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1. Introduction and preliminaries

Many evolution processes are characterized by the fact that at certain moments of time
they experience a change of state abruptly. Consequently, it is natural to assume that
these perturbations act instantaneously, that is, in the form of impulses. It is known that
many biological phenomena involving threshold, bursting rhythm models in medicine and
biology, optimal control models in economics, pharmacokinetics, and frequency modulated
systems do exhibit impulse effects. The branch of modern, applied analysis known as
“impulsive” differential equations provides a natural framework to mathematically describe
the aforementioned jumping processes. The reader is referred to monographs [1–4] and
references therein for some nice examples and applications to the above areas.

In this paper, we mainly study the following second-order impulsive differential
equations with antiperiodic boundary value conditions:

u′′ = f(t, u, u′), t ∈ [0, T] \Ω,

u
(
t+k
)
= u
(
tk
)
+ Ik

(
u
(
tk
))
, u′(t+k

)
= u′(tk

)
+ Jk

(
u
(
tk
))
, k = 1, 2, . . . , m,

u(0) = −u(T), u′(0) = −u′(T),

(1.1)
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where Ω :=
⋃m

i=1ti and f : [0, T] × R
n × R

n → R
n is continuous on [0, T] \ Ω × R

n × R
n,

I, J : Rn → R
n are continuous functions.

In [4–12], the authors studied the existence of antiperiodic solutions for first-order,
second-order, or high-order differential equations without impulses, and in [3, 13–16] the
authors were concerned with the antiperiodic solutions of first-order impulsive differential
equations. Also we should mention the work by Cabada et al. in [17] which is concerned
with a certain nth order linear differential equation with constant impulses at fixed times and
nonhomogeneous periodic boundary conditions. So far, to the best of our knowledge, this is
the first work to deal with the antiperiodic solutions to second-order differential equations
with nonconstant impulses. Our method to prove the existence of antiperiodic solutions is
based on the works in [13, 18, 19]. We should point out that it is Christopher C. Tisdell who
started with this method.

The article is organized as follows. In Section 2, we present the expression of Green’s
functions of related linear operator in the space of piecewise continuous functions. Section 3
contains the main results of the paper and is devoted to the existence of solutions to (1.1).
There, differential inequalities are developed and applied to prove the existence of at least
one solution to (1.1). In Section 4, a couple of examples are given to illustrate how the main
results work.

To understand the notation used above and the ideas in the remainder of the
paper, we now briefly introduce some appropriate concepts connected with impulsive
differential equations. Most of the following notation can be found in [1, 2, 4, 5]. We assume
that f(t+

k
, x, y) := limt→ t+

k
f(t, x, y), f(t−

k
, x, y) := limt→ t−

k
f(t, x, y) exist and f(t−

k
, x, y) =

f(tk, x, y), k = 1, 2, . . . , m. We introduce and denote the Banach space PC([0, T],Rn) by

PC
(
[0, T];Rn) :=

{
u : [0, T] −→ R

n, u ∈ C([0, T] \Ω,Rn),

u is left continuous at t = tk, the right-hand limit u
(
t+k
)
exists

}

(1.2)

with the norm ||u||PC := supt∈[0,T]||u(t)||, where ||·|| is the usual Euclidean norm and 〈·, ·〉 will
be the Euclidean inner product.

In a similar fashion to the above, define and denote the Banach space PC1([0, T],Rn)
by

PC1([0, T];Rn) :=
{
u ∈ PC

(
[0, T];Rn) : u ∈ C1([0, T] \Ω,Rn),

the limits u′(t−k
)
, u′(t+k

)
exist with u′(t−k

)
= u′(tk

)} (1.3)

with the norm ||u||PC1 := supt∈[0,T]{||u(t)||PC, ||u′(t)||PC}.
The following fixed point theorem is our main tool to prove the existence of at least

one solution to (1.1).

Schaefer’s fixed point theorem [19]

LetX be a Banach space and letA : X → X be a completely continuous operator. Then, either
(i) the operator equation x = λAx has a solution for λ = 1, or
(ii) the set S := {x ∈ X, x = λAx, λ ∈]0, 1[} is unbounded.
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2. Expression of Green’s function

In this part, we present the expression of Green’s functions for second order impulsive
equations with antiperiodic conditions.

