[J ′, R] is called a strict upper solution of (1.1) if

v′′(t) + f
(
t, v(t), v′(t)

)
< 0, t /= tk,

v(0) > 0, v(1) − αv(η) > 0,
(2.5)

whenever Ii0(x)/= 0 or Ij0(x)/= 0 for some i0, j0 ∈ {1, 2, . . . , m} and some x ∈ R

Δv|t=tk = Ik
(
v
(
tk
))
, k = 1, 2, . . . , m,

Δv′|t=tk < Ik
(
v
(
tk
))
, k = 1, 2, . . . , m,

(2.6)

and whenever Ik(x) = Ik(x) = 0 for each x ∈ R and k ∈ {1, 2, . . . , m}, Δv|t=tk = Δv′|t=tk = 0 for
each k ∈ {1, 2, . . . , m}.
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Definition 2.2. Let u(t), v(t) ∈ PC1[J,R] ∩ C2[J ′,R], u(t) ≤ v(t) for all t ∈ J . We say that f
satisfies Nagumo condition with respect to [u, v] if there exists function φ ∈ C([0,∞), (0,∞))
such that

∣
∣f(t, x, y)

∣
∣ ≤ φ

(|y|), ∀(t, x, y) ∈ J × [
u(t), v(t)

] × R,
∫∞

0

s

φ(s)
ds = ∞.

(2.7)

Definition 2.3. Let r1(t), r2(t) · · · rn(t) be strict upper solutions of (1.1) and r(t) =
min{r1(t), r2(t), . . . rn(t)} for each t ∈ J . Then, we say the upper solutions r1(t), r2(t), . . . rn(t)
are well ordered if for each k ∈ {1, 2, . . . , m}, there exist i0, j0 ∈ {1, 2, . . . , n} and δ0 > 0 small
enough such that

r(t) =

⎧
⎨

⎩

ri0(t), t ∈ (
tk − δ0, tk

]
,

rj0(t), t ∈ (
tk, tk + δ0

]
.

(2.8)

Definition 2.4. Let l1(t), l2(t), . . . ln(t) be strict lower solutions of (1.1) and l(t) =
max{l1(t), l2(t), . . . ln(t)} for each t ∈ J . Then, we say the lower solutions l1(t), l2(t), . . . ln(t)
are well ordered if for each k ∈ {1, 2, . . . , m}, there exist i0, j0 ∈ {1, 2, . . . , n} and δ0 > 0 small
enough such that

l(t) =

⎧
⎨

⎩

li0(t), t ∈ (
tk − δ0, tk

]
,

lj0(t), t ∈ (
tk, tk + δ0

]
.

(2.9)

From [18, Lemma 5.4.1], we have the following lemma.

Lemma 2.5. H ⊂ PC1[J,R] is a relative compact set if and only if for all x ∈ H, x(t) and x′(t) are
uniformly bounded on J and equicontinuous on each Jk (k = 1, 2, . . . , m), where J1 = [0, t1], Ji =
(ti−1, ti], i = 2, 3, . . . , m + 1.

The following lemma can be easily proved.

Lemma 2.6. Suppose that x ∈ PC1[J,R] ∩ C2[J ′,R] satisfies

−x′′(t) = f
(
t, x(t), x′(t)

)
, t /= tk (k = 1, 2, . . . , m). (2.10)

Then

x′(t) = x′(0) −
∫ t

0
f
(
s, x(s), x′(s)

)
ds +

∑

0<tk<t

[
x′(t+k

) − x′(tk
)] ∀t ∈ J,

x(t) = x(0) + x′(0)t −
∫ t

0
(t − s)f

(
s, x(s), x′(s)

)
ds +

∑

0<tk<t

[
x
(
t+k
) − x

(
tk
)]

+
∑

0<tk<t

[
x′(t+k

) − x′(tk
)](

t − tk
) ∀t ∈ J.

(2.11)
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Lemma 2.7. Let g ∈ PC[J,R] and ak, bk ∈ R (k = 0, 1, 2, . . . , m). Then, x ∈ PC1[J,R] ∩ C2[J ′,R]
is a solution of

−x′′(t) = g(t), t /= tk, k = 1, 2, . . . , m,

Δx|t=tk = ak, k = 1, 2, . . . , m,

Δx′|t=tk = bk, k = 1, 2, . . . , m,

x(0) = a0, x(1) − αx(η) = b0

(2.12)

if and only if x ∈ PC[J,R] satisfies

x(t) = a0

[
1 − 1 − α

1 − αη
t

]
+

b0t

1 − αη
+

t

1 − αη

∫1

0
(1−s)g(s)ds − αt

1 − αη

∫η

0
(η − s)g(s)ds

− t

1 − αη

m∑

k=1

{
(1 − α)ak +

[
1 − tk − α

(
η − tk

)]
bk
} −

∫ t

0
(t − s)g(s)ds

+
∑

0<tk<t

[
ak + bk

(
t − tk

)]
, t ∈ J.

(2.13)

Proof. Let x ∈ PC1[J,R] ∩ C2[J ′,R]be a solution of (2.12). From Lemma 2.6, we have

x(t) = x(0) + x′(0)t −
∫ t

0
(t − s)g(s)ds +

∑

0<tk<t

Δx|t=tk +
∑

0<tk<t

Δx′|t=tk
(
t − tk

)

= a0 + x′(0)t −
∫ t

0
(t − s)g(s)ds +

∑

0<tk<t

ak +
∑

0<tk<t

bk
(
t − tk

)
.

(2.14)

Thus,

x(1) = a0 + x′(0) −
∫1

0
(1 − s)g(s)ds +

m∑

k=1

ak +
m∑

k=1

bk
(
1 − tk

)
,

x(η) = a0 + x′(0)η −
∫η

0
(η − s)g(s)ds +

m∑

k=1

ak +
m∑

k=1

bk
(
η − tk

)
.

