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1. Introduction

In this paper, we are interested in finding nontrivial weak solutions for the nonlinear
eigenvalue problem

−div
(
|∇u|p−2∇u

)
− div

(
|∇u|q−2∇u

)
+ a(x)|u|p−2u + b(x)|u|q−2u = f(x, u),

u ∈ W1,p ∩W1,q(RN
)
, u /= 0,

(1.1)

where 2 ≤ q ≤ p < N and a(x) ∈ LN/p(RN), b(x) ∈ LN/q(RN), a(x), b(x) > 0,
inf a(x), inf b(x)/= 0, f(x, u) satisfy the following conditions:

(A) f ∈ C(RN × R,R), limt→ 0(f(x, t)/|t|p−1) = 0, and lim|t|→∞(f(x, t)/|t|p−1+p2/N) = 0
uniformly in x ∈ RN ,

(B) lim|x|→∞f(x, t) = f(t) uniformly for t in bounded subsets of R.
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Remark 1.1. We can see if a(x) ∈ LN/p(RN), b(x) ∈ LN/q(RN), then

∫

RN

a(x)|u|pdx <

(∫

RN

a(x)N/p
)1−p/p∗(∫

RN

up∗
)p/p∗

< ∞,

∫

RN

b(x)|u|qdx <

(∫

RN

b(x)N/q
)1−q/q∗(∫

RN

uq∗
)q/q∗

< ∞,

(1.2)

where p∗ = Np/(N − p) and q∗ = Nq/(N − q).

Problem (1.1) comes, for example, from a general reaction-diffusion system:

ut = div[D(u)∇u] + c(x, u), (1.3)

whereD(u) = (|∇u|p−2+ |∇u|q−2). This system has a wide range of applications in physics and
related sciences such as biophysics, plasma physics, and chemical reaction design. In such
applications, the function u describes a concentration, the first term on the right-hand side of
(1.3) corresponds to the diffusion with a diffusion coefficient D(u); whereas the second one
is the reaction and relates to source and loss processes. Typically, in chemical and biological
applications, the reaction term c(x, u) is a polynomial of uwith variable coefficients.

When p = q = 2, problem (1.1) is a normal Schrodinger equation which has been
extensively studied, for example, [1–8]. The authors used many different methods to study
the equation. In [8], the authors established some embedding results of weighted Sobolev
spaces of radially symmetric functions which are used to obtain ground state solutions. In
[6], the authors studied the equation depending upon the local behavior of V near its global
minimum. In [3], the authors used spectral properties of the Schrodinger operator to study
nonlinear Schrodinger equations with steep potential well. In [9], the author imposed on
functions k andK conditions ensuring that this problem can be written in a variational form.
We know that W1,p(RN) is not a Hilbert space for 1 < p < N, except for p = 2. The space
W1,p(RN)with p /= 2 does not satisfy the Lieb lemma (e.g., see [9]). And RN results in the loss
of compactness. So there are many difficulties to study equation (1.1) of p = q /= 2 by the usual
methods. There seems to be little work on the case p = q /= 2 for problem (1.1), to the best of
our knowledge. In this paper, we overcome these difficulties and study (1.1) of p ≥ q ≥ 2.

Recently, when p = q, a(x) = b(x), and f(x, u) = 0 then the problem is the following
eigenvalue problem has been studied by many authors:

−div
(
|∇u|p−2∇u

)
= V (x)|u|p−2u,

u ∈ D
1,p
0 (Ω), u /= 0,

(1.4)

where Ω ⊆ RN . We can see [10–13]. In [13], Szulkin and Willem generalized several earlier
results concerning the existence of an infinite sequence of eigenvalues.
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When p = q and a(x), b(x) is constant then the problem is the following quasilinear
elliptic equation:

−div
(
|∇u|p−2∇u

)
+ λ|u|p−2u = f(x, u), in Ω,

u ∈ W
1,p
0 (Ω), u /= 0,

(1.5)

where 1 < p < N, N ≥ 3, λ is a parameter,Ω is an unbounded domain in RN . There are many
results about it we can see [14–18]. Because of the unboundedness of the domain, the Sobolev
compact embedding does not hold. There are many methods to overcome the difficulty. In
[15], the authors used the concentration-compactness principle posed by P. L. Lions and the
mountain pass lemma to solve problem (1.5). In [17, 18], the authors studied the problem in
symmetric Sobolev spaces which possess Sobolev compact embedding. By the result and a
min-max procedure formulated by Bahri and Li [16], they considered the existence of positive
solutions of

−div
(
|∇u|p−2∇u

)
+ up−1 = q(x)uα in RN, (1.6)

where q(x) satisfies some conditions. We can see if λ is function, then it cannot easily be
proved by the above methods.

