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1. Introduction

Consider the Dirichlet problem

u ∈ W2,p(Ω) ∩ ◦
W

1,p
(Ω),

Lu = f, f ∈ Lp(Ω),
(1.1)

where Ω is a sufficiently regular open subset of Rn (n ≥ 3), p ∈]1,+∞[, L is the uniformly
elliptic second-order linear differential operator defined by

L = −
n∑

i,j=1

aij
∂2

∂xi∂xj
+

n∑

i=1

ai
∂

∂xi
+ a (1.2)

with coefficients aij = aji ∈ L∞(Ω), i, j = 1, . . . , n.
It is well known that if Ω is bounded, the above problem has been largely studied

by several authors under various hypotheses of discontinuity on the leading coefficients
and considering the case p = 2. In particular, some W2,2-bounds for the solutions of the
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problem (1.1) and related existence and uniqueness theorems have been obtained. Among
the other results on this subject, we quote here the classical result of [1], where the author
assumed that the aij ’s belong to W1,n(Ω). This result was later generalized in different ways,
supposing that the derivatives of the leading coefficients belong to some wider spaces. More
recently, a relevant contribution to the theory has been given in [2–5], where the coefficients
aij are assumed to be in the class VMO and p ∈]1,+∞[; observe here that VMO contains the
class W1,n(Ω).

If the setΩ is unbounded, under assumptions similar to those required in [1], problem
(1.1) has for instance been studied in [6] with p = 2, and in [7] with p ∈]1,+∞[. Instead, in
[8, 9], the leading coefficients satisfy restrictions similar to those in [2, 3].

In [10], we extended some results of [8, 9] to a weighted case. More precisely, we
denoted by ρ a weight function belonging to a suitable class and such that

inf
Ω

ρ > 0, lim
|x|→+∞

ρ(x) = +∞. (1.3)

Then we considered the problem

u ∈ W
2,p
s (Ω) ∩ ◦

W
1,p

s (Ω),

Lu = f, f ∈ L
p
s(Ω),

(1.4)

where s ∈ R, W
2,p
s (Ω),

◦
W

1,p

s (Ω), and L
p
s(Ω) are someweighted Sobolev spaces and the weight

functions are a suitable power of ρ. We obtained that the operator L has closed range and that
for the problem (1.4) a uniqueness result holds.

In this paper, we study again the problem (1.4). We state a regularity result which
allows us to obtain the solvability of the problem.

A similar weighted case was studied in [11] with the leading coefficients satisfying
hypotheses of Miranda’s type and when p = 2.

2. Weight functions and weighted spaces

Let G be any Lebesgue measurable subset of Rn and let Σ(G) be the collection of all Lebesgue
measurable subsets of G. Let F ∈ Σ(G). Denote by |F| the Lebesgue measure of F, by χF the
characteristic function of F, and byD(F) the class of restrictions to F of functions ζ ∈ C∞

◦ (Rn)
with F ∩ supp ζ ⊆ F. Moreover, if X(F) is a space of functions defined on F, we denote by
Xloc(F) the class of all functions g : F→R such that ζg ∈ X(F) for any ζ ∈ D(F). Finally,
for any x ∈ R

n and r ∈ R+, we put B(x, r) = {y ∈ R
n : |y − x| < r}, Br = B(0, r), and

F(x, r) = F ∩ B(x, r).
Let Ω be an open subset of Rn. We introduce a class of weight functions defined on Ω.

Denote by A(Ω) the set of all measurable functions ρ : Ω→R+ such that

γ−1ρ(y) ≤ ρ(x) ≤ γρ(y), ∀y ∈ Ω, ∀x ∈ Ω(y, ρ(y)), (2.1)

where γ ∈ R+ is independent of x and y.
We note that the class of all functions ρ : Ω→R+ which are Lipschitz continuous in Ω

with Lipschitz coefficient < 1 is contained inA(Ω) (see [12]).
For ρ ∈ A(Ω), we put

Sρ =
{
z ∈ ∂Ω : lim

x→z
ρ(x) = 0

}
. (2.2)
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It is known that

ρ ∈ L∞
loc(Ω), ρ−1 ∈ L∞

loc(Ω \ Sρ), (2.3)

