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The existence of at least three positive solutions for differential equation (φp(u′(t)))′ + g(t)f(t,
u(t), u′(t)) = 0, under one of the following boundary conditions: u(0) =

∑m−2
i=1 aiu(ξi), ϕp(u′(1)) =

∑m−2
i=1 biϕp(u′(ξi)) or ϕp(u′(0)) =

∑m−2
i=1 aiϕp(u′(ξi)), u(1) =

∑m−2
i=1 biu(ξi) is obtained by using the H.

Amann fixed point theorem, where ϕp(s) = |s|p−2s, p > 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, ai > 0, bi > 0,
0 <

∑m−2
i=1 ai < 1, 0 <

∑m−2
i=1 bi < 1. The interesting thing is that g(t) may be singular at any point of

[0,1] and f may be noncontinuous.

Copyright q 2008 Weihua Jiang et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

In this paper, of multiple positive solutions for differential equation
(
ϕp

(
u′(t)

))′ + g(t)f
(
t, u(t), u′(t)

)
= 0, a. e. t ∈ (0, 1), (1.1)

subject to boundary conditions:

u(0) =
m−2∑

i=1

aiu
(
ξi
)
, ϕp

(
u′(1)

)
=

m−2∑

i=1

biϕ
(
u′(ξi

))
, (1.2)

ϕp

(
u′(0)

)
=

m−2∑

i=1

aiϕp

(
u′(ξi

))
, u(1) =

m−2∑

i=1

biu
(
ξi
)
, (1.3)
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respectively, where ϕp(s) = |s|p−2s, p > 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, ai > 0, bi > 0, 0 <
∑m−2

i=1 ai < 1, 0 <
∑m−2

i=1 bi < 1, g(t) may be singular at any point of [0,1].
The multipoint boundary value problems for ordinary differential equations arise in a

variety of different areas of applied mathematics and physics. The study of the multipoint
boundary value problems for linear second-order ordinary differential equations was initiated
by Il’in and Moiseev [1, 2]. Since then, nonlinear second-order multipoint boundary value
problems have been studied by several authors. We refer the reader to [3–9] and references
cited therein. Recently, in [10], Liang and Zhang studied the existence of positive solutions for
differential equation

(
ϕ(u′)

)′ + a(t)f
(
u(t)

)
= 0, 0 < t < 1, (1.4)

under the boundary conditions (1.2) by using the fixed point index theory. Wang and Hou [11]
investigated the multiplicity of solutions for the differential equation

(
ϕp

(
u′(t)

))′ + f
(
t, u(t)

)
= 0, t ∈ (0, 1), (1.5)

under the boundary conditions (1.3) by utilizing the fixed point theorem for operators on a
cone. Guo et al. [12] proved the existence of at least three positive solutions for differential
equation

(
ϕp

(
u′(t)

))′ + a(t)f
(
t, u(t)

)
= 0, t ∈ (0, 1), (1.6)

subject to (1.2) and (1.3), respectively, by using the five-functional-fixed-point theorem, where
a(t) and f(t, u) are continuous.

All of the above work was done under the assumption that f is allowed to depend just
on u, while the first-order derivative u′(t) is not involved explicitly in the nonlinear term f .

In [13, 14], Wang and Ge and Sun et al. proved the existence of multiple positive
solutions for (1.1) subject to boundary conditions:

u(0) =
n−2∑

i=1

αiu
(
ξi
)
, u′(1) =

n−2∑

i=1

βiu
′(ξi

)
,

u′(0) =
n∑

i=1

αiu
′(ξi

)
, u(1) =

n∑

i=1

βiu
(
ξi
)
,

(1.7)

respectively, where g and f are continuous.
However, in the existing literature, few people considered the case where the nonlinear

term is not only involved in the first-order derivative but also noncontinuous. Our paper will
fill this gap in the literature. The purpose of this paper is to improve and generalize the results
in the above mentioned references. We will prove that the problem (1.1), (1.2) and the problem
(1.1), (1.3) have at least three positive solutions by using the H. Amann fixed point theorem,
where g(t) may be singular at any point of [0,1] and f(t, u, v) may be noncontinuous.

In this paper, we always suppose the following conditions are satisfied:

(H1) 0 = ξ0 < ξ1 < ξ2 < · · · < ξm−2 < ξm−1 = 1, ai > 0, bi > 0, 0 <
∑m−2

i=1 ai < 1, 0 <
∑m−2

i=1 bi < 1;

(H2) g(t) ∈ L1[0, 1], g(t) > 0, a.e. t ∈ [0, 1];
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(H3) f(t, u, v) : [0, 1] × R × R→[0,∞) is bounded in a bounded subset of [0, 1] × R × R,
f(t, u(t), v(t)) is measurable for u(t), v(t) ∈ C[0, 1], and f(t, ·, ·) is continuous for a.e.
t ∈ [0, 1].