Lemma 2.1. Assume p ≥ 0 and q > 0 are two constants. Let α = (p +
√
p2 + 4q)/2, β = (p −

√
p2 + 4q)/2. Then for any h(t) ∈ PC([0, T],Rn), u(t) solves

u′′ − pu′ − qu = h(t), t ∈ [0, T], t /= tk, k = 1, 2, . . . , m,

u
(
t+k
)
= u
(
tk
)
+ Ik

(
u
(
tk
))
, u′(t+k

)
= u′(tk

)
+ Jk

(
u
(
tk
))
, k = 1, 2, . . . , m,

u(0) = −u(T), u′(0) = −u′(T)

(2.1)

if and only if u(t) is the solution of integral equation

u(t) =
∫T

0
G(t, s)h(s)ds +

m∑

i=1

H
(
t, ti
)
Ii
(
u
(
ti
))

+
m∑

i=1

G
(
t, ti
)
Ji
(
u
(
ti
))
, (2.2)

where

G(t, s) =
1

α − β

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−e
α(T+t−s)

1 + eαT
+
eβ(T+t−s)

1 + eβT
, 0 ≤ t ≤ s ≤ T,

eα(t−s)

1 + eαT
− eβ(t−s)

1 + eβT
, 0 ≤ s < t ≤ T,

(G)

H(t, s) =
1

α − β

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

βeα(T+t−s)

1 + eαT
− αeβ(T+t−s)

1 + eβT
, 0 ≤ t ≤ s ≤ T,

−βe
α(t−s)

1 + eαT
+
αeβ(t−s)

1 + eβT
, 0 ≤ s < t ≤ T.

(H)

Proof. Assume u(t) is a solution of (2.1) and let v(t) = u′(t) − βu(t) for t /= tk, k = 1, 2, . . . , m.
We have

v′(t) − αv(t) = u′′(t) − (α + β)u′(t) + αβu(t) = u′′(t) − pu′(t) − qu(t) = h(t). (2.3)

Then for t ∈ [0, t1],

v(t) = eαt
[

e0v(0) +
∫ t

0
e−αsh(s)ds

]

= eαt
[

v(0) +
∫ t

0
e−αsh(s)ds

]

. (2.4)
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This implies v(t1) = eαt1[v(0) +
∫ t1
0 e

−αsh(s)ds]. Consequently, from the impulsive condition in
(2.1) we get that

v
(
t+1
)
= v
(
t1
)
+ J1

(
u
(
t1
)) − βI1

(
u
(
t1
))

= eαt1

(

v(0) +
∫ t1

0
e−αsh(s)ds

)

+ Δ1, (2.5)

where Δi := Ji(u(ti)) − βIi(u(ti)), i = 1, 2, . . . , m. Now we integrate (2.3) from t1 to t ∈ (t1, t2]
and use (2.5) to obtain

v(t) = eαt
[

e−αt1v
(
t+1
)
+
∫ t

t1

e−αsh(s)ds

]

= eαtv(0) + eα(t−t1)Δ1 +
∫ t

0
eα(t−s)h(s)ds. (2.6)

It follows that

v
(
t+2
)
= v
(
t2
)
+ Δ2 = eαt2v(0) + eα(t2−t1)Δ1 +

∫ t2

0
eα(t2−s)h(s)ds + Δ2. (2.7)

Similarly, we have for t ∈ (t2, t3] that

v(t) = eαtv(0) + eα(t−t1)Δ1 + eα(t−t2)Δ2 +
∫ t

0
eα(t−s)h(s)ds. (2.8)

To sum up, we have for t ∈ [0, T] that

v(t) = eαtv(0) +
∑

ti∈[0,t)
eα(t−ti)Δi +

∫ t

0
eα(t−s)h(s)ds. (2.9)

Since v(t) = u′(t) − βu(t), we can deduce in a similar way as to deal with h(t) = v′(t) − αv(t)
to obtain

u(t) = eβtu(0) +
∑

ti∈[0,t)
eβ(t−ti)Ii

(
u
(
ti
))

+
∫ t

0
eβ(t−s)v(s)ds. (2.10)

Now we are in position to show the expression of u(t) for t ∈ [0, T]. To do that, we need
to compute

∫ t
0e

β(t−s)v(s)ds in (2.10). In what follows we present the expression of u(t) for
t ∈ (t1, t2], (t2, t3] step by step and then obtain the general form of u(t) for t ∈ [0, T].
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First of all, for t ∈ (t1, t2], we have

∫ t

0
eβ(t−s)v(s)ds =

∫ t1

0
eβ(t−s)v(s)ds +

∫ t

t1

eβ(t−s)v(s)ds. (2.11)

See that

∫ t1

0
eβ(t−s)v(s)ds =

∫ t1

0
eβ(t−s)

[

eαsv(0) +
∫s

0
eα(s−τ)h(τ)dτ

]

ds,

∫ t

t1

eβ(t−s)v(s)ds =
∫ t

t1

eβ(t−s)
[

eαsv(0) + Δ1e
α(s−t1) +

∫s

0
eα(s−τ)h(τ)dτ

]

ds.

(2.12)

Consequently,

∫ t

0
eβ(t−s)v(s)ds =

∫ t

0
eβ(t−s)

[

eαsv(0) +
∫s

0
eα(s−τ)h(τ)dτ

]

ds + Δ1

∫ t

t1

eβ(t−s)eα(s−t1)ds. (2.13)

Integrate
∫ t
0e

β(t−s)[
∫s
0e

α(s−τ)h(τ)dτ]ds by parts to get

eβt

α − β

∫ t

0
h(s)e−αs

[
e(α−β)t − e(α−β)s

]
ds. (2.14)

Thus,

∫ t

0
eβ(t−s)v(s)ds =

eβt

α − β

{

v(0)
[
e(α−β)t − 1

]
+ e−αt1Δ1

[
e(α−β)t − e(α−β)t1

]

+
∫ t

0
h(s)e−αs

[
e(α−β)t − e(α−β)s

]
ds

}

.

