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1. Introduction

First, we look for positive solutions of the following problem:

−Δu + u = a(x)up−1 + λb(x)uq−1, in R
N,

u > 0, in R
N,

u ∈ H1
(
R

N
)
,

(1.1)

where λ > 0 is a real parameter, 1 < p < 2 < q < 2∗ = 2N/N − 2, N ≥ 3. We will impose some
assumptions on a(x) and b(x). Assume

(a1) a(x) ≥ 0, a(x) ∈ Lα/(α−1)(RN) ∩ L∞(RN), where 1 < α < 2∗/p,

(b1) b(x) ∈ C(RN), b(x) → b∞ > 0 as |x| → ∞, b(x) ≥ b∞ for all x ∈ R
N,

Such problems occur in various branches of mathematical physics and population
dynamics, and sublinear analogues or superlinear analogues of problem (1.1) have been
considered by many authors in recent years (see [1–4]). Little information is known about
the combination of sublinear and superlinear case of problem (1.1). In [5, 6], they deal with
the analogue of problem (1.1)when R

N is replaced by a bounded domainΩ. For the RN case,
the existence of positive solutions for problem (1.1) was proved by few people.
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In the present paper, we discuss the Nehari manifold and examine carefully the
connection between the Nehari manifold and the fibrering maps, then using arguments
similar to those used in [7], we will prove the existence of the two positive solutions by
using Ekeland’s Variational Principle [8].

In [5], Ambrosetti et al. showed that for λ > 0 small with respect to μ > 0 there exist
infinitely many solutions u ∈ H1

0(Ω) of the semilinear elliptic problem:

−Δu = λ|u|p−2u + μ|u|q−2u, in Ω,

u = 0 on ∂Ω,
(1.2)

with negative energy:

ψ(u) =
1
2

∫

Ω
|∇u|2 − λ

p

∫

Ω
|u|p − μ

q

∫

Ω
|u|q, (1.3)

and infinitely many solutions with positive energy, where Ω ⊂ R
N is an open bounded

domain. In [9], Bartsch and Willem obtained infinitely many solutions of problem (1.2) with
negative energy for every λ > 0. For the R

N case, the existence of multiple solutions was
proved by few people.

Finally we propose herein a result similar to [9] or [10] for the existence of infinitely
many solutions (possibly not positive) of

−Δu + u = μa(x)|u|p−2u + λb(x)|u|q−2u, in R
N,

u ∈ H1
(
R

N
)
,

(1.4)

by taking advantage of the oddness of the nonlinearity.
Our main results state the following.

Theorem 1.1. Under the assumptions (a1) and (b1), there exists λ∗ > 0, such that for all λ ∈ (0, λ∗),
problem (1.1) has at least two positive solutions u0 and u1, u0 is a local minimizer of Iλ and Iλ(u0) < 0,
where Iλ is the energy functional of problem (1.1).

Theorem 1.2. Under the assumptions (a1) and (b1), for every λ > 0 and μ ∈ R, the problem (1.4)
has infinitely many solutions with positive energy and for every μ > 0 and λ ∈ R, infinitely many
solutions with negative energy.

2. The Existence of Two Positive Solutions

The variational functional of problem (1.1) is

Iλ(u) =
1
2

∫(
|∇u|2 + u2

)
− 1
p

∫
a(x)|u|p − λ

q

∫
b(x)|u|q, (2.1)

here and from now on, we omit “dx” and “RN” in all the integrations if there is no other
indication.
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Through this paper, we denote the universal positive constant by C unless some
special statement is given. Let 〈·, ·〉 denote the usual scalar product in H1(RN). Easy
computations show that Iλ is bounded from below on the Nehari manifold,

Λλ =
{
u ∈ H1

(
R

N
)
:
〈
I ′λ(u), u

〉
= 0

}
. (2.2)

Thus u ∈ Λλ if and only if

||u||2 −
∫
a(x)|u|p − λ

∫
b(x)|u|q = 0. (2.3)

In particular, on Λλ, we have

Iλ(u) =
(
1
2
− 1
p

)
||u||2 − λ

(
1
q
− 1
p

)∫
b(x)|u|q

=
(
1
2
− 1
q

)
||u||2 −

(
1
p
− 1
q

)∫
a(x)|u|p.

(2.4)

The Nehari manifold is closely linked to the behavior of the functions of the form
φu : t → Iλ(tu) (t > 0). Such maps are known as fibrering maps and were introduced by
Drábek and Pohozaev in [11] and are discussed by Brown and Zhang [12]. If u ∈ H1(RN),
we have

φu(t) =
t2

2
||u||2 − tp

p

∫
a(x)|u|p − λ

tq

q

∫
b(x)|u|q,

φ′
u(t) = t||u||2 − tp−1

∫
a(x)|u|p − λtq−1

∫
b(x)|u|q,

φ′′
u(t) = ||u||2 − (

p − 1
)
tp−2

∫
a(x)|u|p − λ

(
q − 1

)
tq−2

∫
b(x)|u|q.