(see [12, 13]).
We assign an unbounded open subset Ω of Rn.
From now on, let ρ1 be a function such that ρ1 ∈ A(Rn) and

inf
Ω

ρ1 > 0, lim
|x|→+∞

ρ1(x) = +∞. (2.4)

For example,

ρ1 : x ∈ R
n −→ 1 + a|x|, a ∈]0, 1[. (2.5)

We put

ρ = ρ1|Ω , (2.6)

and note that ρ−1 ∈ L∞(Ω).
For any a ∈]0, 1] and x ∈ R

n, we set

Ia(x) = Ω(x, aρ1(x)), Ea(x) = {y ∈ R
n | x ∈ B(y, aρ1(y))}, (2.7)

and note that

c′ρn1 (x) ≤ |Ea(x)| ≤ c′′ρn1 (x) ∀x ∈ R
n, (2.8)

where c′, c′′ ∈ R+ depend only on n, a, ρ (see [12]).
If v is a real function defined in Ω, we denote by v0 the zero extension of v in R

n.
We begin to prove the following.

Lemma 2.1. If v, g are two nonnegative functions in L1
loc(Ω), L1

loc(R
n), respectively, then for any

a ∈]0, 1],
∫

Ω
v(x)‖g‖L1(Ea(x))dx =

∫

Rn

g(x)‖v‖L1(Ia(x))dx, (2.9)

and for ν ∈]1,+∞[, the following also hold:
∫

Rn

g(x)‖v‖ν
L1(Ia(x))

dx ≤
(∫

Ω
v(x)‖g‖1/ν

L1(Ea(x))
dx

)ν

. (2.10)

Proof. The equality (2.9) follows by
∫

Ω
v(x)‖g‖L1(Ea(x))dx =

∫

Rn

dx

∫

Ea(x)
v0(x)g(y)dy

=
∫

Rn

dy

∫

B(y,aρ1(y))
v0(x)g(y)dx

=
∫

Rn

g(x)‖v‖L1(Ia(x))dx.

(2.11)
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Prove now the inequality (2.10). We observe that:
∫

Rn

g(x)‖v‖ν
L1(Ia(x))

dx =
∫

Rn

g(x)dx
(∫

B(x,aρ1(x))
v0(y)dy

)ν

=
∫

Rn

g(x)1/νh(x)dx
∫

B(x,aρ1(x))
v0(y)dy

=
∫

Rn

dy

∫

Ea(y)
g(x)1/νh(x)v0(y)dx

=
∫

Ω
v(y)dy

∫

Ea(y)
g(x)1/νh(x)dx,

(2.12)

where we have put

h(x) = g(x)1−1/ν
(∫

B(x,aρ1(x))
v0(y)dy

)ν−1
. (2.13)

On the other hand,

∫

Ea(y)
g(x)1/νh(x)dx ≤

(∫

Ea(y)
g(x)dx

)1/ν(∫

Ea(y)
h(x)ν/(ν−1)dx

)(ν−1)/ν

=
(∫

Ea(y)
g(x)dx

)1/ν(∫

Ea(y)
g(x)‖v‖ν

L1(Ia(x))
dx

)(ν−1)/ν
.

(2.14)

Therefore, from (2.12) and (2.14), we deduce that

∫

Rn

g(x)‖v‖ν
L1(Ia(x))

dx ≤
(∫

Rn

g(x)‖v‖ν
L1(Ia(x))

dx

)(ν−1)/ν∫

Ω
v(y)‖g‖1/ν

L1(Ea(y))
dy. (2.15)

By (2.15), it obviously follows

(∫

Rn

g(x)‖v‖ν
L1(Ia(x))

dx

)1/ν

≤
∫

Ω
v(x)‖g‖1/ν

L1(Ea(x))
dx, (2.16)

and (2.16) yields the inequality (2.10).

If k ∈ N0, 1 ≤ p < +∞ and s ∈ R, consider the space W
k,p
s (Ω) of distributions u on Ω

such that ρs∂αu ∈ Lp(Ω) for |α| ≤ k, equipped with the norm

‖u‖
W

k,p
s (Ω) =

∑

|α|≤k
‖ρs∂αu‖Lp(Ω). (2.17)

Moreover, denote by
◦
W

k,p

s (Ω) the closure of C∞
◦ (Ω) in W

k,p
s (Ω) and put W0,p

s (Ω) = L
p
s(Ω). A

more detailed account of properties of the above-defined spaces can be found, for instance,
in [14].

