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1. Introduction

Nonlinear ordinary differential equations (ODEs) described a majority of engineering
problems. When boundary conditions are imposed, the resulting problems are referred to
as boundary value problems (BVPs). Naturally, the solutions of BVPs have to satisfy the
boundary conditions, but in many cases this may be a difficult task when one is concerned
with the numerical integrations of multipoint BVPs. There are many computational methods
that have been developed for solving two-point BVPs; see, for example, Kubicek and Hlavacek
[1], Cash [2, 3], Cash and Wright [4], Keller [5], Ascher et al. [6], Deeba et al. [7], Garg [8], Ha
[9], Ha and Lee [10], and Cuomo and Marasco [11]. However, for the three-point BVPs only a
few computational methods have been reported [12, 13].

In this paper, we propose a new method for the numerical integration of the following
second-order BVP:

ẍ = f(t, x, ẋ), t0 < t < t1, (1.1)
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H1
(
x(t0), ẋ(t0), x(ξ), ẋ(ξ), x(t1), ẋ(t1)

)
= 0, (1.2)

H2
(
x(t0), ẋ(t0), x(ξ), ẋ(ξ), x(t1), ẋ(t1)

)
= 0, (1.3)

where x(t0), ẋ(t0), x(ξ), ẋ(ξ), x(t1), and ẋ(t1) are, respectively, the values of x and ẋ at three
different temporal points t0 < ξ < t1. Here, [t0, t1] is a time interval of our problem. However, in
many physical applications t may represent a spatial coordinate. Since the boundary conditions
are specified at three distinct points, this problem is called a three-point boundary value
problem, which is one sort of nonlocal boundary value problems. Because there are only
two equations (1.2) and (1.3), we need to derive other four extra equations to solve the six
unknowns of x(t0), ẋ(t0), x(ξ), ẋ(ξ), x(t1), and ẋ(t1).

For initial value problems (IVPs) the time-stepping techniques are well developed,
which require the initial conditions of both x and y = ẋ for the second-order ODEs. If they
are available, then we can numerically integrate the following IVP step-by-step in a forward
direction from t = t0 to t = t1:

ẋ = y, (1.4)

ẏ = f(t, x, y), (1.5)

x(t0) = α, (1.6)

y(t0) = A. (1.7)

The shooting method involves a choice of the missing initial conditions in (1.6) and (1.7), which
together with the numerical solutions at the midpoint t = ξ and at the terminal point t = t1 must
satisfy the constraints in (1.2) and (1.3).

Basically, the shooting method is to assume some unknown initial conditions and to
convert the BVP to an IVP. Solve the IVP and compare the solution at the boundary to
the given boundary conditions. In general, the solution will not immediately satisfy the
boundary conditions, and it requires many iterations to adjust the initial guess through some
techniques. This iterative approach is called a shooting method. How to choose suitable initial
conditions may be difficult when the guesses are carried out in an indefinite region and in a
multidimensional space. The shooting method is a trial-and-error method and is often sensitive
to initial guess. All that make the computation by the conventional shooting method expensive
and ineffective.

Multipoint BVP has attracted much attention from researchers, due to its great challenge
in the proofs of existence, nonuniqueness and positive solutions [14–19]. Gupta [20, 21] first
studied the solvability of three-point BVPs of second-order ODEs. The shooting technique was
used by Kwong [22] to study a certain three-point BVP of second-order ODE with a condition
of x(0) = 0. Quasilinearization method is also used by Ahmad et al. [23] to obtain a monotone
sequence converging quadratically to a solution of three-point BVP of second-order ODE.

Developing here is a new two-stage Lie-group shooting method (TSLGSM) for the three-
point BVP governed by (1.1)–(1.3). Our approach of the above problem is stemmed from the
group preserving scheme (GPS) developed previously by Liu [24] for initial value problems
of ODEs. Recently, Liu [25–27] has extended the GPS technique to solve the two-point BVPs,
and numerical results reveal that the Lie group method is a rather promising technique to
effectively calculate the two-point BVPs. In the construction of Lie group method for the
calculations of BVPs, Liu [25] has introduced the idea of one-step GPS by utilizing the closure
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property of Lie group, and hence, the new shooting method has been named the Lie-group
shooting method (LGSM). Chang et al. [28] have employed the LGSM to solve a backward heat
conduction problem with a high performance. Liu [29, 30] has employed the LGSM technique
to accurately solve the inverse heat conduction problems of identifying nonhomogeneous heat
conductivity functions and time-dependent heat conductivity functions. More interestingly, as
shown by Liu [31], the Lie-group method is also useful in the inverse Sturm-Liouville problem.