(2.15)

Similarly, we have for t ∈ (t2, t3] that

∫ t

0
eβ(t−s)v(s)ds =

eβt

α − β

{

v(0)
[
e(α−β)t − 1

]
+ e−αt1Δ1

[
e(α−β)t − e(α−β)t1

]

+ e−αt2Δ2
[
e(α−β)t − e(α−β)t2

]
+
∫ t

0
h(s)e−αs

[
e(α−β)t − e(α−β)s

]
ds

}

.

(2.16)
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Now we consider u(t) for t ∈ (t1, t2]. Clearly,

u(t) = eβtu(0) + eβ(t−t1)I1
(
u
(
t1
))

+
eβt

α − β

{

v(0)
[
e(α−β)t − 1

]
+ e−αt1Δ1

[
e(α−β)t − e(α−β)t1

]
+
∫ t

0
h(s)e−αs

[
e(α−β)t − e(α−β)s

]
ds

}

.

(2.17)

Noting that v(0) = u′(0) − βu(0), we have

u(t) =
1

α − β

{

(u′(0) − βu(0))eαt + (αu(0) − u′(0))eβt

+
∫ t

0
h(s)

[
eα(t−s) − eβ(t−s)

]
+ eα(t−t1)Δ1 − eβ(t−t1)Δ̃1

}

,

(2.18)

where Δ̃i is denoted by Δ̃i = J1(u(t1)) − αI1(u(t1)), i = 1, 2, . . . , m. Similarly, for t ∈ (t2, t3]
there holds

u(t) =
1

α − β

{

(u′(0) − βu(0))eαt + (αu(0) − u′(0))eβt

+
∫ t

0
h(s)

[
eα(t−s) − eβ(t−s)

]
+ eα(t−t1)Δ1 + eα(t−t2)Δ2 − eβ(t−t1)Δ̃1 − eβ(t−t2)Δ̃2

}

.

(2.19)

Thus, for t ∈ [0, T],

u(t) =
1

α − β

{

(u′(0) − βu(0))eαt + (αu(0) − u′(0))eβt

+
∫ t

0
h(s)

[
eα(t−s) − eβ(t−s)

]
+
∑

ti∈[0,t)
eα(t−ti)Δi −

∑

ti∈[0,t)
eβ(t−ti)Δ̃i

}

.

(2.20)

By the boundary condition of (2.1), we have

u′(0) − βu(0) = − 1
1 + eαT

[∫T

0
eα(T−s)h(s)ds +

m∑

i=1

Δie
α(T−ti)

]

,

αu(0) − u′(0) =
1

1 + eβT

[∫T

0
eβ(T−s)h(s)ds +

m∑

i=1

Δ̃ie
β(T−ti)

]

.

(2.21)
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Substituting (2.21) into (2.20), and also noting that for t ∈ (tk, tk+1],

−
m∑

i=1

Δi

1 + eαT
eα(T+t−ti) +

∑

ti∈[0,t]
eα(t−ti)Δi = −

m∑

i=k+1

eα(T+t−ti)Δi

1 + eαT
+

k∑

i=1

eα(t−ti)Δi

1 + eαT
,

m∑

i=1

Δ̃i

1 + eβT
eβ(T+t−ti) −

∑

ti∈[0,t]
eβ(t−ti)Δ̃i =

m∑

i=k+1

eα(T+t−ti)Δ̃i

1 + eαT
−

k∑

i=1

eβ(t−ti)Δ̃i

1 + eβT
,

(2.22)

we see that u(t) is the solution of (2.2).
Now assume u(t) is a solution of (2.2). Then for t /= tk, k = 1, 2, . . . , m.

u′(t) =
∫T

0
Gt(t, s)h(s)ds +

m∑

i=1

Ht

(
t, ti
)
Ii
(
u
(
ti
))

+
m∑

i=1

Gt

(
t, ti
)
Ji
(
u
(
ti
))
, (2.23)

u′′(t) =
∫T

0
Gtt(t, s)h(s)ds + h(t) +

m∑

i=1

Htt

(
t, ti
)
Ii
(
u
(
ti
))

+
m∑

i=1

Gtt

(
t, ti
)
Ji
(
u
(
ti
))
. (2.24)

It is easy to verify

u′′(t) − pu′(t) − q(t) = h(t). (2.25)

For t = tk, k = 1, 2, . . . , m, we compute straightforwardly to get

H
(
t+k, tk

) −H
(
tk, tk

)
= 1, G

(
t+k, tk

) −G
(
tk, tk

)
= 0,

Gt

(
t+
k
, tk) −Gt

(
tk, tk

)
= 1, Ht

(
t+
k
, tk
) −Ht

(
tk, tk

)
= 0,

(2.26)

which implies

Δu
(
tk
)
= Ik

(
u
(
tk
))
, Δu′(tk

)
= Jk

(
u
(
tk
))
. (2.27)

Now, we prove u(t) is a solution of (2.1). Then the proof is completed.