From Lemma 2.1 we can deduce another lemma which we will need in the proof of
our regularity result.
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Lemma 2.2. Let p ∈ [1,+∞[, s ∈ R, and a ∈]0, 1]. Then u ∈ L
p
s(Ω) if and only if u ∈ L

p

loc(Ω) and

the function x ∈ R
n → ρ

s−n/p
1 (x)‖u‖Lp(Ia(x)) belongs to Lp(Rn). In addition, there exist c1, c2 ∈ R+

such that

c1‖u‖pLp
s (Ω)

≤
∫

Rn

ρ
sp−n
1 (x)‖u‖p

Lp(Ia(x))
dx ≤ c2‖u‖pLp

s (Ω)
∀u ∈ L

p
s(Ω), (2.18)

where c1 and c2 depend only on n, p, s, a, and ρ. Moreover, if p0 ∈ [1, p[ and u ∈ L
p0
s (Ω), then the

function x ∈ R
n → ρ

s−n/p
1 (x)‖u‖Lp0 (Ia(x)) belongs to L

p(Rn) and the following estimate holds:
∫

Rn

ρ
sp−n
1 (x)‖u‖p

Lp0 (Ia(x))
dx ≤ c3‖u‖p

L
p0
s (Ω)

(2.19)

with c3 ∈ R+ dependent only on n, p, p0, s, a, and ρ.

Proof. The first part of the lemma follows from (2.9) for g = ρ
sp−n
1 and v = |u|p, if one uses

(2.1) and (2.8). The second part of the lemma follows in a similar way from the inequality
(2.10), if one puts g = ρ

sp−n
1 , v = |u|p0 , and ν = p/p0.

3. An embedding lemma

We now recall the definitions of the function spaces in which the coefficients of the operator
will be chosen. If Ω has the property

|Ω(x, r)| ≥ Arn ∀x ∈ Ω, ∀ r ∈]0, 1], (3.1)

where A is a positive constant independent of x and r, it is possible to consider the space
BMO(Ω, τ) (τ ∈ R+) of functions g ∈ L1

loc(Ω) such that

[g]BMO(Ω,τ) = sup
x∈Ω

r∈]0,τ]

∫
—

Ω(x,r)

∣∣∣∣g −
∫
—

Ω(x,r)
g

∣∣∣∣ < +∞, (3.2)

where
∫
—

Ω(x,r)
g = |Ω(x, r)|−1

∫

Ω(x,r)
g. (3.3)

If g ∈ BMO(Ω) = BMO(Ω, τA), where

τA = sup

⎧
⎪⎨

⎪⎩
τ ∈ R+ : sup

x∈Ω
r∈]0,τ]

rn

|Ω(x, r)| ≤
1
A

⎫
⎪⎬

⎪⎭
, (3.4)

we will say that g ∈ VMO(Ω) if [g]BMO(Ω,τ) → 0 for τ → 0+. A function

η[g] :]0, 1] −→ R+ (3.5)

is called a modulus of continuity of g in VMO(Ω) if

[g]BMO(Ω,τ) ≤ η[g](τ) ∀ τ ∈]0, 1], lim
τ→0+

η[g](τ) = 0. (3.6)

For t ∈ [1,+∞[ and λ ∈ [0, n[, we denote by Mt,λ(Ω) the set of all functions g in Lt
loc(Ω) such

that

‖g‖Mt,λ(Ω) = sup
r∈]0,1]
x∈Ω

r−λ/t‖g‖Lt(Ω(x,r)) < +∞ (3.7)
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endowed with the norm defined by (3.7). Then we define M̃t,λ(Ω) as the closure of L∞(Ω) in
Mt,λ(Ω) and Mt,λ

◦ (Ω) as the closure of C∞
◦ (Ω) in Mt,λ(Ω). In particular, we put Mt(Ω) =

Mt,0(Ω), M̃t(Ω) = M̃t,0(Ω), and Mt
◦(Ω) = Mt,0

◦ (Ω). In order to define the modulus of
continuity of a function g in M̃t,λ(Ω), recall first that for a function g ∈ Mt,λ(Ω) the following
characterization holds:

g ∈ M̃t,λ(Ω) ⇐⇒ lim
τ→0+

pg(τ) = 0, (3.8)

where

pg(τ) = sup
E∈Σ(Ω)

supx∈Ω|E(x,1)|≤τ

‖χEg‖Mt,λ(Ω), τ ∈ R+. (3.9)

Thus the modulus of continuity of g ∈ M̃t,λ(Ω) is a function

σ̃[g] :]0, 1] −→ R+, (3.10)

such that

pg(τ) ≤ σ̃[g](τ) ∀ τ ∈]0, 1], lim
τ→0+

σ̃[g](τ) = 0. (3.11)

A more detailed account of properties of the above defined function spaces can be found in
[6, 15, 16].