The idea behind the one-step Lie-group transformation is rather promising to provide
efficient numerical methods in many issues including the inverse problems and boundary
value problems. The one-step GPS has been applied to the solutions of BVPs by Liu [25] but
is restricted to simpler two-point boundary conditions. The present approach can be applied
to the second-order three-point BVPs in a general setting, of which we can search the missing
initial conditions through an iterative solution to find a suitable r in a finite range of r ∈ (0, 1).

This paper is arranged as follows. In Section 2, we give a brief sketch of the group
preserving scheme for ODEs. In Section 3, we explain the mathematical basis of the
construction of a one-step GPS by using the closure property of Lie group, and combine it with
the midpoint rule to construct a single-parameter Lie group element in terms of a weighting
factor r, and more importantly a universal one-step Lie-group element. In this section, an
important Lie-group shooting equation is derived. In Section 4, we derive a new two-stage
Lie-group shooting method to solve the three-point BVPs. In Section 5, we use numerical
examples to demonstrate the efficiency of the new method. Finally, we draw some conclusions
in Section 6.

2. Preliminaries

Although we do not know previously the symmetry group of nonlinear differential equations
system, Liu [24] has embedded it into an augmented system and found an internal symmetry
of the new system. That is, for an ODEs system with dimensions n,

u̇ = f(t,u), u ∈ R
n, t > t0, (2.1)

we can deal with the following n + 1-dimensional augmented system:

Ẋ = AX, (2.2)

where

X :=

[
u

‖u‖

]

(2.3)

is an augmented state vector, and

A :=

⎡

⎢⎢⎢
⎣

0n×n
f(t,u)
‖u‖

f{T}(t,u)
‖u‖ 0

⎤

⎥⎥⎥
⎦

(2.4)

is an element of the Lie algebra so(n, 1) satisfying

A{T}g + gA = 0. (2.5)

Here,

g =

[
In 0n×1

01×n −1

]

(2.6)
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is a Minkowski metric. In is the identity matrix of order n, and the superscript {T} stands for
the transpose.

It is obvious that the equation in the first row in (2.2) is the same as the original (2.1), but
the inclusion of the second row in (2.2) gives us a Minkowskian structure of the augmented
system for X satisfying the cone condition:

X{T}gX = u·u − ‖u‖2 = 0. (2.7)

The cone condition is a natural constraint of the new system (2.2).
Accordingly, Liu [24] has developed a group-preserving scheme:

X�+1 = G(�)X�, (2.8)

where X� denotes the numerical value of X at the discrete time t� , and G(�) ∈ SOo(n, 1) satisfies

G{T}gG = g, (2.9)

detG = 1, (2.10)

G0
0 > 0, (2.11)

where G0
0 is the 00th component of G. Equation (2.8) guarantees that each X� is located on the

cone satisfying the cone condition (2.7), if G is a proper orthochronous Lorentz group.
An exponential mapping of A(�) is given by

exp
[
ΔtA(�)

]
=

⎡

⎢⎢
⎢
⎣

In +
(a� − 1)
‖f�‖2

f�f
{T}
�

b�f�
‖f�‖

b�f
{T}
�

‖f�‖
a�

⎤

⎥⎥
⎥
⎦
, (2.12)

where

a� := {cosh}
(
Δt‖f�‖
‖u�‖

)
, (2.13)

b� := sinh
(
Δt‖f�‖
‖u�‖

)
. (2.14)

For saving notation, we let f� = f(u�, t�). Substituting the above exp[ΔtA(�)] for G(�) into (2.8)
and taking its first row, we obtain

u�+1 = u� + η�f� = u� +
(a� − 1)f� ·u� + b�‖u�‖‖f�‖

‖f�‖2
f�. (2.15)