When a(x), b(x) is positive constant, He and Li used the mountain pass theorem and
concentration-compactness principle to study the following elliptic problem in [19]:

−div
(
|∇u|p−2∇u

)
− div

(
|∇u|q−2∇u

)
+m|u|p−2u + n|u|q−2u = f(x, u) in RN,

u ∈ W1,p ∩W1,q(RN
)
,

(1.7)

where m,n > 0, N ≥ 3, and 1 < q < p < N, f(x, u)/up−1 tends to a positive constant l as
u → +∞. The authors prove in this paper that the problem possesses a nontrivial solution
even if the nonlinearity f(x, t) does not satisfy the Ambrosetti-Rabinowitz condition.

In [20], Li and Liang used the mountain pass theorem to study the following elliptic
problem:

−div
(
|∇u|p−2∇u

)
− div

(
|∇u|q−2∇u

)
+ |u|p−2u + |u|q−2u = f(x, u) in RN,

u ∈ W1,p ∩W1,q(RN
)
,

(1.8)

where 1 < q < p < N. They generalized a similar result for p-Laplacian type equation in [15].
It is our purpose in this paper to study the existence of ground state to the problem

(1.1) in RN . We call any minimizer a ground state for (1.1). We inspired by [9, 16, 21] try to
use constrained minimization method to study problem (1.1). Let us point out that although
the idea was used before for other problems, the adaptation to the procedure to our problem
is not trivial at all. But since both p- and q-Laplacian operators are involved, careful analysis is
needed. A typical difficulty for problem (1.1) in RN is the lack of compactness of the Sobolev
imbedding due to the invariance of RN under the translations and rotations. However, our
method has essential difference with the methods used in [19, 20]. In order to obtain the
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results, we have to overcome two main difficulties; one is that RN results in the loss of
compactness; the other is that W1,p(RN) is not a Hilbert space for 1 < p < N and it does
not satisfy the Lieb lemma, except for p = 2.

The paper is organized as follows. In Section 2, we state some condition and many
lemmas which we need in the proof of the main theorem. In Section 3, we give the proof of
the main result of the paper.

2. Preliminaries

Let

F(x, t) =
∫ t

0
f(x, s)ds, F(t) =

∫ t

0
f(s)ds (2.1)

andwe define variational functionals I : W1,p∩W1,q(RN) → R and I∞ : W1,p∩W1,q(RN) → R
by

I(u) =
1
p

∫

RN

|∇u|pdx +
1
q

∫

RN

|∇u|qdx −
∫

RN

F(x, u)dx,

I∞(u) =
1
p

∫

RN

|∇u|pdx +
1
q

∫

RN

|∇u|qdx −
∫

RN

F(u)dx.

(2.2)

Solutions to problem (1.1)will be found as minimizers of the variational problem

Iλ = inf
{
I(u);u ∈ W1,p

(
RN

)
,

∫

RN

a(x)|u|p + b(x)|u|qdx = λ

}
, λ > 0. (Iλ)

To find a solution of problem (Iλ)we introduce the (limit) variational problem

I∞λ = inf
{
I∞(u);u ∈ W1,p

(
RN

)
,

∫

RN

a(x)|u|p + b(x)|u|qdx = λ

}
, λ > 0. (I∞

λ
)

Lemma 2.1. Let (un) ⊆ W
1,p
0 (Ω) a bounded sequence and p ≥ 2. Going if necessary to a subsequence,

one may assume that un ⇀ u in W
1,p
0 (Ω), un → u almost everywhere, where Ω ⊆ RN is an open

subset.
Then,

lim
n→∞

∫

Ω
|∇un|pdx ≥ lim

n→∞

∫

Ω
|∇un − ∇u|pdx + lim

n→∞

∫

Ω
|∇u|pdx. (2.3)
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Proof. When p = 2 from Brezis-Lieb lemma (see [21, Lemma 1.32]) we have

lim
n→∞

∫

Ω
|∇un|2dx = lim

n→∞

∫

Ω
|∇un − ∇u|2dx + lim

n→∞

∫

Ω
|∇u|2dx, (2.4)

when 3 ≥ p > 2, using the lower semicontinuity of the Lp-norm with respect to the weak
convergence and un ⇀ u inW1,p(Ω), we deduce

〈
|∇un|p−2∇un,∇un

〉
≥
〈
|∇u|p−2∇u,∇u

〉
+ o(1),

lim
n→∞

〈
|∇un − ∇u|p−2∇un,∇un

〉
≥ lim

n→∞

〈
|∇un − ∇u|p−2∇un,∇u

〉

= lim
n→∞

〈
|∇un − ∇u|p−2∇u,∇un

〉

= lim
n→∞

〈
|∇un − ∇u|p−2∇u,∇u

〉
.