Sometimes, we will make use of the following conditions.

(H4) f(t, ·, v) and f(t, u, ·) are strictly increasing in [0,∞).

(H5) f(t, ·, v) is strictly increasing in [0,∞) and f(t, u, ·) is strictly decreasing in (−∞, 0].

2. Preliminaries

Definition 2.1. Let X be a real Banach space and P ⊂ X be a cone. For u, v ∈ X, we denote

u � v ⇐⇒ u − v ∈ P,

u ≺ v ⇐⇒ u − v ∈ P, but u/=v,

u ≺≺ v ⇐⇒ u − v ∈ intP.

(2.1)

If P has nonempty interior, then it is called a solid cone. If every ordered interval is
bounded, then P is called a normal cone.

Definition 2.2. An operator T : P→X is called order preserving if u � v ⇒ Tu � Tv, strictly
order preserving if u ≺ v ⇒ Tu ≺ Tv, and strongly order preserving if u ≺≺ v ⇒ Tu ≺≺ Tv.

Lemma 2.3 (see [15, 16]). Let P be a normal solid cone of a real Banach space X and suppose there
exist y1, z1, y2, z2 ∈ X such that y1 ≺ z1 ≺ y2 ≺ z2. In addition, suppose that T : [y1, z2]→X is a
completely continuous and strongly order preserving operator such that

y1 � Ty1, Tz1 ≺ z1, y2 ≺ Ty2, Tz2 � z2. (2.2)

Then T has at least three fixed points x1, x2 and x3 satisfying

y1 � x1 ≺≺ z1, y2 ≺≺ x2 � z2, y2� x3� z1. (2.3)

3. The positive solutions for the problem (1.1), (1.2)

Let X = C1[0, 1] with norm ‖u‖ = max{maxt∈[0,1]|u(t)|, maxt∈[0,1]|u′(t)|}. Define P ⊂ X by

P =
{
u ∈ X | u(t) ≥ 0, u′(t) ≥ 0, t ∈ [0, 1]

}
. (3.1)

Obviously, X is a Banach space and P is a normal solid cone of X.
We can easily get the following lemmas.

Lemma 3.1. The boundary value problem (1.1), (1.2) has a solution u(t) if and only if u(t) satisfies the
equation

u(t) =
∫ t

0
ϕq

(∫1

s

g(τ)f
(
τ, u(τ), u′(τ)

)
dτ + Bf

)

ds +Af, (3.2)
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where ϕq is the inverse function of ϕp, that is, ϕq = ϕ−1
p , 1/p + 1/q = 1, and

Bu =
1

1 −∑m−2
i=1 bi

m−2∑

i=1

bi

∫1

ξi

g(τ)u(τ)dτ, u ∈ L∞[0, 1],

Au =
1

1 −∑m−2
i=1 ai

m−2∑

i=1

ai

∫ ξi

0
ϕq

(∫1

s

g(τ)u(τ)dτ + Bu

)

ds, u ∈ L∞[0, 1].

(3.3)

Define an operator T in P by

Tu(t) =
∫ t

0
ϕq

(∫1

s

g(τ)f
(
τ, u(τ), u′(τ)

)
dτ + Bf

)

ds +Af. (3.4)

Evidently, u(t) is a fixed point of T if and only if it is a solution of the problem (1.1), (1.2).

Lemma 3.2. Suppose (H1)–(H4) hold, u(t) ∈ P , then Tu(t) ≥ 0, (Tu)′(t) ≥ 0, t ∈ [0, 1].

For convenience, we denote

Lu(t) =
∫ t

0
ϕq

(∫1

s

g(τ)u(τ)dτ + Bu

)

ds +Au, u ∈ L∞[0, 1]. (3.5)

Obviously, we have Tu(t) = Lf(t, u(t), u′(t)).

Lemma 3.3. Suppose (H2) holds. If u1(t), u2(t) ∈ L∞[0, 1] and u1(t) ≤ (<)u2(t), a.e. t ∈ [0, 1], then
L1u1(t) ≤ (<)L1u2(t), t ∈ [0, 1].

Assume (H1)–(H4) hold. By Lemmas 3.2 and 3.3, the absolute continuity of integral,
Ascoli-Arzela theorem and Lebesgue-Dominated-Convergence-theorem, we obtain that T :
P→P is completely continuous and T is strongly order preserving.