From f� ·u� ≥ −‖f�‖‖u�‖, we can prove that

η� ≥
‖u�‖
‖f�‖

[
1 − exp

(
− Δt‖f�‖

‖u�‖

)]
> 0, ∀Δt > 0, (2.16)

and that (2.15) is a group properties preserving scheme for all Δt > 0.
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Recently, Ying and Candés [32] have introduced a phase flow method for nonlinear
ordinary differential equations in (2.1) by setting

du
ds

= f(t,u),
dt

ds
= 1. (2.17)

Therefore, the original n-dimensional ODEs system is embedded into an n + 1-dimensional
system in the space of (u, t). This technique is not at all a new one, which was already appeared
in many textbooks of ODEs to treat the nonautonomous ODEs system as an autonomous one.
However, Ying and Candés [32] have used this technique to construct a novel and accurate
approach for the phase flow maps of certain ODEs. The above augmented system is drastically
different from the one in (2.2). The main features of our formulation in (2.2) are three folds:
(1) a geometric cone structure, (2) a Lie-algebra structure, and then (3) a Lie-group structure
of SOo(n, 1). Even the phase flow method may have a Lie-group structure, but it is hard to find
this Lie-group mapping; more precisely, finding this Lie-group transformation of phase flow is
equivalent to finding the mapping on the solution curves of the original nonlinear ODEs.

3. Two Lie-group elements

Applying scheme (2.15) to the ODEs in (2.1) with a specified initial condition u(t0) = ut0, we
can compute the solution u(t) by the GPS. Assuming that the total time span t1 − t0 is divided
by K steps, that is, the time-step size used in the GPS is Δt = (t1 − t0)/K. Starting from an
initial augmented condition Xt0 = X(t0) = (u{T}

t0
, ‖ut0‖)

{T} and applying (2.8) step-by-step, we
can obtain the value X(t1) = (u{T}(t1), ‖u(t1)‖){T} at a desired time t = t1 by

Xt1 = GK(Δt) · · ·G1(Δt)Xt0 . (3.1)

Let us recall that each Gi, i = 1, . . . , K is an element of the Lie group SOo(n, 1), and by
the closure property of Lie group, GK · · ·G1 is also a Lie group. To prove this closure property,
let us consider two elements G1,G2 ∈ SOo(n, 1), that is,

G{T}
1 gG1 = g, G{T}

2 gG2 = g. (3.2)

Then, by using the above two equations we have

(G2G1)
{T}gG2G1 = G{T}

1 G{T}
2 gG2G1 = G{T}

1 gG1 = g. (3.3)

It means that G2G1 ∈ SOo(n, 1) if G1,G2 ∈ SOo(n, 1).
According to this argument, we can prove that GK · · ·G1 ∈ SOo(n, 1), because of

GK, . . . ,G1 ∈ SOo(n, 1). Therefore in SOo(n, 1), there exists an element denoted by G which
is identical to GK · · ·G1. Hence, from (3.1) we have

Xt1 = GXt0 . (3.4)

This is a one-step Lie-group transformation from Xt0 to Xt1 . However, it is worthwhile to point
out that other numerical methods cannot share this property, since they are not of the Lie group
schemes.

The exact G is hardly to find. However, we can approximate the exact G by a numerical
one through some numerical methods developed below.
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3.1. A Lie-group element G(r)

In above we have explored the concept of the one-step G. In order to increase the accuracy of
our shooting method to search some unknown initial conditions of the three-point BVPs, we
can calculate G by a midpoint rule:

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

In +
(a − 1)

‖f̂‖2
f̂f̂

{T} bf̂

‖f̂‖

bf̂
{T}

‖f̂‖
a

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, (3.5)

where

û = rut0 + (1 − r)ut1 , (3.6)

f̂ = f(t̂, û), (3.7)

a = {cosh}
(
(t1 − t0)‖f̂‖

‖û‖

)
, (3.8)

b = sinh
(
(t1 − t0)‖f̂‖

‖û‖

)
. (3.9)

That is, we use the initial ut0 and the final ut1 through a suitable weighting factor r to calculate
G, where 0 < r < 1 is a parameter to be determined, and t̂ = rt0 + (1 − r)t1. The above method
results in a Lie group element G(r) if t0 and t1 are fixed values.