(2.15)

Using the boundary value condition x(1) − αx(η) = b0, we have

x′(0) =
1

1 − αη
b0 − 1 − α

1 − αη
a0 +

1
1 − αη

∫1

0
(1 − s)g(s)ds − α

1 − αη

∫η

0
(η − s)g(s)ds

− 1 − α

1 − αη

m∑

k=1

ak − 1
1 − αη

m∑

k=1

bk
(
1 − tk

)
+

α

1 − αη

m∑

k=1

bk
(
η − tk

)
.

(2.16)

The equality (2.13) now follows from (2.14) and (2.16).
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On the other hand, if x ∈ PC[J,R] satisfies (2.13), by direct computation, we can easily
show that x satisfies (2.12). The proof is complete.

Let us define the operator A : PC1[J,R] �→ PC1[J,R] by

(Ax)(t) =
t

1 − αη

∫1

0
(1 − s)f

(
s, x(s), x′(s)

)
ds − αt

1 − αη

∫η

0
(η − s)f

(
s, x(s), x′(s)

)
ds

−
∫ t

0
(t − s)f

(
s, x(s), x′(s)

)
ds +

∑

0<tk<t

[
Ik
(
x
(
tk
))

+ Ik
(
x
(
tk
))(

t − tk
)]

− t

1 − αη

m∑

k=1

{
(1 − α)Ik

(
x
(
tk
))

+
[
1 − tk − α

(
η − tk

)]
Ik
(
x
(
tk
))}

.

(2.17)

From Lemma 2.5, A : PC1[J,R] �→ PC1[J,R] is a completely continuous operator.

Theorem 2.8. Suppose that (H0) and (H1) hold. Let αi, βi (i = 1, 2, . . . , n) be n pairs of strict lower
and upper solution, and

α(t) = max
{
α1(t), α2(t), . . . , αn(t)

}
, t ∈ J,

β(t) = min
{
β1(t), β2(t), . . . , βn(t)

}
, t ∈ J.

(2.18)

Suppose that αi ≺ βi (i = 1, 2, . . . , n), α ≺ β, f satisfies Nagumo condition with respect to [α1, β1].
Moreover, the strict lower solutions α1, α2, . . . , αn and the strict upper solutions β1, β2, . . . , βn are well
ordered whenever Ii0(x)/= 0 or Ij0(x)/= 0 for some i0, j0 ∈ {1, 2, . . . , m} and some x ∈ R. Then, there
exist R0 > 0 and L0 > 0 sufficiently large such that for each R ≥ R0 and L > L0

deg (I −A,Ω, θ) = 1, (2.19)

where

Ω =
{
x ∈ B(θ, R) | α ≺ x ≺ β, − L ≺ x′ ≺ L

}
,

B(θ, R) =
{
x ∈ PC1[J, R] | ‖x‖PC1 < R

}
.

(2.20)

Proof. We only prove the case when Ii0(x)/= 0 or Ij0(x)/= 0 for some i0, j0 ∈ {1, 2, . . . , m} and
some x ∈ R. The conclusion is achieved in four steps.

Step 1. Since f satisfies Nagumo condition with respect to [α1, β1], then there exists φ ∈
C([0,∞), (0,∞)) such that

∣∣f(t, x, y)
∣∣ ≤ φ

(|y|), (t, x, y) ∈ J × [
α(t), β(t)

] × R,
∫∞

0

s

φ(s)
ds = ∞.

(2.21)
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Let μ0 = min1≤k≤m+1 (tk − tk−1). Take λ > 0 such that

λ >
max1≤i≤n supt∈J βi(t) − min1≤i≤n inft∈J αi(t)

μ0
, (2.22)

and N > 0 such that

∫N

λ

s

φ(s)
ds > 2λ. (2.23)

Let L0 = max{N, 2λ,max1≤i≤n ‖α′
i‖PC,max1≤i≤n ‖β′i‖PC}. Define the functions g, h : J × R

2 �→ R

by

g(t, x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f(t, x, L), y > L,

f(t, x, y), −L ≤ y ≤ L,

f(t, x,−L), y < −L,

h(t, x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g
(
t, β(t), y

)
, x > β(t),

g(t, x, y), α(t) ≤ x ≤ β(t),

g
(
t, α(t), y

)
, x < α(t).

(2.24)

For each k ∈ {1, 2, . . . , m}, let us define the functions Jk, Jk : R �→ R by

Jk(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ik
(
β
(
tk
))
, x > β

(
tk
)
,

Ik(x), α
(
tk
) ≤ x ≤ β

(
tk
)
,

Ik
(
α
(
tk
))
, x < α

(
tk
)
,

Jk(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ik
(
β
(
tk
))
, x > β

(
tk
)
,

Ik(x), α
(
tk
) ≤ x ≤ β

(
tk
)
,

Ik
(
α
(
tk
))
, x < α

(
tk
)
.

(2.25)

It is easy to see that there exists M1 > 0 such that

∣∣h(t, x, y)
∣∣ ≤ M1, (t, x, y) ∈ J × R

2,
∣∣Jk(x)

∣∣ ≤ M1,
∣∣Jk(x)

∣∣ ≤ M1, x ∈ R, k = 1, 2, . . . , m.
(2.26)
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Let us define the operator A∗ : PC1[J,R] �→ PC1[J,R] by

(
A∗x

)
(t) =

t

1 − αη

∫1

0
(1 − s)h

(
s, x(s), x′(s)

)
ds − αt

1 − αη

∫η

0
(η − s)h

(
s, x(s), x′(s)

)
ds

−
∫ t

0
(t − s)h

(
s, x(s), x′(s)

)
ds +

∑

0<tk<t

[
Jk
(
x
(
tk
))

+
(
t − tk

)
Jk
(
x
(
tk
))]

− t

1 − αη

m∑

k=1

{
(1 − α)Jk

(
x
(
tk
))

+
[(

1 − tk
) − α

(
η − tk

)]
Jk
(
x
(
tk
))}

.