For later use, we present the following estimations:

max
(t,s)∈[0,T]×[0,T]

|G(t, s)| ≤ 1
α − β

(
eαT

1 + eαT
+

eβT

1 + eβT

)
:= G0,

max
(t,s)∈[0,T]×[0,T]

|H(t, s)| ≤ α

α − β

(
eαT

1 + eαT
+

eβT

1 + eβT

)
= αG0,
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max
(t,s)∈[0,T]×[0,T]

|G(t, s)| ≤ α

α − β

(
eαT

1 + eαT
+

eβT

1 + eβT

)
= αG0,

max
(t,s)∈[0,T]×[0,T]

|Ht(t, s)| ≤
|α| · |β|
α − β

(
eαT

1 + eαT
+

eβT

1 + eβT

)
≤ α2G0.

(2.28)

Corollary 2.2. Assume in (2.1) that p = 0 and q = M2 > 0. Then for any h(t) ∈ PC[0, T], u(t) is
the solution of

u′′ −M2u = h(t), t ∈ [0, T], t /= tk, k = 1, 2, . . . , m,

u(t+
k
) = u(tk) + Ik(u(tk)), u′(t+

k
) = u′(tk) + Jk(u(tk)), k = 1, 2, . . . , m,

u(0) = −u(T), u′(0) = −u′(T)

(2.29)

if and only if u(t) is the solution of integral equation

u(t) =
∫T

0
G(t, s)h(s)ds +

m∑

i=1

H
(
t, ti
)
Ii
(
u
(
ti
))

+
m∑

i=1

G
(
t, ti
)
Ji
(
u
(
ti
))
, (2.30)

where

G(t, s) =
1

2M

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−e
M(T+t−s)

1 + eMT
+
e−M(T+t−s)

1 + e−MT
, 0 ≤ t ≤ s ≤ T,

eM(t−s)

1 + eMT
− e−M(t−s)

1 + e−MT
, 0 ≤ s < t ≤ T,

H(t, s) = Gt(t, s) =
1

2M

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−MeM(T+t−s)

1 + eMT
− Me−M(T+t−s)

1 + e−MT
, 0 ≤ t ≤ s ≤ T,

MeM(t−s)

1 + eMT
+
Me−M(t−s)

1 + e−MT
, 0 ≤ s < t ≤ T.

(2.31)

Obviously, there hold

max
(t,s)∈[0,T]×[0,T]

|G(t, s)| ≤ eMT

M
(
1 + eMT

) , max
(t,s)∈[0,T]×[0,T]

|H(t, s)| ≤ eMT

1 + eMT
,

max
(t,s)∈[0,T]×[0,T]

|Gt(t, s)| ≤ eMT

1 + eMT
, max

(t,s)∈[0,T]×[0,T]
|Ht(t, s)| ≤ MeMT

1 + eMT
.

(2.32)

We now give Green’s function of (2.1) for p = q = 0.
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Lemma 2.3. For any h(t) ∈ PC[0, T], u(t) is the solution of

u′′ = h(t), t ∈ [0, T], t /= tk, k = 1, 2, . . . , m,

u
(
t+k
)
= u
(
tk
)
+ Ik

(
u
(
tk
))
, u′(t+k

)
= u′(tk

)
+ Jk

(
u
(
tk
))
,

u(0) = −u(T), u′(0) = −u′(T)

(2.33)

if and only if u(t) satisfies the integral equation

u(t) =
∫T

0
G(t, s)∗h(s)ds +

m∑

i=1

H∗(t, ti
)
Ii
(
u
(
ti
))

+
m∑

i=1

G∗(t, ti
)
Ji
(
u
(
ti
))
, (2.34)

where

G∗(t, s) = −1
2

⎧
⎪⎪⎨

⎪⎪⎩

T

2
+ t − s, 0 ≤ t ≤ s ≤ T,

T

2
− t + s, 0 ≤ s < t ≤ T,

H∗(t, s) = G∗(t, s)t =

⎧
⎪⎪⎨

⎪⎪⎩

−1
2
, 0 ≤ t ≤ s ≤ T,

1
2
, 0 ≤ s < t ≤ T.

(2.35)

Since the proof is very similar to that of Lemma 2.1, we omit it here. We can check
easily that u(t) satisfies (2.34) and hence u(t) is a solution of (2.33). Also we get by
straightforward computation that

max
(t,s)∈[0,T]×[0,T]

∣∣G∗(t, s)
∣∣ ≤ T

4
, max

(t,s)∈[0,T]×[0,T]

∣∣G∗
t (t, s)

∣∣ = max
(t,s)∈[0,T]×[0,T]

∣∣H∗(t, s)
∣∣ ≤ 1

2
. (2.36)

Recall that a mapping between Banach spaces is compact if it is continuous and carries
bounded sets into relatively compact sets.