3.2. A universal Lie-group element G(ut0 ,ut1)

Let us define a new vector

F :=
f̂

‖û‖ , (3.10)

and then (3.5), (3.8), and (3.9) can also be expressed as

G =

⎡

⎢⎢
⎢
⎣

In +
a − 1
‖F‖2

FF{T} bF
‖F‖

bF{T}

‖F‖ a

⎤

⎥⎥
⎥
⎦
, (3.11)

a = {cosh}
[
(t1 − t0)‖F‖

]
, (3.12)

b = sinh
[
(t1 − t0)‖F‖

]
. (3.13)

From (3.4) and (3.11), it follows that

ut1 = ut0 + ηF, (3.14)

‖ut1‖ = a‖ut0‖ + b
F·ut0

‖F‖ , (3.15)
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where

η :=
(a − 1)F·ut0 + b‖ut0‖‖F‖

‖F‖2
. (3.16)

Equations (3.14) and (3.15) constitute n+1 equations, which are both required in the following
calculations of three-point BVPs.

From (3.14), we have

F =
1
η
(ut1 − ut0). (3.17)

Substituting it for F into (3.15), we obtain

‖ut1‖
‖ut0‖

= a + b
(ut1 − ut0)·ut0

‖ut1 − ut0‖‖ut0‖
, (3.18)

where

a = {cosh}
(
(t1 − t0)‖ut1 − ut0‖

j

)
, (3.19)

b = sinh
(
(t1 − t0)‖ut1 − ut0‖

η

)
(3.20)

are obtained by inserting (3.17) for F into (3.12) and (3.13).
Let

cos θ :=
(ut1 − ut0)·ut0

‖ut1 − ut0‖‖ut0‖
, (3.21)

S := (t1 − t0)‖ut1 − ut0‖, (3.22)

and from (3.18)–(3.20) it follows that

‖ut1‖
‖ut0‖

= {cosh}
(
S

η

)
+ cos θ sinh

(
S

η

)
. (3.23)

By defining

Z := exp
(
S

η

)
, (3.24)

from (3.23) we obtain a quadratic equation for Z:

(1 + cos θ)Z2 − 2‖ut1‖
‖ut0‖

Z + 1 − cos θ = 0. (3.25)

On the other hand, by inserting (3.17) for F into (3.16) we obtain

‖ut1 − ut0‖2 = (a − 1)(ut1 − ut0)·ut0 + b‖ut0‖‖ut1 − ut0‖. (3.26)
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Dividing both sides by ‖ut0‖‖ut1 − ut0‖ and using (3.19)–(3.20) and (3.24) we obtain another
quadratic equation for Z:

(1 + cos θ)Z2 − 2
(

cos θ +
‖ut1 − ut0‖

‖ut0‖

)
Z + cos θ − 1 = 0. (3.27)

From (3.25) and (3.27), the solution of Z is found to be

Z =
(cos θ − 1)‖ut0‖

cos θ‖ut0‖ + ‖ut1 − ut0‖ − ‖ut1‖
. (3.28)

Then from (3.24), we obtain

η =
(t1 − t0)‖ut1 − ut0‖

lnZ
. (3.29)

Through the above discussions and from (3.10) and (3.14), we arrive at an important
result.

Theorem 3.1. For the ODEs in (2.1), between any two points ut0 and ut1 , there exists a Lie-group
shooting equation, which is given by

ut1 = ut0 +
η

‖û‖ f̂, (3.30)

where û and f̂ are defined by (3.6) and (3.7), and η is defined by (3.29).
Because η is uniquely determined by ut0 and ut1 as can be seen from (3.28) and (3.29), the above

Lie-group shooting equation in terms of t0, t1, r and the vector field f can be used to solve the three-
point BVPs. On the other hand, the Lie-group element defined by (3.11) is a universal one, because it is
independent on the ODEs in (2.1).