(2.27)

By (2.26), we have

(
A∗x

)
(t) ≤ 1

1 − αη

∫1

0
(1 − s)

∣∣h
(
s, x(s), x′(s)

)∣∣ds +
α

1 − αη

∫η

0
(η − s)

∣∣h
(
s, x(s), x′(s)

)∣∣ds

+
∫1

0
(1 − s)

∣∣h
(
s, x(s), x′(s)

)∣∣ds +
m∑

k=1

[∣∣Jk
(
x
(
tk
))∣∣ +

(
1 − tk

)∣∣Jk
(
x
(
tk
))∣∣]

+
2

1 − αη

m∑

k=1

[∣∣Jk
(
x
(
tk
))∣∣ +

∣∣Jk
(
x
(
tk
))∣∣]

≤ M1

1 − αη

[
1
2
+

1
2
αη2 +

1
2
+ 2m + 4m

]

≤ M1

1 − αη
[3 + 6m], t ∈ J,

(
A∗x

)′(t) ≤ 1
1 − αη

∫1

0
(1 − s)

∣∣h
(
s, x(s), x′(s)

)∣∣ds +
α

1 − αη

∫η

0
(η − s)

∣∣h
(
s, x(s), x′(s)

)∣∣ds

+
∫1

0

∣∣h
(
s, x(s), x′(s)

)∣∣ds +
m∑

k=1

∣∣Jk
(
x
(
tk
))∣∣ +

2
1 − αη

m∑

k=1

[∣∣Jk
(
x
(
tk
))∣∣ +

∣∣Jk
(
x
(
tk
))∣∣]

≤ M1

1 − αη

[
1
2
+

1
2
αη2 + 1 + 5m

]

≤ M1

1 − αη
[5m + 3], t ∈ J.

(2.28)

From (2.28), we have ‖A∗x‖PC1 ≤ (M1/(1 − αη))[11m + 6] for each x ∈ PC1[J,R]. Let R0 =
(M1/(1 − αη))(11m + 6) + 1. Then, A∗(PC1[J,R]) ⊂ B(θ, R0). By the properties of the Leray-
Schauder degree, we have

deg
(
I −A∗, B(θ, R), θ

)
= 1. (2.29)
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Thus, A∗ has at least one fixed point x0. From Lemma 2.7, x0 satisfies

x′′
0(t) + h

(
t, x0(t), x′

0(t)
)
= 0, t /= tk,

Δx0|t=tk = Jk
(
x0
(
tk
))
, k = 1, 2, . . . , m

Δx′
0

∣
∣
t=tk

= Jk
(
x0
(
tk
))
, k = 1, 2, . . . , m,

x0(0) = 0 = x0(1) − αx0(η),

(2.30)

Step 2. Next, we will show that

α ≺ x0 ≺ β, (2.31)

−L ≺ x′
0 ≺ L. (2.32)

We first show that

α(t) ≤ x0(t) ≤ β(t) ∀t ∈ J. (2.33)

To begin, we show that x0(t) ≤ β(t) for all t ∈ J . Suppose not, then there exists t′ ∈ J such that
x0(t′) > β(t′). Set w(t) = x0(t) − β(t) for t ∈ J . There are a number of cases to consider.

(1) w(0) = supt∈J w(t) > 0, then, we have

0 < w(0) = x0(0) − β(0) = −β(0) < 0, (2.34)

which is a contradiction.
(2) w(1) = supt∈J w(t) > 0; assume without loss of generality that α > 0 and β(1) =

βi0(1) for some i0 ∈ {1, 2, . . . , n}, then, we have

0 < w(1) = x0(1) − βi0(1) ≤ αx0(η) − αβi0(η) ≤ αx0(η) − αβ(η) = αw(η) ≤ αw(1), (2.35)

which is a contradiction.
(3) There exist k0 ∈ {1, 2, . . . , m,m + 1} and τ0 ∈ (tk0−1, tk0) such that w(τ0) =

supt∈J w(t) > 0. Assume without loss of generality that β(τ0) = βi0(τ0) for some i0 ∈
{1, 2, . . . , n}. We have the following two cases:

(3A) βj(τ0) > βi0(τ0) for each j ∈ {1, 2, . . . , n} and j /= i0;
(3B) there exists j0 ∈ {1, 2, . . . , n}, j0 /= i0 such that βj0(τ0) = βi0(τ0).
For case (3A), there exists δ0 > 0 small enough such that [τ0 − δ0, τ0 + δ0] ⊂ (tk0−1, tk0)

and

w(t) = x0(t) − βi0(t), t ∈ [
τ0 − δ0, τ0 + δ0

]
. (2.36)
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Then, w ∈ C2[τ0 − δ0, τ0 + δ0], w(τ0) is the maximum of w on [τ0 − δ0, τ0 + δ0]. Thus, w′(τ0) =
0, w′′(τ0) ≤ 0. By (2.30), we have

0 ≥ w′′(τ0
)
= x′′

0
(
τ0
) − β′′i0

(
τ0
)
= −h(τ0, x0

(
τ0
)
, x′

0
(
τ0
)) − β′′i0

(
τ0
)

= −f(τ0, βi0
(
τ0
)
, β′i0

(
τ0
)) − β′′i0

(
τ0
)
,

(2.37)

which is a contradiction.
For case (3B), set w1(t) = x0(t)−βj0(t) for t ∈ (tk0−1, tk0). For any t′ ∈ (tk0−1, tk0), we have

w1
(
τ0
)
= x0

(
τ0
) − βj0

(
τ0
)
= x0

(
τ0
) − βi0

(
τ0
)
= w

(
τ0
)

≥ w
(
t′
)
= x0

(
t′
) − β

(
t′
) ≥ x0

(
t′
) − βj0

(
t′
)
= w1

(
t′
)
.