Lemma 2.4. Suppose that f : [0, T] × R
n × R

n and I, J : Rn → R
n are continuous. Define an

operator A : PC1([0, T],Rn) → PC1([0, T],Rn) as

Au(t) :=
∫T

0
G(t, s)

(
f(s, u(s), u′(s)) − pu′(s) − qu(s)

)
ds

+
m∑

i=1

H
(
t, ti
)
Ii
(
u
(
ti
))

+
m∑

i=1

G
(
t, ti
)
Ji
(
u
(
ti
))
,

(2.37)

where G(t, s) and H(t, s) are as given in Lemma 2.1. Then A is a compact map.
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Proof. Noting the continuity of f and Ik, Jk, this follows in a standard step-by-step process
and so it is omitted.

3. Main results

In this section, we prove the existence results for (1.1) in presence of Schaefer’s fixed-point
theorem.

Theorem 3.1. Suppose that f : [0, T] × R
n × R

n and I, J : Rn → R
n are continuous. If for some

p ≥ 0 and q > 0, there exist nonnegative constants γ, δk, ζk, Lk, Nk, and M such that

‖f(t, x, y) − py − qx‖ ≤ γ
[〈
x + y, f(t, x, y)

〉
+ ‖y‖2] +M,

∀(t, x, y) ∈
(

[0, T] \
m⋃

i=0

ti

)

× R
n × R

n,
(3.1)

∥∥Ik(x)
∥∥ ≤ δk‖x‖ + Lk,

∥∥Jk(x)
∥∥ ≤ ζk‖x‖ +Nk, ∀x ∈ R

n, (3.2)

m∑

k=1

δk +
m∑

k=1

ζk <
1
H

, (3.3)

where 〈·〉 is the Euclidean inner product, H = max{G0, αG0, α
2G0}. Then (1.1) has at least one

solution.

Proof. Define an integral operator A as

Au=
∫T

0
G(t, s)

(
f(s, u(s), u′(s)) − pu′(s) − qu(s)

)
ds +

m∑

i=1

H
(
t, ti
)
Ii
(
u
(
ti
))

+
m∑

i=1

G
(
t, ti
)
Ji
(
u
(
ti
))
,

(3.4)

where G(t, s) and H(t, s) follow the forms of ( G ) and ( H ) in Lemma 2.1. By Lemma 2.4, A
is a compact mapping. Also, it follows from Lemma 2.1 that u(t) is a fixed point of A if and
only if u(t) satisfies

u′′(t) − pu′(t) − qu(t) = f(t, u(t), u′(t)) − pu′(t) − qu(t), t /= tk, k = 1, 2, . . . , m,

u
(
t+
k

)
= u
(
tk
)
+ Ik

(
u
(
tk
))
, u′(t+

k

)
= u′(tk

)
+ Jk

(
u
(
tk
))
, k = 1, 2, . . . , m,

u(0) = −u(T), u′(0) = −u′(T),

(3.5)

which is equivalent to (1.1). Consequently, all that we need to do is to verify that A has at
least one fixed point. With this in mind, we assume u(t) is a solution of

u = λAu, λ ∈ (0, 1). (3.6)
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That is,

u(t) =
∫T

0
G(t, s)λ

[
f(s, u(s), u′(s)) − pu′(s) − qu(s)

]
ds

+ λ
m∑

i=1

H
(
t, ti
)
Ii
(
u
(
ti
))

+ λ
m∑

i=1

G
(
t, ti
)
Ji
(
u
(
ti
))
.

(3.7)

It is equivalent to say that u(t) satisfies

u′′(t) − pu′(t) − qu(t) = λ
[
f(t, u(t), u′(t)) − pu′(t) − qu(t)

]
, t /= tk, k = 1, 2, . . . , m,

u
(
t+k
)
= u
(
tk
)
+ λIk

(
u
(
tk
))
, u′(t+k

)
= u′(tk

)
+ λJk

(
u
(
tk
))
, k = 1, 2, . . . , m,

u(0) = −u(T), u′(0) = −u′(T).

(3.8)

Firstly, we see that for λ ∈ (0, 1),

λ‖f(t, u(t), u′(t)) − pu′(t) − qu(t)‖

≤ λ
{
γ
[〈
u(t) + u′(t), f(t, u(t), u′(t))

〉
+ ‖u′(t)‖2] +M

}

= γ
[〈
u(t) + u′(t), λf(t, u(t), u′(t))

〉
+ λ‖u′(t)‖2] + λM

= γ
[〈
u(t) + u′(t), u′′(t) − (1 − λ)(pu′(t) + qu(t))

〉
+ λ‖u′(t)‖2] + λM

= γ
[〈
u(t) + u′(t), u′′(t)

〉 − (1 − λ)(p + q)
〈
u(t), u′(t)

〉

− q(1 − λ)‖u(t)‖2 − p(1 − λ)‖u′(t)‖2 + λ‖u′(t)‖2] + λM

≤ γ
[〈
u(t) + u′(t), u′′(t)

〉 − (1 − λ)(p + q)
〈
u(t), u′(t)

〉
+ ‖u′(t)‖2] +M

= γ
[〈
u(t) + u′(t), u′(t) + u′′(t)

〉 − (1 − λ)(p + q)
〈
u(t), u′(t)

〉 − 〈u(t), u′(t)
〉]

+M.