3.3. A simple demonstration of LGSM

The majority of the Lie-group shooting method (LGSM) is coined into a main algebraic
equation (3.30). For its application to the second-order two-point BVPs, we refer the reader
going to the details in [25]. This equation is the first time that a universal algebraic equation to
connect the vector field f and boundary values ut0 and ut1 is derived. In the past open literature,
there appeared no such a similar algebraic equation.

In order to explore how the present LGSM work, let us consider a simple two-point
boundary value problem investigated by Liu [25]:

u′′ =
3
2
u2, (3.31)

u(0) = 4, u(1) = 1. (3.32)

ut0 and ut1 are, respectively, given by

ut0 =

[
4

u′(t0)

]

, ut1 =

[
1

u′(t1)

]

, (3.33)
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The orbit of (F1, F2)
The orbit of (E1, E2) with r = 0.6
With r = 0.8

Figure 1: A simple example to demonstrate the orbits of two Lie-groups used in this paper for a two-point
boundary value problem.

where t0 = 0 and t1 = 1, but u′(t0) and u′(t1) are two unknown values. Now, we can identify
G(r) = G(ut0 ,ut1) for some values of r, u′(t0), and u′(t1). In view of (3.5) and (3.11), it suffices
to identify F = f̂/‖û‖ for some values of r, u′(t0), and u′(t1). Because there are many parameters
in the above equation, we fix u′(t0) = −8, r = 0.8, and r = 0.6 for f̂/‖û‖, whose two components
are denoted by E1 and E2 in Figure 1 for simple notations. Now, we let u′(t1) run from −10 to
10, and the calculated orbit of F = (F1, F2) is plotted in Figure 1 by the dashed-line, while
the orbits of (E1, E2) are plotted in Figure 1 by a thick line for r = 0.8 and a thin line for
r = 0.6. At the intersection points, we have G(r) = G(ut0 ,ut1); however, we should stress
that the representation of G(r) by (3.5) is obtained by an approximation, even G(ut0 ,ut1) has
an exact form. Therefore, the above equality of G(r) and G(ut0 ,ut1) should be understood as
G(r)∼G(ut0 ,ut1), and we need to solve it to find some missing initial conditions.

4. Algebraic equations to solve six unknowns

The three-point BVPs considered here give information at an initial time t = t0, at a middle
time t = ξ, and at a final time t = t1. However, the time-stepping scheme of GPS developed
in Section 2 requires a complete information at the starting time t = t0. Some effort is then
required to reconcile the time-stepping scheme to the three-point BVPs presented here.

Let y = dx/dt. We obtain

ẋ = y, (4.1)

ẏ = f(t, x, y), (4.2)

x(t0) = α, x(ξ) = β, x(t1) = γ, (4.3)

y(t0) = A, y(ξ) = B, y(t1) = C, (4.4)

where α, β, γ , A, B, and C are six unknown constants.
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Let

u :=

[
x

y

]

, f :=

[
y

f(t, x, y)

]

. (4.5)

Applying Theorem 3.1 to (4.1) and (4.2) in the interval of t0 ≤ t ≤ ξ and using the first two
columns in (4.3) and (4.4), we obtain

β = α +
η1

ρ1

[
rA + (1 − r)B

]
, (4.6)

B = A +
η1

ρ1
f̂1, (4.7)

where

f̂1 := f(rt0 + (1 − r)ξ, rα + (1 − r)β, rA + (1 − r)B), (4.8)

ρ1 :=
√
[rα + (1 − r)β]2 + [rA + (1 − r)B]2, (4.9)

η1 =
(ξ − t0)

√
(β − α)2 + (B −A)2

lnZ1
, (4.10)

Z1 =
(cos θ1 − 1)

√
α2 +A2

cos θ1
√
α2 +A2 +

√
(β − α)2 + (B −A)2 −

√
β2 + B2

, (4.11)

cos θ1 =
α(β − α) +A(B −A)

√
(β − α)2 + (B −A)2√α2 +A2

. (4.12)

Similarly, applying Theorem 3.1 to (4.1) and (4.2) in the interval of ξ ≤ t ≤ t1 and using
the last two columns in (4.3) and (4.4), we obtain

γ = β +
η2

ρ2
[rB + (1 − r)C], (4.13)