(2.38)

This implies that w1(τ0) is a local maximum. Since w1 ∈ C2(tk0−1, tk0), then w′
1(τ0) = 0,

w′′
1(τ0) ≤ 0. Therefore,

0 ≥ w′′
1

(
τ0
)
= x′′

0
(
τ0
) − β′′j0

(
τ0
)
= −f(τ0, βj0

(
τ0
)
, β′j0

(
τ0
)) − β′′j0

(
τ0
)
> 0, (2.39)

which is a contradiction.
(4) There exists k0 ∈ {1, 2, . . . , m} such that w(tk0) = supt∈J w(t) > 0. Without loss of

generality, we may assume w(τ) < supt∈J w(t) for each τ ∈ (tk−1, tk) and k ∈ {1, 2, . . . , m,m +
1}. (Otherwise, if there exists τ0 ∈ (tk0−1, tk0) for some k0 ∈ {1, 2, . . . , m,m + 1} such that
w(τ0) = supt∈J w(t), then we can get a contradiction as in case (3)). In this case, we have the
following two subcases:

(4A) there exists i0 ∈ {1, 2, . . . , n} such that βi0(tk0) < βj(tk0) for j = 1, 2, . . . , n and j /= i0;
(4B) there exists a subset {n1, n2, . . . , ns} ⊂ {1, 2, . . . , n} such that

β
(
tk0

)
= βn1

(
tk0

)
= βn2

(
tk0

)
= · · · = βns

(
tk0

)
, (2.40)

while βl(tk0) > β(tk0) for each l ∈ {1, 2, . . . , n} \ {n1, n2, . . . , ns}, s ≥ 2.
First, we consider case (4A). Since Ik0 is increasing on R, then

βi0
(
t+k0

)
= βi0

(
tk0

)
+ Ik0

(
βi0

(
tk0

))
< βj

(
tk0

)
+ Ik0

(
βj
(
tk0

))
= βj

(
t+k0

)
, j /= i0. (2.41)

Then, there exists δ0 > 0 small enough such that β(t) = βi0(t) for t ∈ [tk0 − δ0, tk0 + δ0] and
so w(t) = x0(t) − βi0(t) for t ∈ [tk0 − δ0, tk0 + δ0]. Since βi0(t) is a strict upper solution, we
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have

w
(
t+k0

)
= x0

(
t+k0

) − βi0
(
t+k0

)

=
[
x0
(
tk0

)
+ Jk0

(
x0
(
tk0

))] − [
βi0

(
tk0

)
+ Ik0

(
βi0

(
tk0

))]

=
[
x0
(
tk0

) − βi0
(
tk0

)]
+
[
Jk0

(
x0
(
tk0

)) − Ik0

(
βi0

(
tk0

))]

= w
(
tk0

)
+
[
Ik0

(
βi0

(
tk0

)) − Ik0

(
βi0

(
tk0

))]

= w
(
tk0

)
.

(2.42)

Since w(τ) < w(tk0) for each τ ∈ (tk0−1, tk0), then we have w′(tk0) ≥ 0. Similarly, we have
w′(t+

k0
) ≤ 0. Therefore,

0 ≥ w′(t+k0

)
= x′(t+k0

) − β′i0
(
t+k0

)

>
[
x′

0
(
tk0

)
+ Jk0

(
x0
(
tk0

))] − [
β′i0

(
tk0

)
+ Ik0

(
βi0

(
tk0

))]

= w′(tk0

)
+
[
Ik0

(
βi0

(
tk0

)) − Ik0

(
βi0

(
tk0

))]
= w′(tk0

) ≥ 0,

(2.43)

which is contradiction.
Now we consider case (4B). Since Ik0 is increasing, then we have

β
(
t+k0

)
= βn1

(
t+k0

)
= βn2

(
t+k0

)
= · · · = βns

(
t+k0

)
, (2.44)

while βl(t+k0
) > β(t+

k0
) for each l ∈ {1, 2, . . . , n} \ {n1, n2, . . . , ns}. For case (4B), we have two

subcases:
(4Ba) there exists δ0 > 0 small enough and i0 ∈ {n1, n2, . . . , ns} such that βi0(t) = β(t)

for t ∈ [tk0 − δ0, tk0 + δ0];
(4Bb) there exists δ0 > 0 small enough and i0 /= j0, i0, j0 ∈ {n1, n2, . . . , ns} such that

β(t) =

⎧
⎨

⎩

βi0(t), t ∈ [
tk0 − δ0, tk0

]
,

βj0(t), t ∈ (
tk0 , tk0 + δ0

]
.

(2.45)

For case (4Ba) as in case (4A), we can easily obtain a contradiction. For case (4Bb), we have

w(t) =

⎧
⎨

⎩

x0(t) − βi0(t), t ∈ [
tk0 − δ0, tk0

]
,

x0(t) − βj0(t), t ∈ (
tk0 , tk0 + δ0

]
.