(3.9)

Further more, by the antiperiodic boundary condition we have

∫T

0
〈u(t), u′(t)〉dt = 1

2

∫T

0

d

dt

(‖u(t)‖2) = 1
2
(‖u(T)‖2 − ‖u(0)‖2) = 0,

∫T

0
〈u(t) + u′(t), u′(t) + u′′(t)〉dt = 1

2
(‖u(T) + u′(T)‖2 − ‖u(0) + u′(0)‖2) = 0.

(3.10)



12 Boundary Value Problems

As a result,

∫T

0
λ
∥∥f(t, u(t), u′(t)) − pu′(t) − qu(t))

∥∥dt ≤ MT. (3.11)

Nowwe show that any potential solution of (3.6) is bounded a priori. By (3.2) and (3.11), we
obtain

‖u(t)‖ = λ‖Au(t)‖

=

∥
∥
∥
∥
∥

∫T

0
G(t, s)λ

[
f(t, u(t), u′(t)) − pu′(t) − qu(t)

]
dt

+ λ
m∑

i=1

H
(
t, ti
)
Ii
(
u
(
ti
))

+ λ
m∑

i=1

G
(
t, ti
)
Ji
(
u
(
ti
))
∥∥∥∥∥

≤ G0

∫T

0
λ
∥∥f(t, u(t), u′(t)) − pu′(t) − qu(t)

∥∥dt + λαG0

m∑

i=1

∥∥Ii
(
u
(
ti
))∥∥ + λG0

m∑

i=1

∥∥Ji
(
u
(
ti
))∥∥

≤ G0

(

MT + α
m∑

k=1

Lk +
m∑

k=1

Nk

)

+G0

(

α
m∑

i=1

ζi
∥∥(u

(
ti
))∥∥ +

m∑

i=1

δi
∥∥(u

(
ti
))∥∥

)

≤ G1

(

MT +
m∑

k=1

Lk +
m∑

k=1

Nk

)

+G1

(
m∑

i=1

ζi
∥∥(u

(
ti
))∥∥ +

m∑

i=1

δi
∥∥(u

(
ti
))∥∥

)

.

(3.12)

Taking the supremum and rearranging, we get by (3.3) that

sup
t∈[0,T]

‖u(t)‖ ≤ G1
(
TM +

∑m
k=1Lk +

∑m
k=1Nk

)

1 −G1
(∑m

k=1δk +
∑m

k=1ζk
) . (3.13)

Differentiating both sides of (3.7) and noting (2.23), we obtain

sup
t∈[0,T]

‖u′(t)‖ ≤ G2
(
TM +

∑m
k=1Lk +

∑m
k=1Nk

)

1 −G2
(∑m

k=1δk +
∑m

k=1ζk
) , (3.14)

where

G2 = max
{
αG0, α

2G0
}
. (3.15)
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Thus,

‖u(t)‖PC1 = max
{
G1
(
TM +

∑m
k=1Lk +

∑m
k=1Nk

)

1 −G1
(∑m

k=1δk +
∑m

k=1ζk
) ,

G2
(
TM +

∑m
k=1Lk +

∑m
k=1Nk

)

1 −G2
(∑m

k=1δk +
∑m

k=1ζk
)

}
:= R.

(3.16)

Nowwe have shown that any possible solution of (3.6) is bounded byRwhich is independent
of λ. By Scheafer’s fixed theorem we know that A has at least one fixed point. Therefore, the
proof is completed.

Suppose both p = 0 and q = M2 in Theorem 3.1. We obtain the following theorem.

Theorem 3.2. Assume that f : [0, T] × R
n × R

n and I, J : Rn → R
n are continuous. If for some

M > 0 there exist nonnegative constants γ, δk, ζk, Lk, Nk, and M∗ such that

∥∥f(t, x, y) −M2x
∥∥ ≤ γ

[〈
x, f(t, x, y)

〉
+ ‖y‖2] +M∗,

∀(t, x, y) ∈
(

[0, T] \
m⋃

i=0

ti

)

× R
n × R

n,

∥∥Ik(x)
∥∥ ≤ δk‖x‖ + Lk,

∥∥Jk(x)
∥∥ ≤ ζk‖x‖ +Nk, ∀x ∈ R

n,

m∑

k=1

δk +
m∑

k=1

ζk <
1
Ȟ

,

(3.17)

where 〈·〉 is the Euclidean inner product, Ȟ = max{eMT/M(1 + eMT), eMT/(1 + eMT), MeMT/
M(1 + eMT )}, then (1.1) has at least one solution.