(2.5)

Similarly to the method used in [7], we split Λλ into three parts corresponding to local
minima, local maxima, and points of inflection, and so we define

Λ+
λ =

{
u ∈ Λλ : φ′′

u(1) > 0
}
,

Λ−
λ =

{
u ∈ Λλ : φ′′

u(1) < 0
}
,

Λ0
λ =

{
u ∈ Λλ : φ′′

u(1) = 0
}
,

(2.6)

and note that if u ∈ Λλ, that is, φ′
u(1) = 0, then

φ′′
u(1) =

(
2 − p

)||u||2 − λ
(
q − p

) ∫
b(x)|u|q

=
(
2 − q

)||u||2 − (
p − q

) ∫
a(x)|u|p.

(2.7)
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This section will be devoted to prove Theorem 1.2. To prove Theorem 1.2, several preliminary
results are in order.

Lemma 2.1. Under the assumptions (a1), (b1), there exists λ∗ > 0 such that when 0 < λ < λ∗, for
every u ∈ H1(RN), u/≡ 0, there exist unique t+ = t+(u) > 0, t− = t−(u) > 0 such that t+u ∈ Λ−

λ ,
t−u ∈ Λ+

λ
. In particular, one has

t+ >

( (
2 − q

)‖u‖2(
p − q

) ∫
a(x)|u|p

)1/(p−2)
= tmax > t−, (2.8)

Iλ(t−u) = mint∈[0,t+]Iλ(tu) < 0 and Iλ(t+u) = maxt≥t−Iλ(tu).

Proof. Given u ∈ H1(RN) \ {0}, set ϕu(t) = t2−q||u||2 − tp−q
∫
a(x)|u|p. Clearly, for t > 0, tu ∈ Λλ

if and only if t is a solution of

ϕu(t) = λ

∫
b(x)|u|q. (2.9)

Moreover,

ϕ′
u(t) =

(
2 − q

)
t1−q||u||2 − (

p − q
)
tp−q−1

∫
a(x)|u|p, (2.10)

easy computations show that ϕu is concave and achieves its maximum at

tmax =

( (
2 − q

)||u||2(
p − q

) ∫
a(x)|u|p

)1/(p−2)
. (2.11)

If λ > 0 is sufficiently large, (2.9) has no solution, and so φu(t) = Iλ(tu) has no critical
points, in this case φu is a decreasing function, hence no multiple of u lies in Λλ.

If, on the other hand, λ > 0 is sufficiently small, then there exist exactly two solutions
t+(u) > t−(u) > 0 of (2.9), where t+ = t+(u), t− = t−(u), ϕ′

u(t
−) > 0, and ϕ′

u(t
+) < 0.

It follows from (2.7) and (2.10) that φ′′
tu(1) = tq+1ϕ′

u(t), and so t+u ∈ Λ−
λ
, t−u ∈ Λ+

λ
;

moreover φu is decreasing in (0, t−), increasing in (t−, t+), and decreasing in (t+,∞).
Next, we will discussion the sufficiently small λ∗, such that when 0 < λ < λ∗, there

exist exactly two solutions of problem (2.9) for all u ∈ H1(RN) \ {0}, that is,

λ

∫
b(x)|u|q < ϕu(tmax) =

(
2 − q

p − q

)(2−q)/(p−2)(p − 2
p − q

) ||u||(2p−2q)/(p−2)
(∫

a(x)|u|p)(2−q)/(p−2)
. (2.12)
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Since

∫
a(x)|u|p ≤ ||a||Lα/(α−1) ||u||pLαp ≤ ||a||Lα/(α−1)S

p
αp||u||p, (2.13)

where Sαp denotes the Sobolev constant of the embedding ofH1(RN) into Lαp(RN), hence,

ϕu(tmax) ≥
(
2 − q

p − q

)(2−q)/(p−2)(p − 2
p − q

) ||u||(2p−2q)/(p−2)
(
||a||Lα/(α−1)S

p
αp||u||p

)(2−q)/(p−2)

=
(
2 − q

p − q

)(2−q)/(p−2)(p − 2
p − q

) ||u||q
(
||a||Lα/(α−1)S

p
αp

)(2−q)/(p−2) ,

(2.14)

and then

∫
b(x)|u|q ≤ M||u||qLq ≤ MS

q
q||u||q

≤ MS
q
q

(
p − q

2 − q

)(2−q)/(p−2)(p − q

p − 2

)(
||a||Lα/(α−1)S

p
αp

)(2−q)/(p−2)
ϕu(tmax)

= cϕu(tmax),

(2.15)

where Sq denotes the Sobolev constant of the embedding of H1(RN) into Lq(RN), c is
independent of u, hence

ϕu(tmax) − λ

∫
b(x)|u|q ≥ ϕu(tmax) − λcϕu(tmax) = ϕu(tmax)(1 − λc), (2.16)

and so λ
∫
b(x)|u|q < ϕu(tmax) for all u ∈ H1(RN) \ {0} provided λ < 1/2c = λ∗.