(2.46)
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In the same way as in the proof of case (4A), we see that w(t+k0
) = w(tk0), w

′(tk0) ≥ 0 and we
have w′(t+

k0
) ≤ 0. Note that β′j0(tk0) ≤ β′i0(tk0), and we have

0 ≥ w′(t+k0

)
= x′

0
(
t+k0

) − β′j0
(
t+k0

)

=
[
x′

0
(
tk0

)
+ Δx′

0|t=tk0

] − [
β′j0

(
tk0

)
+ Δβ′j0 |t=tk0

]

>
[
x′

0
(
tk0

) − β′j0
(
tk0

)]
+
[
Jk0

(
x0
(
tk0

)) − Ik0

(
βj0

(
tk0

))]

≥ x′
0
(
tk0

) − β′i0
(
tk0

)
+
[
Ik0

(
βj0

(
tk0

)) − Ik0

(
βj0

(
tk0

))]

= w′(tk0

) ≥ 0,

(2.47)

which is a contradiction.
(5) There exists a k0 ∈ {1, 2, . . . , m} such that w(t+

k0
) = supt∈J w(t) > 0. Without loss

of generality, we may assume that w(τ) < w(t+k0
) for each k ∈ {1, 2, . . . , m,m + 1} and τ ∈

(tk−1, tk). We have two subcases:
(5A) there exists i0 ∈ {1, 2, . . . , n} such that βi0(t

+
k0
) < βj(t+k0

) for each j /= i0;
(5B) there exists a subset {n1, n2, . . . , ns} ⊂ {1, 2, . . . , n} such that

β
(
t+k0

)
= βn1

(
t+k0

)
= βn2

(
t+k0

)
= · · · = βns

(
t+k0

)
, (2.48)

while βl(t+k0
) > β(t+k0

) for each l ∈ {1, 2, . . . , n} \ {n1, n2, . . . , ns}, s ≥ 2.
Since Ik0 is increasing, then for case (5A), we have

βi0
(
tk0

)
< βj

(
tk0

) (
j /= i0

)
, x0

(
tk0

)
> βi0

(
tk0

)
, (2.49)

and for case (5B), we have x0(tk0) > βi0(tk0) and

β
(
tk0

)
= βn1

(
tk0

)
= βn2

(
tk0

)
= · · · = βns

(
tk0

)
, (2.50)

while βl(tk0) > β(tk0) for each l ∈ {1, 2, . . . , n} \ {n1, n2, . . . , ns}. Therefore, we can use the same
method as in case (4) to obtain a contradiction.

From the discussions of (1)–(5), we see that x0(t) ≤ β(t) for t ∈ J . Similarly, we can
prove that α(t) ≤ x0(t) for t ∈ J . Thus, (2.33) holds.

Next, we prove that α ≺ x0 ≺ β. If the inequality x0 ≺ β does not hold, then either
there exists τ0 ∈ J such that x0(τ0) = β(τ0) or there exists k0 ∈ {1, 2, . . . , m} such that x0(t+k0

) =

β(t+
k0
). Set w(t) = x0(t) − β(t) for t ∈ J . Then, we have either w(τ0) = supt∈J w(t) or w(t+

k0
) =

supt∈J w(t) for some k0 ∈ {1, 2, . . . , m}. Essentially the same reasoning as in (1)–(5) above

yields a contradiction. Thus, x0 ≺ β. Similarly, α ≺ x0. Consequently, (2.31) holds.

Step 3. Now, we show (2.32). Suppose not, then we have the following two subcases:

(I) there exists s1 ∈ J such that |x′
0(s1)| ≥ L;

(II) there exists k0 ∈ {1, 2, . . . , m} such that |x′
0(t

+
k0
)| ≥ L.



14 Boundary Value Problems

We only consider case (II). A similar argument works for case (I). We may assume
without loss of generality that x′

0(t
+
k0
) ≥ L. By the mean-value theorem, there exists s2 ∈

(tk0 , tk0+1) such that

x′
0
(
s2
)
=

x0
(
tk0+1

) − x0
(
tk0

)

tk0+1 − tk0

≤
max1≤i≤n supt∈J βi(t) − min1≤i≤n inft∈J αi(t)

μ0
< λ < L. (2.51)

Let L1 be such that L0 < L1 < L, then, there exist s3, s4 ∈ (tk0 , s2] such that s3 < s4, x′
0(s3) = L1,

x′
0(s4) = λ, and λ ≤ x′

0(s) ≤ L1 for s ∈ [s3, s4]. Therefore,

∣
∣x′′

0(s)
∣
∣ =

∣
∣h
(
s, x0(s), x′

0(s)
)∣∣ =

∣
∣f
(
s, x0(s), x′

0(s)
)∣∣ ≤ φ

(
x′

0(s)
)
, s ∈ [

s3, s4
]
. (2.52)

Consequently,

∣∣∣∣

∫s4

s3

x′
0(s)x

′′
0(s)

φ
(
x′

0(s)
) ds

∣∣∣∣ ≤
∫ s4

s3

∣∣x′
0(s)

∣∣ds =
∫s4

s3

x′
0(s)ds = x0

(
s4
) − x0

(
s3
)
< λ. (2.53)

On the other hand,

∣∣∣∣

∫s4

s3

x′
0(s)x

′′
0(s)

φ
(
x′

0(s)
) ds

∣∣∣∣ =
∣∣∣∣

∫L1

λ

s

φ(s)
ds

∣∣∣∣ ≥
∫N

λ

s

φ(s)
ds > λ, (2.54)

which is a contradiction. Thus, (2.32) holds.

Step 4. From the excision property of Leray-Schauder degree and (2.29), we have

deg
(
I −A∗,Ω, θ

)
= deg

(
I −A∗, B(θ, R), θ

)
= 1. (2.55)

From (2.31) and (2.32), we see that Ax = A∗x for each x ∈ Ω, and so

deg (I −A,Ω, θ) = 1. (2.56)

The proof is complete.

Remark 2.9. From the proof of Theorem 2.8, we see that A has no fixed point on ∂Ω.