Proof. Consider the mapping

A : PC1([0, T],Rn
) −→ PC1([0, T],Rn

)
, (3.18)

Au(t) =
∫T

0
G(t, s)h(s)ds +

m∑

i=1

H
(
t, ti
)
Ii
(
u
(
ti
))

+
m∑

i=1

G
(
t, ti
)
Ji
(
u
(
ti
))
, (3.19)

where

G(t, s) =
1

2M

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−e
M(T+t−s)

1 + eMT
+
e−M(T+t−s)

1 + e−MT
, 0 ≤ t ≤ s ≤ T,

eM(t−s)

1 + eMT
− e−M(t−s)

1 + e−MT
, 0 ≤ s < t ≤ T,

(3.20)

H(t, s) = Gt(t, s) =
1

2M

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−MeM(T+t−s)

1 + eMT
− Me−M(T+t−s)

1 + e−MT
, 0 ≤ t ≤ s ≤ T,

MeM(t−s)

1 + eMT
+
Me−M(t−s)

1 + e−MT
, 0 ≤ s < t ≤ T.

(3.21)
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By Lemma 2.4, A is a compact mapping. Consider the equation

u = Au. (3.22)

To show that A has at least one fixed point, we apply Schaefer’s theorem by showing that all
potential solutions to

u = λAu, λ ∈ (0, 1), (3.23)

are bounded a priori, with the bound being independent of λ. With this in mind, let u(t) be a
solution of (3.23). Note that u(t) is also a solution to

u′′(t) −M2u(t) = λ
[
f(t, u(t), u′(t)) −M2u(t)

]
, t /= tk, k = 1, 2, . . . , m,

u
(
t+k
)
= u
(
tk
)
+ λIk

(
u
(
tk
))
, u′(t+k

)
= u′(tk

)
+ λJk

(
u
(
tk
))
, k = 1, 2, . . . , m,

u(0) = −u(T), u′(0) = −u′(T).

(3.24)

On one hand, we see that for λ ∈ (0, 1),

λ
∥∥f(t, u(t), u′(t))

∥∥ ≤ λ
{
γ
[〈
u(t), f(t, u(t), u′(t))

〉
+ ‖u′(t)‖2] +M∗}

= γ
[〈
u(t), λf(t, u(t), u′(t))

〉
+ λ‖u′(t)‖2] + λM

= γ
[〈
u(t), u′′(t) − (1 − λ)M2u(t))

〉
+ λ
〈
u′(t), u′(t)

〉]
+ λM∗

= γ
[〈
u(t), u′′(t)〉 − (1 − λ)M2‖u(t)‖2 + λ〈u′(t), u′(t)〉] + λM∗

≤ γ
[〈
u(t), u′′〉 + 〈u′(t), u′(t)〉] +M∗

= γ
d

dt

〈
u(t), u′(t)〉 +M∗.

(3.25)

On the other hand, by the antiperiodic boundary condition we have

∫T

0

[〈u(t), u′′〉+〈u′(t), u′(t)〉]dt=〈u(T), u′(T)〉−〈u(0), u′(0)〉=〈−u(0),−u′(0)〉−〈u(0), u′(0)〉=0.
(3.26)
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It therefore follows that

∫T

0
λ
∥
∥f(t, u(t), u′(t))

∥
∥dt ≤ M∗T. (3.27)

Consequently,

‖u(t)‖ = λ‖Au(t)‖

=

∥
∥
∥
∥
∥

∫T

0
G(t, s)λ

[
f(t, u(t), u′(t))

]
dt + λ

m∑

i=1

H
(
t, ti
)
Ii
(
u
(
ti
))

+ λ
m∑

i=1

(
t, ti)Ji

(
u
(
ti
))
∥
∥
∥
∥
∥

≤ Ǧ0

∫T

0
λ
∥∥f(t, u(t), u′(t)) − pu′(t) − qu(t)

∥∥dt + λMǦ0

m∑

i=1

∥∥Ii
(
u
(
ti
))∥∥ + λǦ0

m∑

i=1

∥∥(u
(
ti
))∥∥

≤ Ǧ1

(

M∗T +
m∑

k=1

Lk +
m∑

k=1

Nk

)

+ Ǧ1

(
m∑

i=1

ζi
∥∥(u

(
ti
))∥∥ +

m∑

i=1

δi
∥∥(u

(
ti
))∥∥

)

,

(3.28)

where Ǧ0 = eMT/M(1 + eMT ), Ǧ1 = max{eMT/M(1 + eMT ), eMT/(1 + eMT )}.
We compute directly to get

sup
t∈[0,T]

‖u(t)‖ ≤ Ǧ1
(
TM∗ +

∑m
k=1Lk +

∑m
k=1Nk

)

1 − Ǧ1
(∑m

k=1δk +
∑m

k=1ζk
) . (3.29)

Differentiating both sides of (3.19), we obtain

sup
t∈[0,T]

‖u′(t)‖ ≤ Ǧ2
(
T ∗M +

∑m
k=1Lk +

∑m
k=1Nk

)

1 − Ǧ2
(∑m

k=1δk +
∑m

k=1ζk
) , (3.30)

where

Ǧ2 = max
{

eMT

1 + eMT
,
MeMT

1 + eMT

}
. (3.31)

Thus,

‖u(t)‖PC1 = max
{
Ǧ1
(
TM∗ +

∑m
k=1Lk +

∑m
k=1Nk

)

1 − Ǧ1
(∑m

k=1δk +
∑m

k=1ζk
) ,

Ǧ2
(
TM∗ +

∑m
k=1Lk +

∑m
k=1Nk

)

1 − Ǧ2
(∑m

k=1δk +
∑m

k=1ζk
)

}
:= Ř.