Hence when 0 < λ < λ∗, φu has exactly two critical points—a local minimum at t− =
t−(u) and a local maximum at t+ = t+(u); moreover Iλ(t−u) = mint∈[0,t+]Iλ(tu) < 0 and Iλ(t+u) =
maxt≥t−Iλ(tu).

In particular, we have the following result.

Corollary 2.2. Under the assumptions (a1), (b1), when 0 < λ < λ∗, for every u ∈ Λλ, u/≡ 0, one has

(
2 − q

)||u||2 − (
p − q

) ∫
a(x)|u|p /≡ 0 (2.17)

(i.e., Λ0
λ
= ∅).
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Proof. Let us argue by contradiction and assume that there exists u ∈ Λλ \ {0} such that
(2 − q)||u||2 − (p − q)

∫
a(x)|u|p = 0, this implies

λ

∫
b(x)|u|q = ||u||2 −

∫
a(x)|u|p

=
(
p − 2
2 − q

)∫
a(x)|u|p

=
(
p − 2
2 − q

)(∫
a(x)|u|p

)(p−q)/(p−2)(∫
a(x)|u|p

)(q−2)/(p−2)

=
(
p − 2
2 − q

)(
1

p − q

)(p−q)/(p−2)((
p − q

) ∫
a(x)|u|p

)(p−q)/(p−2)(∫
a(x)|u|p

)(q−2)/(p−2)

=
(
p − 2
p − q

)(
2 − q

p − q

)(2−q)/(p−2)
||u||2(p−q)/(p−2)

(∫
a(x)|u|p

)(q−2)/(p−2)

= ϕu (tmax)
(2.18)

which contradicts (2.12) for 0 < λ < λ∗.

As a consequence of Corollary 2.2, we have the following lemma.

Lemma 2.3. Under the assumptions (a1), (b1), if 0 < λ < λ∗, for every u ∈ Λλ, u/≡ 0, then there exist
a ε > 0 and a C1-map t = t(w) > 0, w ∈ H1(RN), ||w|| < ε satisfying that

t(0) = 1, t(w)(u −w) ∈ Λλ, for ||w|| < ε,

〈
t′(0), w

〉
=

2
∫
(∇u∇w + uw) − p

∫
a(x)|u|p−2uw − λq

∫
b(x)|u|q−2uw

(
2 − q

)||u||2 − (
p − q

) ∫
a(x)|u|p

.
(2.19)

Proof. We define F : R ×H1(RN) → R by

F(t,w) = t||u −w||2 − tp−1
∫
a(x)|u −w|p − λtq−1

∫
b(x)|u −w|q. (2.20)

Since F(1, 0) = 0 and Ft(1, 0) = ||u||2 − (p − 1)
∫
a(x)|u|p − λ(q − 1)

∫
b(x)|u|q = (2− q)||u||2 − (p −

q)
∫
a(x)|u|p /≡ 0 (by Corollary 2.2), we can apply the implicit function theorem at the point

(1, 0) and get the result.

Apply Lemma 2.1, Corollary 2.2, Lemma 2.3, and Ekeland variational principle [8], we
can establish the existence of the first positive solution.

Proposition 2.4. If 0 < λ < λ∗, then the minimization problem:

c0 = inf Iλ
Λλ

= inf Iλ
Λ+

λ

(2.21)
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is achieved at a point u0 ∈ Λ+
λ which is a critical point for Iλ with u0 > 0 and Iλ(u0) < 0. Furthermore,

u0 is a local minimizer of Iλ.

Proof. First, we show that Iλ is bounded from below in Λλ. Indeed, for u ∈ Λλ, from (2.13),
we have

Iλ(u) =
1
2
||u||2 − 1

p

∫
a(x)|u|p − λ

q

∫
b(x)|u|q

=
(
1
2
− 1
q

)
||u||2 −

(
1
p
− 1
q

)∫
a(x)|u|p

≥
(
1
2
− 1
q

)
||u||2 −

(
1
p
− 1
q

)
||a||Lα/(α−1)S

p
αp||u||p

(2.22)

and so Iλ is bounded from below in Λλ.
Then we will claim that c0 < 0, indeed if v ∈ H1(RN)\{0}, from Lemma 2.1, there exist

0 < t−(v) < t+(v) such that t−(v)v ∈ Λλ. Thus,

c0 ≤ Iλ
(
t−(v)v

)
= min

t∈[0,t+(v)]
Iλ(tv) < 0. (2.23)

By Ekeland’s Variational Principle [8], there exists a minimizing sequence {un} ⊂ Λλ

of the minimization problem (2.21) such that

c0 ≤ Iλ(un) < c0 +
1
n
, (2.24)

Iλ(v) ≥ Iλ(un) − 1
n
||v − un||, ∀ v ∈ Λλ. (2.25)