C = B +
η2

ρ2
f̂2, (4.14)

where

f̂2 := f(rξ + (1 − r)t1, rβ + (1 − r)γ, rB + (1 − r)C), (4.15)

ρ2 :=
√
[rβ + (1 − r)γ]2 + [rB + (1 − r)C]2, (4.16)

η2 =
(t1 − ξ)

√
(γ − β)2 + (C − B)2

lnZ2
, (4.17)

Z2 =
(cos θ2 − 1)

√
β2 + B2

cos θ2

√
β2 + B2 +

√
(γ − β)2 + (C − B)2 −

√
γ2 + C2

, (4.18)

cos θ2 =
β(γ − β) + B(C − B)

√
(γ − β)2 + (C − B)2

√
β2 + B2

. (4.19)
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At the same time, (1.2) and (1.3) can be written as

H1(α,A, β, B, γ, C) = 0, (4.20)

H2(α,A, β, B, γ, C) = 0. (4.21)

Therefore, we have six equations (4.6), (4.7), (4.13), (4.14), (4.20), and (4.21) to solve six
unknowns α, β, γ , A, B, and C.

For a specified r and a given vector field f , (4.6), (4.7), (4.13), (4.14), (4.20), and (4.21)
can be used to generate a new set of α, β, γ , A, B, and C, by starting from an initial guess of
these values. We repeat the above process until (α, β, γ,A, B, C) converge according to a given
stopping criterion ε. If α and A are available, we can return to (1.4)–(1.7) and integrate them
by a forward integration scheme as the GPS derived in Section 2, or other available numerical
integrators, like as the fourth-order Runge-Kutta method (RK4).

A suitable r can be determined as follows. For the obtained α and A, we can integrate
(1.4) and (1.5) to t = ξ to obtain β and B, and then to t = t1 to obtain γ and C, and then we pick
up the best r such that the following result holds:

min
r∈(0,1)

|H1(α,A, β, B, γ, C)| + |H2(α,A, β, B, γ, C)|. (4.22)

5. Numerical examples

In order to assess the performance of the newly developed method, let us investigate the
following examples. We first treat two linear cases but with different boundary conditions at
the last two points of time. Then, we consider nonlinear cases, which are subjecting to complex
boundary conditions and may have multiple solutions.

5.1. Example 1

Let us consider the following three-point BVP [33]:

ẍ = −2, x(0) = 0, x(1) = αx(ξ). (5.1)

The exact solution is

x(t) =
1 − αξ2

1 − αξ
t − t2. (5.2)

We fix α = 3 and ξ = 0.5, and take [0.1, 0.5] to be the range of r for picking up the best r
as shown in Figure 2(a) at the minimal point. In Figure 2(b), we compare the numerical result
with exact solution. It can be seen that the numerical error of x is in the order of 10−5 as shown
in Figure 2(c).

5.2. Example 2

For the following three-point BVP [34]:

ẍ = −cos t, x(0) = 0, 3x(1/3) + 2ẋ(1) = 0, (5.3)
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Figure 2: For example 1: (a) showing the error of mismatching, (b) comparing numerical and exact
solutions, and (c) displaying the error.

the exact solution is

x(t) =
2
3
t sin 1 − t cos

1
3
+ t + cos t − 1. (5.4)

We first take (0, 1) to be the range of r, where the profile of mismatching the target is
plotted in Figure 3(a). Then, we use a finer range with r ∈ [0.81225, 0.81228] to search our
numerical solution. Under this condition, we find that the initial slopes A are, respectively,
0.61602 in exact and 0.61611 in numerical, showing that the present TSLGSM can provide
very accurate estimation of unknown initial condition of slope. In Figure 3(b), we compare
the numerical result with exact solution, where the numerical error of x is in the order of 10−5

as can be seen from Figure 3(c).
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Figure 3: For example 2: (a) showing the error of mismatching, (b) comparing numerical and exact
solutions, and (c) displaying the error.