Theorem 3.4. Suppose (H1)–(H4) hold. In addition, suppose there exist constants 0 < a < c < b < d
and u0(t) ∈ P \{0} satisfying cLu0(1) < bAu0 such that

(A1) f(t, aAu0, 0) ≥ ϕp(a)u0(t), a.e. t ∈ [0, 1];

(A2) f(t, cLu0(1), c(Lu0)
′(0)) < ϕp(c)u0(t), a.e. t ∈ [0, 1];

(A3) f(t, bAu0, 0) > ϕp(b)u0(t), a.e. t ∈ [0, 1];

(A4) f(t, dLu0(1), d(Lu0)
′(0)) ≤ ϕp(d)u0(t), a.e. t ∈ [0, 1].

Then the problem (1.1), (1.2) has at least three positive solutions u1(t), u2(t), and u3(t) satisfying

aLu0(t) � u1(t) ≺≺ cLu0(t), bLu0(t) ≺≺ u2(t) � dLu0(t),

bLu0(t)�u3(t)� cLu0(t).
(3.6)
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Proof. Let y1(t) = aLu0(t), z1(t) = cLu0(t), y2(t) = bLu0(t), z2(t) = dLu0(t).Obviously, we have

y1(t) ≺ z1(t) ≺ y2(t) ≺ z2(t). (3.7)

Firstly, we will show y1(t) � Ty1(t).
By y1(t) ≥ aAu0, y

′
1(t) ≥ 0, (A1) and Lemma 3.3, we have

Ty1(t) = Lf
(
t, y1(t), y′

1(t)
) ≥ Lf(t, aAu0, 0) ≥ aLu0(t) = y1(t),

(
Ty1

)′(t) = ϕq

(∫1

t

g(τ)f
(
τ, y1(τ), y′

1(τ)
)
dτ + Bf

)

≥ a

[

ϕq

∫1

t

g(τ)u0(τ)dτ + Bu0

]

= y′
1(t).

(3.8)

So, we get y1 � Ty1.
Similarly, by (A3) and Lemma 3.3, we get y2 ≺ Ty2.
Next, we prove Tz1 ≺ z1.
From z1(t) ≤ cLu0(1), z′1(t) ≤ c(Lu0)

′(0), (A2), and Lemma 3.3, we have

Tz1(t) = Lf(t, z1(t), z′1(t)
) ≤ Lf

(
t, cLu0(1), c

(
Lu0

)′(0)
)
< cLu0(t) = z1(t),

(
Tz1

)′(t) = ϕq

(∫1

t

g(τ)f
(
τ, z1(τ), z′1(τ)

)
dτ + Bf

)

≤ c

[

ϕq

∫1

t

g(τ)u0(τ)dτ + Bu0

]

= z′1(t).
(3.9)

So, we get Tz1 ≺ z1.
Similarly, by (A4) and Lemma 3.3, we get Tz2 � z2.
By Lemma 2.3, we get that the operator T has at least three fixed points u1(t), u2(t), and

u3(t) satisfying

aLu0(t) � u1(t) ≺≺ cLu0(t), bLu0(t) ≺≺ u2(t) � dLu0(t),

bLu0(t)�u3(t)� cLu0(t).
(3.10)

The proof is completed.

4. The positive solutions for the problem (1.1), (1.3)

Let X be the same as the one in Section 3. Define P1 ⊂ X by

P1 =
{
u ∈ X | u(t) ≥ 0, u′(t) ≤ 0, t ∈ [0, 1]

}
. (4.1)

Evidently, P1 is a normal solid cone of X.
We can easily get the following lemmas.

Lemma 4.1. The boundary value problem (1.1), (1.3) has a solution u(t) if and only if u(t) satisfies the
equation

u(t) = −
∫ t

0
ϕq

(∫ s

0
g(τ)f

(
τ, u(τ), u′(τ)

)
dτ + B̃f

)

ds + Ãf, (4.2)



6 Boundary Value Problems

where ϕq is the same as the one in Lemma 3.1, and

B̃u =
1

1 −∑m−2
i=1 ai

m−2∑

i=1

ai

∫ ξi

0
g(τ)u(τ)dτ, u ∈ L∞[0, 1],

Ãu =
1

1 −∑m−2
i=1 bi

[∫1

0
ϕq

(∫s

0
g(τ)u(τ)dτ + B̃u

)

ds

−
m−2∑

i=1

bi

∫ ξi

0
ϕq

(∫ s

0
g(τ)u(τ)dτ + B̃u

)

ds

]

, u ∈ L∞[0, 1].

(4.3)

Define an operator T1 in P1 by

T1u(t) = −
∫ t

0
ϕq

(∫ s

0
g(τ)f

(
τ, u(τ), u′(τ)

)
dτ + B̃f

)

ds + Ãf. (4.4)

Obviously, u(t) ∈ P1 is a fixed point of the operator T1 if and only if it is a positive
solution of the problem (1.1), (1.3).