Taking n large enough, from (2.7)we have

Iλ(un) =
(
1
2
− 1
q

)
||un||2 −

(
1
p
− 1
q

)∫
a(x)|un|p < c0 +

1
n
< 0, (2.26)

from which we deduce that for n large

∫
a(x)|un|p ≥ pq

p − q
c0, ||un||2 ≤

2
(
q − p

)

p
(
q − 2

)
∫
a(x)|un|p, (2.27)

which yields

b1 ≤ ||un|| ≤ b2 (2.28)

for suitable b1, b2 > 0.
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Now we will show that

∥∥I ′λ(un)
∥∥ −→ 0 as n −→ ∞. (2.29)

Since un ∈ Λλ, by Lemma 2.3, we can find a εn > 0 and a C1-map tn = tn(w) > 0,w ∈ H1(RN),
||w|| < εn satisfying that

vn = tn(w)(un −w) ∈ Λλ, for ||w|| < εn. (2.30)

By the continuity of tn(w) and tn(0) = 1, without loss of generality, we can assume εn satisfies
that 1/2 ≤ tn(w) ≤ 3/2 for ||w|| < εn.

It follows from (2.25) that

Iλ(tn(w)(un −w)) − Iλ(un) ≥ − 1
n
||tn(w)(un −w) − un||; (2.31)

that is,

〈
I ′λ(un), tn(w)(un −w) − un

〉
+ o(||tn(w)(un −w) − un||)

≥ − 1
n
||tn(w)(un −w) − un||.

(2.32)

Consequently,

tn(w)
〈
I ′λ(un), w

〉
+ (1 − tn(w))

〈
I ′λ(un), un

〉

≤ 1
n
||(tn(w) − 1)un − tn(w)w|| + o(||tn(w)(un −w) − un||).

(2.33)

By the choice of εn, we obtain

〈
I ′λ(un), w

〉 ≤ C

n

∣∣〈t′n(0), w
〉∣∣ + o(||w||) + C

n
||w||

+ o
(∣∣〈t′n(0), w

〉∣∣(||un|| + ||w||)).
(2.34)

By Lemma 2.3, Corollary 2.2, and the estimate (2.28), we have

〈
t′n(0), w

〉
=

2
∫
(∇un∇w + unw) − p

∫
a(x)|un|p−2unw − λq

∫
b(x)|un|q−2unw(

2 − q
)||un||2 −

(
p − q

) ∫
a(x)|un|p

≤ C||w||,
(2.35)

then from (2.34)we get

〈
I ′λ(un), w

〉 ≤ C

n
||w|| + C

n
||w|| + o(||w||), for ||w|| ≤ εn. (2.36)
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Hence, for any ε ∈ (0, εn), we have

∥∥I ′λ(un)
∥∥ =

1
ε
sup
||w||=ε

〈
I ′λ(un), w

〉 ≤ C

n
+
1
ε
o(ε), (2.37)

for some C > 0 independent of ε and n. Taking ε → 0, we obtain (2.29).
Let u0 ∈ H1(RN) be the weak limit in H1(RN) of un. From (2.29),

〈
I ′λ(u0), w

〉
= 0, ∀w ∈ H1

(
R

N
)
; (2.38)

that is, u0 is a weak solution of problem (1.1) and consequently u0 ∈ Λλ. Therefore,

c0 ≤ Iλ(u0) ≤ lim
n→∞

Iλ(un) = c0; (2.39)

that is,

c0 = Iλ(u0) = inf
Λλ

Iλ. (2.40)

Moreover, we have u0 ∈ Λ+
λ
. In fact, if u0 ∈ Λ−

λ
, by Lemma 2.1, there exists only one t+ > 0

such that t+u0 ∈ Λ−
λ
, we have t+ = t+(u0) = 1, t− = t−(u0) < 1. Since

dIλ(t−u0)
dt

= 0,
d2Iλ(t−u0)

dt2
> 0, (2.41)

there exists t+ ≥ t > t− such that Iλ(tu0) > Iλ(t−u0). By Lemma 2.1,

Iλ
(
t−u0

)
< Iλ

(
tu0

)
≤ Iλ(t+u0) = Iλ(u0); (2.42)

this is a contradiction.
To conclude that u0 is a local minimizer of Iλ, notice that for every u ∈ H1(RN) \ {0},

we have from Lemma 2.1,

Iλ(su) ≥ Iλ
(
t−u

) ∀0 < s <

( (
2 − q

)||u||2(
p − q

) ∫
a(x)|u|p

)1/(p−2)
. (2.43)

In particular, for u = u0 ∈ Λ+
λ
, we have

t−(u0) = 1 <

( (
2 − q

)||u0||2(
p − q

) ∫
a(x)|u0|p

)1/(p−2)
. (2.44)
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Let ε > 0 sufficiently small to have

1 <

( (
2 − q

)||u0 −w||2(
p − q

) ∫
a(x)|u0 −w|p

)1/(p−2)
, for ||w|| < ε. (2.45)