5.3. Example 3

For the following nonlinear three-point BVP:

ẍ = −2.25x − (x − 1.5 sin t)3 + 2 sin t, (5.5)

x(0) = 0, x(1) =
1.59941 sin 1 − 0.00004 sin 3

1.59941 sin 0.5 − 0.00004 sin 1.5
x(0.5), (5.6)

the exact solutions are

x(t) = 1.59941 sin t − 0.00004 sin 3t, (5.7)

y(t) = 1.59941cos t − 0.00012cos 3t. (5.8)
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Figure 4: For example 3: (a) showing the error of mismatching, (b) comparing numerical and exact
solutions, and (c) displaying the error.

We attempt to search a missing initial condition y(0) = A, such that in the numerical
solutions of

ẋ = y, x(0) = 0, (5.9)

ẏ = −2.25x − (x − 1.5 sin t)3 + 2 sin t, y(0) = A, (5.10)

x(0.5) and x(1) can match the second equation in (5.6).
We take [0.4, 0.5] as the range of r, where the root of r is located. The iterative process is

converged through 32 iterations under a tolerance error of ε = 10−5. The mismatching of target
is plotted in Figure 4(a) with respect to r.
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In Figure 4(b), we compare the exact solution with numerical result calculated by
TSLGSM using a time-step size Δt = 0.01 second. It can be seen that the numerical error of
x is in the order of 10−4 as shown in 4(c).

5.4. Example 4

For the following three-point BVP:

ẍ =
1
8
(32 + 2t3 − xẋ), (5.11)

x(1) = 17, x(2) + x(3) =
79
3
, (5.12)

the exact solution is

x(t) = t2 +
16
t
. (5.13)

For this example it is hard to directly use the algebraic equations in Section 4 to solve the
unknowns β, γ , A, B, and C, and instead of, from (4.6), (4.7), (4.13), (4.14), and (5.12) a matrix
equation follows:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 −
rη1

ρ1
−
(1 − r)η1

ρ1
0

0 0 −1 1 0

1 −1 0
rη2

ρ2

(1 − r)η2

ρ2

0 0 0 −1 1

1 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

β

γ

A

B

C

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

17

η1

ρ1
f̂1

0

η2

ρ2
f̂2

79
3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (5.14)

Then for each r in the range of [0.3, 0.4], we iteratively solve the above equation by using the
conjugate gradient method to find the inverse of the system matrix.

In Figure 5(a), we compare the numerical result with exact solution. It can be seen that
the numerical error of x is in the order of 10−3 as shown in Figure 5(b).

Instead of (5.12), we now consider a more complex boundary values problem with

x(1) + x(2) = 29, (5.15)

x(2) + x(3) + ẋ(3) =
275

9
. (5.16)
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Figure 5: For example 4: (a) comparing numerical and exact solutions, (b) and (c) displaying the errors for
two different boundary conditions.

From (4.6), (4.7), (4.13), (4.14), (5.15), and (5.16), it follows that

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

1 −1 0
rη1

ρ1

(1 − r)η1

ρ1
0

0 0 0 −1 1 0

0 1 −1 0
rη2

ρ2

(1 − r)η2

ρ2

0 0 0 0 −1 1

1 1 0 0 0 0

0 1 1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

α

β

γ

A

B

C

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0

η1

ρ1
f̂1

0

η2

ρ2
f̂2

29

275
9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

. (5.17)
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Figure 6: Showing the numerical error for example 5.

Similarly, the conjugate gradient method is used to solve the above equations system to obtain
the unknowns. In Figure 5(c), we plot the numerical error of x, which is in the order of 10−2.
This case is more difficult than the previous one, because both the initial values of x(1) and
ẋ(1) are unknown.

5.5. Example 5

We consider the following three-point BVP:

ẍ = x2 +
ẋ2

(απ)2
− 1 − (απ)2 sin(απt), (5.18)

x(0) + x(0.5) + ẋ(0.5) = C1, (5.19)

x(0.5) + x(1) + +ẋ(1) = C2, (5.20)

where C1 and C2 can be computed from the exact solution x(t) = sin(απt).
In Figure 6, we plot the numerical error of x, which is in the order of 10−2. This case is

difficult, because both the initial values of x(0) and ẋ(0) are unknown and are subjecting to
rather complex boundary conditions.