Theorem 2.10. Suppose that (H0), (H1) hold, u1(t), u2(t) are strict lower solutions, v1(t), v0(t) are
strict upper solutions, u1 ≺ v1 ≺ v0, u2 ≺ v0, u2(t′) > v1(t′) for some t′ ∈ J , and f satisfies Nagumo
condition with respect to [u1, v0]. Moreover, the strict lower solutions u1(t), u2(t) are well ordered
whenever Ii0(x)/= 0 or Ij0(x)/= 0 for some i0, j0 ∈ {1, 2, . . . , m} and some x ∈ R. Then, (1.1) has at
least three solutions x1, x2, and x3, such that

u1 ≺ x1 ≺ v1, u1 ≺ x2 ≺ v0, u2 ≺ x2 ≺ v0, u1 ≺ x3 ≺ v0, (2.57)

and v1(s1) < x3(s1), x3(s2) < u2(s2) for some s1, s2 ∈ J .
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Proof. Set α(t) = max{u1(t), u2(t)} for t ∈ J , and α(t+k) = max{u1(t+k), u2(t+k)} for each k ∈
{1, 2, . . . , m}. From Theorem 2.8, we see that there exist R > 0 and L > 0 large enough such
that

deg
(
I −A,G0, θ

)
= 1,

deg
(
I −A,G1, θ

)
= 1,

deg
(
I −A,G2, θ

)
= 1,

(2.58)

where G0 = {x ∈ B(θ, R) | u1 ≺ x ≺ v0, − L ≺ x′ ≺ L}, G1 = {x ∈ B(θ, R) | u1 ≺ x ≺
v1, − L ≺ x′ ≺ L}, and G2 = {x ∈ B(θ, R) | α ≺ x ≺ v0, − L ≺ x′ ≺ L}. Then, A has fixed
points x1 ∈ G1 and x2 ∈ G2, respectively. From the conditions of Theorem 2.10, we see that
G1 ∩ G2 = ∅. Let ω0(t) be a continuous function on J such that its graph passes the points
(0, (v0(0)+v1(0))/2) and (t′, (v1(t′)+u1(t′))/2), and satisfies u1 ≺ ω0 ≺ v0. By the well-known
Weierstrass approximation theorem, there exists ω1 ∈ C1[0, 1] such that

∣∣ω1(t) −ω0(t)
∣∣ < min

{
v1
(
t′
) − u1

(
t′
)

4
,
v0(0) − v1(0)

4
,

1
4
∥∥ω0 − v0

∥∥
PC,

1
4
∥∥ω0 − u1

∥∥
PC

}

, t ∈ J.

(2.59)

It is easy to see that ω1 ∈ G0 \ (G1 ∪ G2), and so G0 \ (G1 ∪ G2) is a nonempty open set. Note
A has no fixed point on ∂G0, ∂G1, and ∂G2. From (2.58), we have

deg
(
I−A,G0 \

(
G1 ∪G2

)
, θ
)
=deg

(
I−A,G0, θ

) − deg
(
I−A,G1, θ

) − deg
(
I−A,G2, θ

)
= −1.
(2.60)

Thus, A has at least one fixed point x3 ∈ G0 \ (G1 ∪ G2). Since x3 /∈G1 ∪ G2, then there exist
s1, s2 ∈ J such that v1(s1) < x3(s1) and x3(s2) < u2(s2). The proof is complete.

Remark 2.11. Theorem 2.10 is a partial generalization of the main results of [16, Theorem 2.2].
Here, we do not need to assume that u2 satisfies u1 ≤ u2 ≤ v0.

Remark 2.12. The position of u1, u2, v1, v0 in Theorem 2.10 can be illustrated roughly by
Figure 2.

Remark 2.13. The relationship of u1, u2, v1, v0is different from that of [12, Theorems 9 and
10].

Similarly, we have the following result.

Theorem 2.14. Suppose that (H0), (H1) hold, u0, u1 are strict lower solutions of (1.1), v1 and v2

are strict upper solutions of (1.1), u0 ≺ u1 ≺ v1, u0 ≺ v2, v2(t′) < u1(t′) for some t′ ∈ J , and f
satisfies Nagumo condition with respect to [u0, v1]. Moreover, the strict upper solutions v1(t), v2(t)
are well ordered whenever Ii0(x)/= 0 or Ij0(x)/= 0 for some i0, j0 ∈ {1, 2, . . . , m} and some x ∈ R.
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x3

u1 x1

u2

v1

v0
x2

Figure 2: The position of u1, u2, v1, v0 in Theorem 2.10.

Then, (1.1) has at least three solutions x1, x2, x3 such that

u1 ≺ x1 ≺ v1, u0 ≺ x2 ≺ v1, u0 ≺ x2 ≺ v2, u0 ≺ x3 ≺ v1, (2.61)

and v2(s1) < x3(s1), x3(s2) < u1(s2) for some s1, s2 ∈ J .

From Theorems 2.10 and 2.14, we have the following Theorem 2.15.

Theorem 2.15. Suppose that (H0), (H1) hold, u0, u1, u2 are three strict lower solutions of (1.1),
v0, v1, v2 are three strict upper solutions of (1.1), u0 ≺ u1 ≺ v1 ≺ v0, u0 ≺ u2 ≺ v2 ≺ v0,
u2(t′) > v1(t′), v2(t′′) < u1(t′′) for some t′, t′′ ∈ J , and f satisfies Nagumo conditions with respect to
[u0, v0]. Moreover, the strict lower solutions u0, u1, u2 and the strict upper solutions v0, v1, v2 are
well ordered whenever Ii0(x)/= 0 or Ij0(x)/= 0 for some i0, j0 ∈ {1, 2, . . . , m} and some x ∈ R. Then,
(1.1) has at least eight solutions.