From Lemma 2.3, let t(w) > 0 satisfy t(w)(u0 −w) ∈ Λλ for every ||w|| < ε. By the continuity
of t(w) and t(0) = 1, we can always assume that

t(w) <

( (
2 − q

)||u0 −w||2
(p − q)

∫
a(x)|u0 −w|p

)1/(p−2)
, for ||w|| < ε. (2.46)

Namely, t(w)(u0 −w) ∈ Λ+
λ and for

0 < s <

( (
2 − q

)||u0 −w||2(
p − q

) ∫
a(x)|u0 −w|p

)1/(p−2)
, (2.47)

we have

Iλ(s(u0 −w)) ≥ Iλ(t(w)(u0 −w)) ≥ Iλ(u0). (2.48)

Taking s = 1, we conclude

Iλ(u0 −w) ≥ Iλ(t(w)(u0 −w)) ≥ Iλ(u0), for ||w|| < ε, (2.49)

which means that u0 is a local minimizer of Iλ.
Furthermore, taking t−(|u0|) > 0 with t−(|u0|)|u0| ∈ Λ+

λ
, therefore,

Iλ(u0) ≤ Iλ
(
t−(|u0|)|u0|

) ≤ Iλ(|u0|) ≤ Iλ(u0). (2.50)

So we can always take u0 ≥ 0. By the maximum principle for weak solutions (see [13]), we
can show that u0 > 0 in R

N .
Since u0 ∈ Λ+

λ and c0 = infΛλIλ = infΛ+
λ
Iλ, thus, in the search of our second positive

solution, it is natural to consider the second minimization problem:

c1 = inf
Λ−

λ

Iλ. (2.51)

Let us now introduce the problem at infinity associated with (1.1):

−Δu + u = λb∞uq−1, in R
N,

u > 0, in R
N,

u ∈ H1
(
R

N
)
.

(2.52)
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We state here some known results for problem (2.52). First of all, we recall that Lions [14]
has studied the following minimization problem closely related to problem (2.52): S∞

λ
=

inf{I∞λ (u) : u ∈ H1(RN), u /= 0 , I∞′
λ (u) = 0} > 0, where I∞λ (u) = (1/2)||u||2 − (1/q)λb∞

∫ |u|q.
For future reference, note also that aminimum exists and is realized by a ground stateω > 0 in
R

N such that S∞
λ = I∞λ (ω) = sups≥0I

∞
λ (sω). Gidas et al. [15] showed that there exist a1,a2 > 0

such that for all x ∈ R
N ,

a1(|x| + 1)−(N−1)/2e−|x| ≤ ω(x) ≤ a2(|x| + 1)−(N−1)/2e−|x|. (2.53)

Lemma 2.5. Let a(x) ∈ Lα/(α−1)(RN) ∩ L∞(RN), where 1 < α < 2∗/p and 1 < p < 2. If un ⇀ u
weakly inH1(RN), then a subsequence of {un}, still denoted by {un}, satisfies

lim
n→∞

∫
a(x)|un − u|p = 0. (2.54)

Proof. Since a(x) ∈ Lα/(α−1)(RN), then for every ε > 0, there exists R0 > 0 such that

(∫

|x|>R0

|a(x)|α/(α−1)dx
)(α−1)/α

< ε. (2.55)

Since un ⇀ u weakly in H1(RN), un → u strongly in Ls
loc
(RN), 1 ≤ s < 2N/N − 2, then we

have

(∫

|x|≤R0

|un − u|αpdx
)1/αp

< ε. (2.56)

Observe that by Hölder inequality we have

∫
a(x)|un − u|pdx =

∫

|x|≤R0

a(x)|un − u|pdx +
∫

|x|>R0

a(x)|un − u|pdx ≤ Cε, (2.57)

hence limn→∞
∫
a(x)|un − u|p = 0.

Our first task is to locate the levels free from this noncompactness effect.

Proposition 2.6. Every sequence {un} ⊂ H1(RN), satisfying

(a) Iλ (un) = c + o(1) with c < c0 + S∞
λ
,

(b) I ′λ(un) = o(1) strongly in H−1(RN),

has a convergent subsequence.
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Proof. It is easy to see that {un} is bounded in H1(RN), so we can find a u ∈ H1(RN) such
that un ⇀ u weakly in H1(RN), un → u almost every in R

N , un → u strongly in Ls
loc
(RN),

1 ≤ s < 2N/N − 2. From condition (b), we have

〈
I ′λ(u), w

〉
= 0, ∀w ∈ H1

(
R

N
)
; (2.58)

that is, u is a weak solution of problem (1.1) and u ∈ Λλ. Set vn = un − u to get vn ⇀ 0 weakly
in H1(RN), vn → 0 almost every in R