We consider the following condition:

(h0) Ω has the cone property, p ∈]1,+∞[, s ∈ R, k, h, t are numbers such that

k ∈ N, h ∈ {0, 1, . . . , k − 1}, t ≥ p, t > p if p =
n

k − h
, g ∈ Mt(Ω). (3.12)

From [17, Theorem 3.1] we have the following.

Lemma 3.1. If the assumption (h0) holds, then for any u ∈ W
k,p
s (Ω), it results that g∂hu ∈ L

p
s(Ω)

and

‖g∂hu‖Lp
s (Ω) ≤ c‖g‖Mt(Ω)‖u‖Wk,p

s (Ω) (3.13)

with c dependent only on Ω, n, k, h, p, and t.

4. A regularity result

Assume that Ω is an unbounded open subset of Rn, n ≥ 3, with the uniform C1,1-regularity
property, and let ρ be the function defined by (2.6). Moreover, let p ∈]1,+∞[ and s ∈ R.
Consider in Ω the differential operator

L = −
n∑

i,j=1

aij
∂2

∂xi∂xj
+

n∑

i=1

ai
∂

∂xi
+ a, (4.1)

with the following conditions on the coefficients:
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(h1)

aij = aji ∈ L∞(Ω) ∩ VMOloc(Ω), i, j = 1, . . . , n,

∃ν > 0 :
n∑

i,j=1

aijξiξj ≥ ν|ξ|2 a.e. in Ω ∀ ξ ∈ R
n,

(4.2)

there exist functions eij , i, j = 1, . . . , n, g and μ ∈ R+ such that

(h2)

eij = eji ∈ L∞(Ω) ∩ VMO(Ω), i, j = 1, . . . , n,
n∑

i,j=1

eijξiξj ≥ μ|ξ|2 a.e. in Ω ∀ ξ ∈ R
n,

g ∈ L∞(Ω), lim
r→+∞

n∑

i,j=1

‖eij − gaij‖L∞(Ω\Br) = 0,

(4.3)

(h3)

ai ∈ M̃t1(Ω), i = 1, . . . , n, a ∈ M̃t2(Ω), (4.4)

where

t1 > n if p ≤ n, t1 = p if p > n,

t2 >
n

2
if p ≤ n

2
, t2 = p if p >

n

2
.

(4.5)

Observe that under the assumptions (h1)–(h3), it follows that the operator L :
W

2,p
s (Ω)→L

p
s(Ω) is bounded from Lemma 3.1.

Theorem 4.1. Suppose that the assumptions (h1), (h2), and (h3) hold, and let u be a solution of the
problem

u ∈ W
2,q
loc (Ω) ∩ ◦

W
1,q

loc (Ω) ∩ L
p0
s (Ω),

Lu ∈ L
p
s(Ω),

(4.6)

where q ∈]1, p] and p0 ∈ [1, p]. Then u belongs toW2,p
s (Ω).

Proof. By [8, Lemma 4.1], we have

u ∈ W
2,p
loc (Ω) ∩ ◦

W
1,p

loc(Ω). (4.7)

We choose r, r ′ ∈ R+, with r < r ′ < 1, and a function φ ∈ C∞
◦ (Rn) such that

φ|Br = 1, suppφ ⊂ Br ′ ,

sup
Rn

|∂αφ| ≤ cα(r ′ − r)−|α| ∀α ∈ N
n
0 ,

(4.8)

where cα ∈ R+ depends only on α.
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We fix y ∈ R
n and put

ψ = ψy : x ∈ R
n −→ φ

(
x − y

ρ1(y)

)
. (4.9)

Clearly, we have

ψ|B(y,rρ1(y)) = 1, suppψ ⊂ B(y, r ′ρ1(y)),

sup
Rn

|∂αψ| ≤ cαρ
−|α|
1 (y)(r ′ − r)−|α| ∀α ∈ N

n
0 .