Proof. Now Theorem 2.10 guarantees that (1.1) has at least three solutions x1, x2, x3 such that

u1 ≺ x1 ≺ v1, u1 ≺ x2 ≺ v0, u2 ≺ x2 ≺ v0, u1 ≺ x3 ≺ v0, (2.62)

and v1(s1) < x3(s1), x3(s2) < u2(s2) for some s1, s2 ∈ J .
Also (1.1) has at least two solutions x4 and x5 such that

u2 ≺ x4 ≺ v2, u2 ≺ x5 ≺ v0, (2.63)

and v2(s3) < x5(s3), x5(s4) < u1(s4).
Now Theorem 2.14 guarantees that (1.1) has at least two solutions x6, x7 such that

u0 ≺ x6 ≺ v2, u0 ≺ x6 ≺ v1, u0 ≺ x7 ≺ v2, (2.64)

and v1(s5) < x7(s5), x7(s6) < u2(s6).
Also (1.1) has at least one solution x8 such that u0 ≺ x8 ≺ v1 and v2(s7) <

x8(s7), x8(s8) < u1(s8) for some s7, s8 ∈ J . It is easy to see that x1, x2, . . . , x8 are distinct
eight solutions of (1.1). The proof is complete.
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u0 x6

x8 u1 x1 v1 x3

x7 u2 x4 v2 x5

x2 v0

Figure 3: The position of u0, u1, u2, v0, v1, v2 in Theorem 2.15.

Remark 2.16. The position of u0, u1, u2, v0, v1, v2 in Theorem 2.15 can be illustrated roughly
by Figure 3.

3. Further discussions

For simplicity, in this section, we will always assume that

Ik(x) = Ik(x) = 0, x ∈ R, k ∈ {1, 2, . . . , m}. (3.1)

In this case, (1.1) can be reduced to the following three-point boundary value problem

y′′ + f
(
t, y(t), y′(t)

)
= 0, t ∈ (0, 1),

y(0) = 0 = y(1) − αy(η),
(3.2)

where 0 < η < 1 and 0 ≤ α < 1.
In this section, we will use the following assumptions.
(A1) Suppose that u1, u2 are two strict lower solutions, v1, v2 are two strict upper

solutions of (1.1), u1 ≺ v1, u2 ≺ v2, and u2(s1) > v1(s1), u1(s2) > v2(s2) for some s1, s2 ∈ J .
Recently, this multipoint boundary value problem has been studied by many authors,

see [16, 17, 19–21] and the references therein. The goal of this section is to prove some
multiplicity results for (3.2) using the condition of two pairs of strict upper and lower
solutions. As we can see from [13], some bounding condition on the nonlinear term is needed.
Instead of the space PC1[J,R], in this section we will use the space C1(J). First, we have the
following theorem.

Theorem 3.1. Suppose that (A1) holds, and

∣∣f(t, x, y)
∣∣ < D0, (t, x, y) ∈ J × R

2 (3.3)

for some D0 > 0. Then, (3.2) has at least eight solutions.
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Proof. First, we show that there exist strict lower and upper solutions u0, v0 such that

u0 ≺ ui ≺ vi ≺ v0, i = 1, 2. (3.4)

Let a0 > ‖u1‖C + ‖u2‖C + ‖v1‖C + ‖v2‖C + 1. Now, we consider the following boundary value
problem:

v′′
0(t) +D0 = 0, t ∈ (0, 1),

v0(0) = a0 = v0(1) − αv0(η).
(3.5)

Let

g1(t) =
1 − αη + αt

1 − αη
, t ∈ J,

g2(t) =
t

2(1 − αη)
− αη2t

2(1 − αη)
− 1

2
t2, t ∈ J.

(3.6)

By Lemma 2.7, we have

v0(t) = g1(t)a0 +
D0t

1 − αη

∫1

0
(1 − s)ds − αD0t

1 − αη

∫η

0
(η − s)ds −D0

∫ t

0
(t − s)ds

= g1(t)a0 + g2(t)D0, t ∈ J.

(3.7)

It is easy to see that g1(t) ≥ 1 and g2(t) ≥ 0 for each t ∈ J . Thus, v0(t) ≥ a0 for each t ∈ J ,
and therefore, ui ≺ v0, vi ≺ v0 for i = 1, 2. On the other hand, from (3.5), it is easy to see
that v0 is a strict upper solution of (1.1). Similarly, we can show the existence of u0. Then, by
Theorem 2.15, the conclusion holds.

Remark 3.2. Obviously, the condition (3.3) is restrictive. In the following, we will make use
of a weaker condition. We study the multiplicity of solutions of (3.2) under a Nagumo-
Knobloch-Schmitt condition. For this kind of bounding condition, the reader is referred to
[13].

Theorem 3.3. Suppose (A1) holds, and there exists function β1, β2 ∈ C1(J), β1 ≤ β2 such that

β1(t) ≤ u′
i(t) ≤ β2(t), β1(t) ≤ v′

i(t) ≤ β2(t), t ∈ J, (3.8)

−f(t, x, β1(t)
)
< β′1(t), −f(t, x, β2(t)

)
> β′2(t), (t, x) ∈ J × [

s2, s1
]
, (3.9)

β1(1) ≤ − 2
1 − αη

D0 ≤ 2
1 − αη

D0 ≤ β2(1), (3.10)
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where D0 = max(t,x,y)∈J×[s2,s1]×R |f(t, y, φ(t, y))|, γ = ‖u1‖C + ‖v1‖c + ‖u2‖c + ‖v2‖C,

s2 = −
∫1

0

∣
∣β1(t)

∣
∣dt − γ, s1 =

∫1

0

∣
∣β2(t)

∣
∣dt + γ,

φ(t, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β2(t), y > β2(t),

y, β1(t) ≤ y ≤ β2(t),

β1(t), y < β1(t).

(3.11)

Then, (3.2) has at least eight solutions.