N , vn → 0 strongly in Ls
loc
(RN), 1 ≤ s < 2N/N − 2, we

can prove that there exists a subsequence of {vn} (still denoted by {vn}) satisfying vn → 0
strongly in H1(RN). Arguing by contradiction, we assume that there exists a constant β > 0
such that ||vn|| ≥ β > 0. Apply the Brezis-Lieb theorem (see [16]) and Lemma 2.5,

Iλ(un) =
1
2
||un||2 − 1

p

∫
a(x)|un|p − λ

q

∫
b(x)|un|q

= Iλ(u) +
1
2
||vn||2 − 1

p

∫
a(x)|vn|p − λ

q

∫
b(x)|vn|q + o(1)

= Iλ(u) +
1
2
||vn||2 − λb∞

q

∫
|vn|q − λ

q

∫
(b(x) − b∞)|vn|q + o(1).

(2.59)

Moreover, taking into account (2.58),

o(1) =
〈
I ′λ(un), un

〉
= ||un||2 −

∫
a(x)|un|p − λ

∫
b(x)|un|q

=
〈
I ′λ(u), u

〉
+ ||vn||2 −

∫
a(x)|vn|p − λ

∫
b(x)|vn|q + o(1)

= ||vn||2 − λb∞
∫
|vn|q − λ

∫
(b(x) − b∞)|vn|q + o(1).

(2.60)

By (b1), for any ε > 0, there exist: R0 > 0 such that |b(x) − b∞| < ε for |x| ≥ R0. Since vn → 0
strongly in Ls

loc(R
N) for 1 ≤ s < 2N/N − 2, {vn} is a bounded sequence inH1(RN), therefore,∫

(b(x) − b∞)|vn|q ≤ C
∫
BR0

|vn|q + εC. Setting n → ∞, then ε → 0, we have

∫
(b(x) − b∞)|vn|q = o(1). (2.61)

Combining (2.60) and (2.59), we obtain

||vn||2 − λb∞
∫
|vn|q = o(1), Iλ(un) ≥ c0 +

1
2
||vn||2 − λ

q
b∞

∫
|vn|q + o(1). (2.62)
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Since ||vn|| ≥ β > 0, we can find a sequence {sn}, sn > 0, sn → 1 as n → ∞, such that tn = snvn

satisfying ||tn||2 − λb∞
∫ |tn|q = 0. Hence

Iλ(un) ≥ c0 +
1
2
||tn||2 − λ

q
b∞

∫
|tn|q + o(1) ≥ c0 + S∞

λ + o(1); (2.63)

that is, c = limn→∞Iλ(un) ≥ c0 + S∞
λ
, contradicting condition (a). Consequently, un → u

strongly.
Let e = (1, 0, . . . , 0) be a fixed unit vector in R

N and ω be a ground state of problem
(2.52). Here we use an interaction phenomenon between u0 and ω.

Proposition 2.7. Under the assumptions (a1) and (b1), Then

Iλ(u0 + tω) < c0 + I∞λ (ω) ∀t > 0. (2.64)

Proof.

Iλ(u0 + tω) =
1
2
||u0 + tω||2 − 1

p

∫
a(x)|u0 + tω|p − λ

q

∫
b(x)|u0 + tω|q

< Iλ(u0) +
1
2
||tω||2 − λ

q
tq
∫
b(x)|ω|q

≤ Iλ(u0) +
1
2
||tω||2 − λ

q
b∞

∫
|tω|q

= Iλ(u0) + I∞λ (tω)

≤ c0 + I∞λ (ω).

(2.65)

Proposition 2.8. If 0 < λ < λ∗, for c1 = infΛ−
λ
Iλ, one can find a minimizing sequence {un} ⊂ Λ−

λ
such that

(a) Iλ(un) = c1 + o(1),

(b) I ′λ (un ) = o(1) strongly in H−1(RN),

(c) c1 < c0 + S∞
λ
.

Proof. Set Σ = {u ∈ H1(RN) : ||u|| = 1} and define the map Ψ : Σ → Λ−
λ
given by Ψ(u) =

t+(u)u. Since the continuity of t+(u) follows immediately from its uniqueness and extremal
property, thus Ψ is continuous with continuous inverse given by Ψ−1(u) = u/||u||. Clearly Λ−

λ
disconnects H1(RN) in exactly two components:

U1 =
{
u = 0 or u : ||u|| < t+

(
u

||u||
)}

,

U2 =
{
u : ||u|| > t+

(
u

||u||
)}

,

(2.66)

and Λ+
λ
⊂ U1.
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Wewill prove that there exists t1 such that u0+ t1ω ∈ U2. Denote t0 = t+((u0+ tω)/||u0+
tω||). Since t+((u0 + tω)/||u0 + tω||)((u0 + tω)/||u0 + tω||) ∈ Λ−

λ
, we have

t20 −
t
q

0λ
∫
b(x)|u0 + tω|q
||u0 + tω||q =

t
p

0

∫
a(x)|u0 + tω|p
||u0 + tω||p ≥ 0. (2.67)

Thus

t0 ≤
[

||u0 + tω||
(
λ
∫
b(x)|u0 + tω|q)1/q

]q/(q−2)
=

[
||u0/t +ω||

(
λ
∫
b(x)|u0/t +ω|q)1/q

]q/(q−2)

≤
[

||u0/t +ω||
(
λ
∫
b∞|u0/t +ω|q)1/q

]q/(q−2)

−→ ||ω|| < ∞ as t −→ ∞.