(4.10)

Since ψu ∈ W2,p(Ω) ∩ ◦
W

1,p
(Ω), from [8, Theorem 3.1] it follows that

‖ψu‖W2,p(Ω) ≤ c1(‖L(ψu)‖Lp(Ω) + ‖ψu‖Lp(Ω)) (4.11)

with c1 depending on n, p, Ω, ν, μ, t1, t2, ‖aij‖L∞(Ω), ‖eij‖L∞(Ω), ‖g‖L∞(Ω), η[ζ2r0aij], η[eij],
σ̃[ai], σ̃[a], where r0 ∈ R+ depends on n, p, Ω, μ, ‖eij‖L∞(Ω), η[eij] and ζ2r0 is a function in
C∞

◦ (Rn) such that

0 ≤ ζ2r0 ≤ 1, ζ2r0|B2r0
= 1, supp ζ2r0 ⊂ B4r0 . (4.12)

Since

L(ψu) = −
n∑

i,j=1

aij(ψu)xixj
+

n∑

i=1

ai(ψu)xi
+ aψu

= ψLu − 2
n∑

i,j=1

aij(ψxiu)xj
+

n∑

i,j=1

aijψxixj u +
n∑

i=1

aiψxiu

(4.13)

from (4.11) and (4.13), we have

‖ψu‖W2,p(Ω) ≤ c2

(
‖ψLu‖Lp(Ω) +

n∑

i,j=1

‖(ψxiu)xj
‖Lp(Ω)

+
n∑

i,j=1

‖ψxixj u‖Lp(Ω) +
n∑

i=1

‖aiψxiu‖Lp(Ω) + ‖ψu‖Lp(Ω)

) (4.14)

with c2 depending on the same parameters of c1.
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From Lemma 3.1 with s = 0, we have that

‖aiψxiu‖Lp(Ω) ≤ c3‖ai‖Mt1 (Ω)(‖ψxiu‖Lp(Ω) + ‖(ψxiu)x‖Lp(Ω)) (4.15)

with c3 dependent on Ω, n, p, and t1.
Using [18, Corollary 4.5], we can obtain the following interpolation estimates:

‖ψxiu‖Lp(Ω) + ‖(ψxiu)xj
‖Lp(Ω) ≤ c4(‖(ψxiu)xx‖aLp(Ω)‖ψxiu‖1−aLp0 (Ω) + ‖ψxiu‖Lp0 (Ω)),

‖ψxixj u‖Lp(Ω) ≤ c5(‖(ψxixj u)xx‖aLp(Ω)‖ψxixj u‖1−aLp0 (Ω) + ‖ψxixj u‖Lp0 (Ω)),

‖ψu‖Lp(Ω) ≤ c6(‖(ψu)xx‖aLp(Ω)‖ψu‖1−aLp0 (Ω) + ‖ψu‖Lp0 (Ω)),

(4.16)

where a(∈]0, 1[) depends on n, p, p0 and the constants c4, c5, and c6 depend on Ω, n, p, p0.
Thus by (4.14)–(4.16), with easy computations, we deduce the following bound:

‖u‖W2,p(Ir(y)) ≤ ‖ψu‖W2,p(Ω)

≤ c7(r ′ − r)−2(1+a)(‖Lu‖Lp(Ir′ (y)) + ‖u‖a
W2,p(Ir′ (y))

‖u‖1−aLp0 (Ir′ (y))
+ ‖u‖Lp0 (Ir′ (y))),

(4.17)

where c7 ∈ R+ depends on n, p, p0, Ω, ρ, ν, μ, t1, t2, ‖aij‖L∞(Ω), ‖eij‖L∞(Ω), ‖g‖L∞(Ω),
η[ζ2r0aij], η[eij], ‖ai‖Mt1 (Ω), σ̃[ai], σ̃[a].