5.6. Example 6

For this three-point BVP, we adopt an example from Kwong and Wong [35]:

ẍ +
x2

1 + x
= 0, (5.21)
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Figure 7: For example 6: (a) showing the error of mismatching, and (b) showing a numerical solution.

with the following boundary conditions:

x(0) − ẋ(0) = 0, (5.22)

x(1) − 1
3
x(0.5) = b. (5.23)

When b is smaller than a critical value b∗, Kwong and Wong [35] have proven that there exist
two positive solutions. However, we only find one solution under b = 1.

We take (0, 1) as the range of r, where the root of r is located, of which the process is
converged through about 10 iterations under a tolerance error of ε = 10−5. The mismatching of
target is plotted in Figure 7(a) with respect to r. In Figure 7(b), we plot the numerical solution
of x, of which the error of x(0) − ẋ(0) is found to be very small with −1.1 × 10−16. This case is
difficult, because both the initial values of x(0) and ẋ(0) are unknown.

5.7. Example 7

Henderson [36] has identified double solutions of the following three-point BVP:

−f(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1, x <
b

ξ
,

c3x + c4, x ∈
[
b

ξ
, c

]
,

c2, x > c,

(5.24)
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Figure 8: For example 7: (a) showing the error of mismatching in a larger range, and (b) showing two
numerical solutions.

where

c1 =
b

ξ
+

(1 − ξ)a
d[d(1 − d) + ξ(d − ξ)]

,

c2 = 1 +
2c

ξ(1 − ξ)
,

c3 =
c2 − c

c − b/ξ
,

c4 = c2 − cc3.

(5.25)

Under the following conditions:

x(0) = 0, x(ξ) = x(1), (5.26)

0 < a <
d[d(1 − d) + ξ(d − ξ)]b

ξ(1 − ξ)
<
d[d(1 − d) + ξ(d − ξ)]c

1 − ξ
, (5.27)

the three-point BVP in (1.1) with the above f has at least two positive solutions.
We consider ξ = 0.5, a = 0.1, b = 0.25, c = 0.6, and d = 0.5, which satisfy the above

conditions. In Figure 8(a), we plot the error of mismatching the target with respect to r in the
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range of (0, 1.2). It can be seen that there are two minimal points as marked by points a and b.
When the ranges for minima are identified, we can pick up more correct value of r by searching
the minima in a finer range. When the missing initial conditions are available, we can use the
RK4 method to integrate (1.4)–(1.7). There appear two solutions which are marked by a and
b in Figure 8(b). For the smaller solution marked by a, it has an exact value of the initial slope
with A = 0.675, and our numerical value of A is 0.67463 by searching the target in the range of
r ∈ [0.532, 0.534], and the error of mismatching the target is small up to 1.17038× 10−6 by using
r = 0.53352. It can be seen that the TSLGSM can provide very accurate numerical result. About
the larger solution marked by b, it is interesting that the numerical solution is found outside
the range of r ∈ (0, 1). Correspondingly, the error of mismatching the target is slightly larger
with a value of 1.93613 × 10−3 by using r = 1.09. In the range of r > 1, the present numerical
method converges slower than that in the range of r ∈ (0, 1).

6. Conclusions

In this paper, there were two important points deserved further notifications. The first was
the construction of a one-step Lie-group element G(ut0 ,ut1), which is a universal Lie-group
transformation between initial conditions and final conditions in the augmented Minkowski
space, independent on the ODEs we consider. Then, another one was the use of a midpoint rule
to construct another Lie-group element G(r). In order to estimate the missing initial conditions
for three-point boundary value problems, we have employed the equation G(ut0 ,ut1) = G(r) in
two-stage of two consecutive intervals to derive four extra algebraic equations, which together
with the two given nonlocal boundary conditions lead to totally six equations to solve the
six unknowns. Therefore, we can solve them iteratively in a compact space of r ∈ (0, 1).
Numerical examples were examined to ensure that the new approach has a fast convergent
speed on the selection of r in a preselected range smaller than (0, 1), which usually required
only a few number of iterations. The numerical solution could match the specified boundary
conditions very well. The present TSLGSM is also workable to find multiple solutions if the
considered equation has. Through this study, it can be concluded that the new TSLGSM is
accurate, effective and stable, suggesting it to be useful in a numerical solution of three-point
BVPs of second-order ODEs.
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