(2.68)

Therefore, there exists t2 > 0 such that t0 = t+((u0 + tω)/||u0 + tω||) < 2||ω||, for t ≥ t2. Set
t1 > t2 + 2, then

||u0 + t1ω||2 = ||u0||2 + t21||ω||2 + 2t1

∫
(∇u0∇ω + u0ω)

= ||u0||2 + t21||ω||2 + 2t1λb∞
∫
|ω|q−1u0

> t21||ω||2 > 4||ω||2 > t20,

(2.69)

hence u0 + t1ω ∈ U2.
However, Λ−

λ disconnects H1(RN) in exactly two components, so we can find a s ∈
(0, 1) such that u0 + st1ω ∈ Λ−

λ
. Therefore, c1 ≤ Iλ(u0 + st1ω) < c0 + S∞

λ
, which follows from

Proposition 2.7.
Analogously to the proof of Proposition 2.4, one can show that the Ekeland variational

principle [8] gives a sequence {un} ⊂ Λ−
λ satisfying the conditions (a), (b), and (c).

Proposition 2.9. If 0 < λ < λ∗, then the minimization problem c1 = infΛ−
λ
Iλ is achieved at a point

u1 ∈ Λ−
λ
which is a critical point for Iλ and u1 > 0.

Proof. Applying Propositions 2.6 and 2.8, we have un → u1 strongly in H1(RN).
Consequently, u1 is a critical point for Iλ, u1 ∈ Λ−

λ
(since Λ−

λ
is closed) and Iλ(u1) = c1.

Let t+(|u1|) > 0 satisfy t+(|u1|)|u1| ∈ Λ−
λ
. Since u1 ∈ Λ−

λ
, t+(u1) = 1. From Lemma 2.1, we

conclude that

t+(|u1|) ≥ tmax(|u1|) = tmax(u1), (2.70)

c1 = Iλ(u1) = max
t≥tmax(u1)

Iλ(tu1) ≥ Iλ(t+(|u1|)u1) ≥ Iλ(t+(|u1|)|u1|) ≥ c1. (2.71)
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Hence, I(t+(|u1|)|u1|) = c1, So we can always take u1 ≥ 0. By standard regularity method and
the maximum principle for weak solutions (see [13]), we can show that u1 > 0 in R

N .

Proof of Theorem 1.1. Applying Propositions 2.4 and 2.9, we can obtain the conclusion of
Theorem 1.1.

3. Proof of Theorem 1.2

In the sequel, X := H1(RN), (ek) denotes an orthonormal base of X,

X
(
j
)
:= span

(
e1, . . . , ej

)
, Xk := ⊕j≥kX

(
j
)
, Xk := ⊕j≤kX

(
j
)
, (3.1)

and C,C1, C2, . . ., denote (possibly different) positive constants.
If u ∈ X, we let the variational functional of problem (1.4) be

I(u) =
1
2

∫(
|∇u|2 + u2

)
− μ

p

∫
a(x)|u|p − λ

q

∫
b(x)|u|q. (3.2)

Proposition 3.1. Under the assumptions (a1) and (b1), for every λ > 0 and μ ∈ R, the problem (1.4)
has infinitely many solutions with positive energy I(u).

Proof. We will show that the energy functional I(u) satisfies the assumptions of Fountain
theorem in [17]. These assumptions are as follows.

(A1) The energy functional I ∈ C1(X,R) and is even.

(A2) Every sequence un ∈ X with C := supnI(un) < ∞ and I ′(un) → 0 as n → ∞ has a
convergent subsequence.

(A3) infρ>0 supu∈Xk,||u||≥ρI(u) ≤ 0, for every k ∈ N.

(A4) supr>0 infu∈Xk,||u||=rI(u) → ∞ as k → ∞.

We define

λk = sup
u∈Xk−{0}

(∫
b(x)|u|q)1/q

||u|| , (3.3)

then

λk −→ 0, as k −→ ∞. (3.4)

Indeed, clearly we have

0 < λk+1 ≤ λk. (3.5)
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Assume that λk → λ0 > 0, as k → ∞. Then for every k ≥ 1, there exists uk ∈ Xk such that
||uk|| = 1 and

λ0
2

<

∫
b(x)|uk|q. (3.6)

By definition, uk ⇀ 0 in X, this contradicts with λ0 > 0. Now, let us prove (A1)–(A4). The
(PS)-condition (A2) has be shown as in Proposition 2.6. In order to prove (A3), since the
subspace Xk is finite dimensional, all norms on Xk are equivalent, hence, we obtain