By a well-known lemma of monotonicity of Miranda (see [19, Lemma 3.1]), it follows
from (4.17) that

‖u‖W2,p(I1/2(y)) ≤ c8
(
‖Lu‖Lp(I1(y)) + ‖u‖Lp0 (I1(y)) + ‖u‖1−aLp0 (I1(y))

‖u‖a
W2,p(I1/2(y))

)
, (4.18)

and then, using Young’s inequality, we deduce from (4.18) that

‖u‖W2,p(I1/2(y)) ≤ c9
(‖Lu‖Lp(I1(y)) + ‖u‖Lp0 (I1(y))

)
(4.19)

with c8, c9 ∈ R+ dependent on the same parameters of c7.
From (4.19) it follows that

∫

Rn

ρ
ps−n
1 (y)‖u‖p

W2,p(I1/2(y))
dy ≤ c10

(∫

Rn

ρ
ps−n
1 (y)‖Lu‖p

Lp(I1(y))
dy +

∫

Rn

ρ
ps−n
1 (y)‖u‖p

Lp0 (I1(y))
dy

)
,

(4.20)

where c10 ∈ R+ depends on the same parameters of c9.
By (4.20) and by Lemma 2.2, we have that

‖u‖
W

2,p
s (Ω) ≤ c11

(‖Lu‖Lp
s (Ω) + ‖u‖Lp0

s (Ω)
)

(4.21)

with c11 ∈ R+ dependent on the same parameters of c10 and on s.
Therefore, from (4.21), we have the result.
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5. Existence and uniqueness results

In this section, we will prove our existence and uniqueness theorem. To this aim, we need
two preliminary lemmas.

Observe that it is possible to find a function σ ∈ A(Ω) ∩ C∞(Ω) ∩ C0,1(Ω) which is
equivalent to ρ and such that

|∂ασ(x)| ≤ cασ
1−|α|(x) ∀x ∈ Ω, ∀α ∈ N

n
o, (5.1)

where cα is independent of x (see [12]).

Lemma 5.1. The Dirichlet problem

u ∈ W2,2
s (Ω) ∩ ◦

W
1,2

s (Ω),

−Δu + bu = f, f ∈ L2
s(Ω),

(5.2)

where

b = 1 +

∣∣∣∣∣ − s(s + 1)
n∑

i=1

σ2
xi

σ2
+ s

n∑

i=1

σxixi

σ

∣∣∣∣∣ (5.3)

is uniquely solvable. Moreover, if f ∈ C∞
◦ (Ω), then the solution u belongs to L

q
s(Ω) for all q in

[1,+∞].

Proof. Note that u is a solution of problem (5.2) if and only if w = σsu is a solution of the
problem

w ∈ W2,2(Ω) ∩ ◦
W

1,2
(Ω),

−Δ(σ−sw) + bσ−sw = f, f ∈ L2
s(Ω).

(5.4)

But for any i ∈ {1, . . . , n}
∂2

∂x2
i

(σ−sw) = σ−swxixi − 2sσ−s−1σxiwxi + s(s + 1)σ−s−2σ2
xi
w − sσ−s−1σxixiw, (5.5)

then (5.4) is equivalent to the problem

w ∈ W2,2(Ω) ∩ ◦
W

1,2
(Ω),

−Δw +
n∑

i=1

αiwxi + αw = g, g ∈ L2(Ω),
(5.6)

where we have put

αi = 2s
σxi

σ
, i = 1, . . . , n, α = b − s(s + 1)

n∑

i=1

σ2
xi

σ2
+ s

n∑

i=1

σxixi

σ
, g = σsf. (5.7)

Using [7, Theorem 5.2], [6, Equation (1.6)], and (5.1), we obtain that (5.6) is uniquely solvable
and then problem (5.2) is uniquely solvable too.

Moreover, if f ∈ C∞
◦ (Ω), then also g ∈ C∞

◦ (Ω). Therefore, using the theorem in [20],
we have that the solution w of (5.6) belongs to Lq(Ω) for all q ∈ [1,+∞], and so the solution
u of (5.2) lies in L

q
s(Ω) for all q ∈ [1,+∞].
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Lemma 5.2. The Dirichlet problem

u ∈ W
2,p
s (Ω) ∩ ◦

W
1,p

s (Ω),

−Δu + bu = f, f ∈ L
p
s(Ω),

(5.8)

is uniquely solvable, where b is defined by (5.3).

Proof. Let f be a function in C∞
◦ (Ω). Then, by Lemma 5.1, there exists a unique u ∈ W2,2

s (Ω) ∩
◦
W

1,2

s (Ω) ∩ L
q
s(Ω) (for all q ∈ [1,+∞]) such that −Δu + bu = f .