Lemma 4.2. Suppose (H1)–(H3), (H5) hold, and u(t) ∈ P1, then T1u(t) ≥ 0, (T1u)
′(t) ≤ 0, t ∈ [0, 1].

For convenience, we denote

L1u(t) = −
∫ t

0
ϕq

(∫s

0
g(τ)u(τ)dτ + B̃u

)

ds + Ãu. (4.5)

Clearly, T1u(t) = L1f(t, u(t), u′(t)).

Lemma 4.3. Suppose (H2) holds. If u1(t), u2(t) ∈ L∞[0, 1], and u1(t) ≤ (<)u2(t), a.e. t ∈ [0, 1], then
L1u1(t) ≤ (<)L1u2(t), t ∈ [0, 1].

Assume (H1)–(H3) and (H5) hold, by Lemmas 4.2 and 4.3, the absolute continuity of
integral, Ascoli-Arzela theorem, and Lebesgue-Dominated-Convergence-theorem, we obtain
that T1 : P1→P1 is completely continuous, and T1 is strongly order preserving.

Theorem 4.4. Suppose (H1)–(H3) and (H5) hold. In addition, suppose there exist constants 0 < ã <

c̃ < b̃ < d̃ and function u0(t) ∈ P1\{0} satisfying c̃Ãu0 < b̃L1u0(1) such that

(C1) f(t, ãL1u0(1), 0) ≥ ϕp(ã)u0(t), a.e. t ∈ [0, 1];

(C2) f(t, c̃Ãu0, c̃(L1u0)
′(1)) < ϕp(c̃ )u0(t), a.e. t ∈ [0, 1];

(C3) f(t, b̃L1u0(1), 0) > ϕp(b̃)u0(t), a.e. t ∈ [0, 1];

(C4) f(t, d̃Ãu0, d̃(L1u0)
′(1)) ≤ ϕp(d̃)u0(t), a.e. t ∈ [0, 1].

Then the problem (1.1), (1.3) has at least three positive solutions v1(t), v2(t), and v3(t) satisfying

ãL1u0(t) � v1(t) ≺≺ c̃L1u0(t), b̃L1u0(t) ≺≺ v2(t) � d̃L1u0(t),

b̃L1u0(t)�v3(t)� c̃L1u0(t).
(4.6)
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Proof. Let y1(t) = ãL1u0(t), z1(t) = c̃L1u0(t), y2(t) = b̃L1u0(t), z2(t) = d̃L1u0(t). Obviously, we
have

y1(t) ≺ z1(t) ≺ y2(t) ≺ z2(t). (4.7)

Firstly, we will show y1(t) � T1y1(t).
By y1(t) ≥ ãL1u0(1), y′

1(t) ≤ 0, (C1), and Lemma 4.3, we have

T1y1(t) = L1f
(
t, y1(t), y′

1(t)
) ≥ L1f

(
t, ãL1u0(1), 0

) ≥ ãL1u0(t) = y1(t),

(
T1y1

)′(t) = −ϕq

(∫ t

0
g(τ)f

(
τ, y1(τ), y′

1(τ)
)
dτ + B̃f

)

≤ −ãϕq

[∫ t

0
g(τ)u0(τ)dτ + B̃u0

]

= y′
1(t).

(4.8)

So, we get y1 � T1y1.
Similarly, by (C3) and Lemma 4.3, we get y2 ≺ T1y2.
Next, we will prove T1z1 ≺ z1.
From z1(t) ≤ c̃Ãu0, z

′
1(t) ≥ c̃(L1u0)

′(1), (C2), and Lemma 4.3, we have

T1z1(t) = L1f
(
t, z1(t), z′1(t)

) ≤ L1f
(
t, c̃Ãu0, c̃

(
L1u0

)′(1)
)
< c̃L1u0(t) = z1(t),

(
T1z1

)′(t) = −ϕq

(∫ t

0
g(τ)f

(
τ, z1(τ), z′1(τ)

)
dτ + B̃f

)

≥ −c̃ϕq

[∫ t

0
g(τ)u0(τ)dτ + B̃u0

]

= z′1(t).

(4.9)

So, we get T1z1 ≺ z1.
Similarly, by (C4) and Lemma 4.3, we get T1z2 � z2.
By Lemma 2.3, we get that the operator T1 has at least three fixed points v1(t), v2(t), and

v3(t) satisfying

ãL1u0(t) � v1(t) ≺≺ c̃L1u0(t), b̃L1u0(t) ≺≺ v2(t) � d̃L1u0(t),

b̃L1u0(t)�v3(t)� c̃L1u0(t).
(4.10)

The proof is completed.
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