Proof. Let ρ(x) = max{s2,min{x, s1}} for each x ∈ R, and

f∗(t, x, y) = f
(
t, ρ(x), φ(t, y)

)
, (t, x, y) ∈ J × R

2. (3.12)

Now, we consider the following boundary value problem:

y′′(t) + f∗(t, y(t), y′(t)
)
= 0, t ∈ (0, 1),

y(0) = 0 = y(1) − αy(η).
(3.13)

From (A1) and (3.8), we see that u1, u2 are strict lower solutions of (3.13), and v1 and v2

are two strict upper solutions of (3.13). By Theorem 3.1, (3.13) has at least eight solutions
x1, x2, . . . , x8. We need only to show that x1, x2, . . . , x8 are solutions of (3.2). We claim that

β1(t) ≤ x′
i(t) ≤ β2(t), t ∈ J, i = 1, 2, . . . , 8. (3.14)

We only show that x′
1(t) ≤ β2(t) for t ∈ J . If x′

1(t
′) > β2(t′) for some t′ ∈ J , then maxt∈J z(t) =

z(t0) > 0 for some t0 ∈ J , where z(t) = x′
1(t) − β2(t) for t ∈ J . If t0 ∈ [0, 1), then z′(t0) ≤ 0, and

so

0 ≥ z′
(
t0
)
= x′′

1

(
t0
) − β′2

(
t0
)
= −f∗(t0, x1

(
t0
)
, x′

1

(
t0
)) − β′2

(
t0
)

= −f(t0, ρ
(
x1
(
t0
))
, φ

(
t0, x

′
1

(
t0
)) − β′2

(
t0
)

= −f(t0, ρ
(
x1
(
t0
))
, β2

(
t0
)) − β′2

(
t0
)
,

(3.15)

which contradicts (3.9).
From Lemma 2.6, we have

x1(t) =
t

1 − αη

∫1

0
(1 − s)f∗(s, x(s), x′(s)

)
ds − αt

1 − αη

∫η

0
(η − s)f∗(s, x(s), x′

1(s)
)
ds

−
∫ t

0
(t − s)f∗(s, x(s), x′

1(s)
)
ds,

(3.16)
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and so

x′
1(t) ≤

∣
∣x′

1(t)
∣
∣ ≤

[
1

1 − αη

∫1

0
(1 − s)ds +

α

1 − αη

∫η

0
(η − s)ds + 1

]
≤ 2

1 − αη
D0 ≤ β2(1). (3.17)

This implies that t0 /= 1. Therefore, (3.14) holds. Integrating (3.14), we have

s2 ≤ −
∫1

0

∣
∣β1(t)

∣
∣dt ≤ x1(t) ≤

∫1

0

∣
∣β2(t)

∣
∣dt ≤ s1, t ∈ J. (3.18)

From (3.13)–(3.18), we see that x1, x2, . . . , x8 are eight solutions of (3.2). The proof is complete.

Remark 3.4. We also can replace (3.3) by other bounding conditions, see [13].

Remark 3.5. To end this paper, we point out that the results of this paper can be applied to
study the multiplicity of radial solutions of elliptic differential equation in an annulus with
impulses at some radii.
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équations différentielles ordinaries,” Journal de Mathématiques Pures et Appliquées, vol. 9, pp. 217–271,
1893.

[7] C. De Coster and P. Habets, “An overview of the method of lower and upper solutions for ODEs,”
in Nonlinear Analysis and Its Applications to Differential Equations, vol. 43, pp. 3–22, Birkhăuser, Boston,
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[11] I. Rachůnková and M. Tvrdý, “Periodic problems with ϕ-Laplacian involving non-ordered lower and
upper functions,” Fixed Point Theory, vol. 6, no. 1, pp. 99–112, 2005.



Xu Xian et al. 21
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[13] I. Rachůnková, “Upper and lower solutions and multiplicity results,” Journal of Mathematical Analysis
and Applications, vol. 246, no. 2, pp. 446–464, 2000.

[14] P. Habets and P. Omari, “Existence and localization of solutions of second order elliptic problems
using lower and upper solutions in the reversed order,” Topological Methods in Nonlinear Analysis, vol.
8, no. 1, pp. 25–56, 1996.

[15] X. Xu, D. O’Regan, and J. Sun, “Multiplicity results for three-point boundary value problems with a
non-well-ordered upper and lower solution condition,” Mathematical and Computer Modelling, vol. 45,
no. 1-2, pp. 189–200, 2007.

[16] R. A. Khan and J. R. L. Webb, “Existence of at least three solutions of a second-order three-point
boundary value problem,” Nonlinear Analysis: Theory, Methods & Applications, vol. 64, no. 6, pp. 1356–
1366, 2006.

[17] X. Xian, “Three solutions for three-point boundary value problems,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 62, no. 6, pp. 1053–1066, 2005.

[18] D. Guo, J. Sun, and Z. Liu, The Funtional Method for Nonlinear Ordinary Differential Equations, Shandong
Science and Technology Press, Jinan, China, 1995.

[19] B. Liu, “Positive solutions of second-order three-point boundary value problems with change of sign,”
Computers & Mathematics with Applications, vol. 47, no. 8-9, pp. 1351–1361, 2004.

[20] C. P. Gupta and S. I. Trofimchuk, “Existence of a solution of a three-point boundary value problem
and the spectral radius of a related linear operator,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 34, no. 4, pp. 489–507, 1998.

[21] R. Ma and N. Castaneda, “Existence of solutions of nonlinear m-point boundary-value problems,”
Journal of Mathematical Analysis and Applications, vol. 256, no. 2, pp. 556–567, 2001.


	1. Introduction
	2. Results for at least eight solutions
	3. Further discussions
	Acknowledgments
	References