I(u) ≤ 1
2
||u||2 − C1||u||p − C2λ||u||q ≤ 1

2
||u||2 − C2λ||u||q. (3.7)

Therefore, the term −C2λ||u||q dominates for ||u|| sufficiently large, and (A3) follows. To show
(A4), since p < 2, there exists R > 0 large enough so that

μ

p
||a||Lα/(α−1)S

p
αp||u||p ≤ 1

4
||u||2 (3.8)

for ||u|| ≥ R. Then, for u ∈ Xk, it follows from (2.13), (3.8), and (3.3) that

I(u) =
1
2
||u||2 − μ

p

∫
a(x)|u|p − λ

q

∫
b(x)|u|q

≥ 1
4
||u||2 − λ

q
λ
q

k||u||q.
(3.9)

Now we set rk = (8λλqk/q)
1/(2−q) so that

1
8
r2k =

λ

q
λ
q

kr
q

k. (3.10)

Clearly

rk −→ ∞ as k −→ ∞, (3.11)

(A4) follows. Since the energy functional I(u) is even, then, by Fountain theorem, there exist
a sequence of critical points (vk) such that I(vk) → ∞ as k → ∞.

Proposition 3.2. Under the assumptions (a1) and (b1), for every μ > 0 and λ ∈ R, the problem (1.4)
has infinitely many solutions with negative energy I(u).
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Proof. We will show that the energy functional I(u) satisfies the assumptions of in [9,
Theorem 2]. These assumptions are as follows.

(B1) The energy functional I ∈ C1(X,R) and is even.

(B2) There exists k0 such that for every k ≥ k0 there exists Rk > 0 such that I(u) ≥ 0 for
every u ∈ Xk with ||u|| = Rk.

(B3) bk := infBkI(u) → 0 as k → ∞, where Bk = {u ∈ Xk : ||u|| ≤ Rk}.
(B4) For every k ≥ 1, there exist rk ∈ (0, Rk) and dk < 0 such that I(u) ≤ dk for every

u ∈ Xk with ||u|| = rk.

(B5) Every sequence un ∈ Xn
−n := ⊕n

j=−nX(j)with I(un) < 0 bounded and (I|′Xn
−n
)(un) → 0

as n → ∞ has a subsequence which converges to a critical point of I.

We define

μk = sup
u∈Xk−{0}

(∫
a(x)|u|p)1/p

||u|| . (3.12)

By Lemma 2.5,

μk −→ 0, as k −→ ∞. (3.13)

Indeed, clearly we have

0 < μk+1 ≤ μk. (3.14)

Assume that μk → μ0 > 0, as k → ∞. Then for every k ≥ 1, there exists uk ∈ Xk such that
||uk|| = 1 and

μ0

2
<

∫
a(x)|uk|p. (3.15)

By definition, uk0 in X. By Lemma 2.5, this contradicts (3.15). Now, let us prove (B1)–(B5).
Since q > 2, there exists R > 0 small enough so that

λ

q
b∞Sq

q||u||q ≤
1
4
||u||2 (3.16)

for ||u|| ≤ R. Then, for u ∈ Xk, it follows from (3.16) and (3.12) that

I(u) ≥ 1
2
||u||2 − μ

p

∫
a(x)|u|p − λ

q
b∞Sq

q||u||q

≥ 1
4
||u||2 − μ

p
μ
p

k||u||p.
(3.17)
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Now we set Rk = (4μμp

k/p)
1/(2−p) so that

1
4
R2

k =
μ

p
μ
p

kR
p

k. (3.18)

Clearly

Rk −→ 0 as k −→ ∞, (3.19)

so there exists k0 such that Rk ≤ R when k ≥ k0. Thus if u ∈ Xk, k ≥ k0 satisfies ||u|| = Rk, we
have

I(u) ≥ 1
4
||u||2 − μ

p
μ
p

k||u||p = 0. (3.20)

This proves (B2). Next, (B3) follows immediately from (3.19). On the other hand, since the
subspace Xk is finite dimensional, all norms on Xk are equivalent, hence, we obtain

I(u) ≤ 1
2
||u||2 − C1μ||u||p − C2||u||q ≤ 1

2
||u||2 − C1μ||u||p. (3.21)

Therefore, the term −C1μ||u||p dominates near 0, and (B4) follows. This is precisely the point
where μ > 0 enters. Finally, the (PS) condition (B5) has been shown as in Proposition 2.6.
Since the energy functional I(u) is even, all the assumptions of in [9, Theorem 2] are satisfied.
Then, there exists k0 such that for each k ≥ k0,

I(u) has a critical value ck ∈ [bk, dk], so that ck −→ 0 as k −→ ∞. (3.22)

This completes the proof of Theorem 1.2, since observe that (B3) and (B4) imply bk ≤ dk <
0.

Proof of Theorem 1.2. The proof follows from Propositions 3.1 and 3.2.
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