(3.32)

Then the proof is completed.
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Similarly, we can prove the following existence result forM = 0 in Theorem 3.2.

Theorem 3.3. Suppose that f : [0, T] × R
n × R

n and I, J : Rn → R
n are continuous. If there exist

nonnegative constants γ, δk, ζk, Lk, Nk, and M such that

‖f(t, x, y)‖ ≤ γ
[〈x, f(t, x, y)〉 + ‖y‖2] +M, (t, x, y) ∈

(
[0, T] \

m⋃

i=0

ti

)
× R

n × R
n,

∥
∥Ik(x)

∥
∥ ≤ δk‖x‖ + Lk,

∥
∥Jk(x)

∥
∥ ≤ ζk‖x‖ +Nk, ∀x ∈ R

n,

m∑

k=1

δk +
m∑

k=1

ζk <
1
G∗

0
,

(3.33)

where 〈·〉 is the Euclidean inner product, G∗
0 = max{T/4, 1/2}, then (1.1) has at least one solu-

tion.

4. Examples

In this part, we show how our main theorems work by a couple of examples.

Example 4.1. The scalar second-order impulsive equations with antiperiodic boundary value
condition

u′′ = (u(t) + u′(t))3 + 2u(t) + u′(t) + t, t ∈ [0, 1], t /= t1,

u
(
t+1
)
= u
(
t1
)
+

1
10

u
(
t1
)
+ 1, u′(t+1

)
= u′(t1

) − 1
10

u
(
t1
)
+ 2,

u(0) = −u(1), u′(0) = −u′(1),

(4.1)

where t1 ∈ (0, 1), have at least one solution.

Proof. Let T = 1 and f(t, x, y) = (x + y)3 + 2x + y + t in Theorem 3.1. For p = 1, q = 2, we have
α = 2, β = −1, and

|f(t, x, y) − y − 2x| = |x + y|3 + 1, ∀(t, x, y) ∈ [0, 1] × R
2. (4.2)

On the other hand, for (t, x, y) ∈ [0, 1] × R
2,

〈(x + y), f(t, x, y)〉 + y2= (x + y)4 + 2x2 + 3xy + 2y2 + (x + y)t

≥ (x + y)4 − |x + y| + 4|x| · |y| + 3xy

≥ (x + y)4 − |x + y|.

(4.3)
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Noting minv≥0{v4 − v3 − v} > −2, we have for γ = 1 and M = 3 that

γ
[〈(x + y), f(t, x, y)〉 + y2] +M ≥ |f(t, x, y) − y − 2x|, ∀(t, x, y) ∈ [0, 1] × R

2. (4.4)

Moreover,H = α2G0 = (4/3)(e2/(1 + e2) + e−1/(1 + e−1)) ≈ 1.53298, δ1 + ζ1 = 0.2 < 1/H. Then
the conclusion follows from Theorem 3.1.

Example 4.2. Consider antiperiodic value problem

u′′(t) = u(t) + u(t)u′(t)2 + cos t, t ∈ [0, 1], t /= t1,

u
(
t+1
)
= u
(
t1
)
+
1
4
u
(
t1
)
+ 4, u′(t+1

)
= u′(t1

) − 1
2
u
(
t1
)
,

u(0) = −u(1), u′(0) = −u′(1).

(4.5)

We claim that (4.5) has at least one solution.

Proof. Let T = 1 and f(t, x, y) = x + xy2 + cos t in Theorem 3.2. Choosing M = 1, we have for
(t, x, y) ∈ [0, 1] × R

2 that

|f(t, x, y) − x| = |x|y2 + cos t,

〈x, f(t, x, y)〉 + y2 = x2 + x2y2 + y2 + xcos t ≥ x2 + x2y2 + y2 − |x|.
(4.6)

Since minv≥0{v2 − v} > −1, we have x2y2 + y2 − |x|y2 = y2(x2 − |x| + 1) > 0. Thus, for
γ = 1 and M∗ = 2,

γ
[〈x, f(t, x, y)〉 + y2] +M∗ ≥ |f(t, x, y) − x|, ∀(t, x, y) ∈ [0, 1] × R

2. (4.7)

Moreover, Ȟ = e/(1+e), δ1+ζ1 = 3/4 < 1/Ȟ. Then the conclusion follows from Theorem 3.2.
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