Firstly, suppose that p ≥ 2. It follows from Theorem 4.1 that u belongs to W
2,p
s (Ω).

Moreover, by [10, Lemma 2.2], u lies in
◦
W

1,p

s (Ω).

Suppose now p < 2. Then u ∈ W
2,p
loc (Ω) ∩ ◦

W
1,p

loc(Ω) ∩ L
q
s(Ω) (for all q ∈ [1,+∞]) and

then, using again Theorem 4.1, u belongs toW
2,p
s (Ω). Moreover, by [10, Lemma 2.2], u lies in

◦
W

1,p

s (Ω).

Therefore, in both cases, u ∈ W
2,p
s (Ω) ∩ ◦

W
1,p

s (Ω) and it is a solution of the equation
−Δu+bu = f , so that C∞

◦ (Ω) ⊆ R(−Δ+b). Since C∞
◦ (Ω) is dense in L

p
s(Ω) (see [14, Proposition

1.1]) and R(−Δ+b) is a closed subspace of Lp
s(Ω) by [10, Theorem 4.1], we obtain that R(−Δ+

b) = L
p
s(Ω). The uniqueness of the solution follows from [10, Theorem 5.2].

Finally, adding the following assumption on the coefficients of L:
(h4)

(eij)xh
∈ Mt,n−t

◦ (Ω), with t ∈]2, n], i, j, h = 1, . . . , n,

ai ∈ Mt1◦ (Ω), i = 1, . . . , n,

a = a′ + a′′, a′ ∈ Mt2◦ (Ω), a′′ ∈ L∞(Ω), a′′
0 = ess inf

Ω
a′′ > 0,

g ∈ Lip(Ω), g0 = ess inf
Ω

g > 0,

(5.9)

we are now in position to state the following uniqueness and existence result.

Theorem 5.3. Suppose that conditions (h1)–(h4) hold. In addition, assume that a ≥ a0 > 0 a.e. in Ω.
Then the problem

u ∈ W
2,p
s (Ω) ∩ ◦

W
1,p

s (Ω),

Lu = f, f ∈ L
p
s(Ω),

(5.10)

is uniquely solvable.

Proof. For each τ ∈ [0, 1], put

Lτ = τ(gL) + (1 − τ)(−Δ + b). (5.11)

The function

τ ∈ [0, 1] �−→ Lτ ∈ B(W2,p
s (Ω) ∩ ◦

W
1,p

s (Ω), Lp
s(Ω)) (5.12)
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is clearly continuous; moreover, it is easy to show that the coefficients of each operator Lτ

satisfy the hypotheses of [10, Theorem 5.2] (see also [16, Lemma 3.2]), and hence N(Lτ) =
{0}. On the other hand, it follows from [10, Theorem 4.1] thatR(Lτ) is closed for any τ ∈ [0, 1],
so that [9, Lemma 4.1] can be used to obtain the existence of C0 ∈ R+ such that

‖u‖
W

2,p
s (Ω) ≤ C0‖Lτu‖Lp

s (Ω) ∀u ∈ W
2,p
s (Ω) ∩ ◦

W
1,p

s (Ω), ∀ τ ∈ [0, 1]. (5.13)

By Lemma 5.2, the problem

u ∈ W
2,p
s (Ω) ∩ ◦

W
1,p

s (Ω),

−Δu + bu = h, h ∈ L
p
s(Ω),

(5.14)

is uniquely solvable.
Therefore, this latter result and estimate (5.13) allow to use the method of continuity

along a parameter in order to prove that the problem

u ∈ W
2,p
s (Ω) ∩ ◦

W
1,p

s (Ω),

(gL)u = gf, f ∈ L
p
s(Ω)

(5.15)

is likewise uniquely solvable. The proof is complete.
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[20] P.-L. Lions, “Remarques sur les équations linéaires elliptiques du second ordre sous forme divergence
dans les domaines non bornés,” Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze
Fisiche, Matematiche e Naturali, vol. 78, no. 5, pp. 205–212, 1985.


	1. Introduction
	2. Weight functions and weighted spaces
	3. An embedding lemma
	4. A regularity result
	5. Existence and uniqueness results
	References