(2.5)

Then,

lim
n→∞

∫

Ω

(|∇un|p − |∇u|p)dx

= lim
n→∞

∫

Ω
|∇un|p−2

(
|∇un|2 − |∇u|2

)
dx + lim

n→∞

∫

Ω

(
|∇un|p−2 − |∇u|p−2

)
|∇u|2dx

= lim
n→∞

∫

Ω

(
|∇un|p−2 + |∇u|p−2

)(
|∇un|2 − |∇u|2

)
dx

+ lim
n→∞

∫

Ω

(
|∇un|p−2|∇u|2 − |∇u|p−2|∇un|2

)
dx.

(2.6)

From un ⇀ u inW1,p(Ω),

lim
n→∞

∫

Ω

(
|∇un|p−2|∇u|2 − |∇u|p−2|∇un|2

)
dx = 0. (2.7)

So

lim
n→∞

∫

Ω

(|∇un|p − |∇u|p)dx = lim
n→∞

∫

Ω

(
|∇un|p−2 + |∇u|p−2

)(
|∇un|2 − |∇u|2

)
dx

≥ lim
n→∞

∫

Ω
|∇un − ∇u|p−2

(
|∇un|2 − |∇u|2

)
.

(2.8)
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So we have

〈
|∇un|p−2∇un,∇un

〉
+
〈
|∇un − ∇u|p−2∇u,∇un

〉
+
〈
|∇un − ∇u|p−2∇un,∇u

〉

≥
〈
|∇un − ∇u|p−2∇un,∇un

〉
+
〈
|∇un − ∇u|p−2∇u,∇u

〉
+
〈
|∇u|p−2∇u,∇u

〉
+ o(1).

(2.9)

Then,

〈
|∇un|p−2∇un,∇un

〉
≥
〈
|∇un − ∇u|p−2∇un − ∇u,∇un − ∇u

〉
+
〈
|∇u|p−2∇u,∇u

〉
+ o(1)

lim
n→∞

∫

Ω
|∇un|pdx ≥ lim

n→∞

∫

Ω
|∇un − ∇u|pdx + lim

n→∞

∫

Ω
|∇u|pdx,

(2.10)

when p > 3, there exists a k ∈ N that 0 < p− k ≤ 1. Then, we only need to prove the following
inequality:

lim
n→∞

∫

Ω

(|∇un|p − |∇u|p)dx ≥ lim
n→∞

∫

Ω
|∇un − ∇u|p−k

(
|∇un|k − |∇u|k

)
. (2.11)

The proof of it is similar to the above, so we omit it here. So, the lemma is proved.

Lemma 2.2. Let {un} be a bounded sequence inW1,p(RN) such that

lim
n→∞

sup
y∈RN

∫

B(y,R)
u
q
ndx = 0, p ≤ q < p∗ (2.12)

for some R > 0. Then un → 0 in Ls(RN) for p < s < p∗, where p∗ = Np/(N − p).

Proof. We consider the case N ≥ 3. Let q < s < p∗ and u ∈ W1,p(RN). Holder and Sobolev
inequalities imply that

|u|Ls(B(y,R)) ≤ |u|1−λLq(B(y,R))|u|λLp∗ (B(y,R))

≤ C|u|1−λLq(B(y,R))

[∫

(B(y,R))

(|u|p + |∇u|p)
]λ/p

,

(2.13)

where λ = ((s − q)/(p∗ − q))(p∗/s). Choosing λ = p/s, we obtain

∫

B(y,R)
|u|s ≤ Cs|u|(1−λ)sLq(B(y,R))

∫

B(y,R)

(|u|p + |∇u|p). (2.14)
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Now, coveringRN by balls of radius r, in such a way that each point ofRN is contained
in at most N + 1 balls, we find

∫

RN

|u|s ≤ (N + 1)Cs sup
y∈RN

[∫

B(y,R)
|u|q

](1−λ)s/q∫

B(y,R)

(|u|p + |∇u|p). (2.15)

Under the assumption of the lemma, un → 0 in Ls(RN), p < s < p∗. The proof is
complete.

Corollary 2.3. Let {um} be a sequence in W1,p(RN) satisfying 0 < ρ =
∫
RN |um|pdx and such that

um ⇀ 0 in W1,p(RN). Then there exist a sequence {ym} ⊂ RN and a function 0/=u ∈ W1,p(RN)
such that up to a subsequence um(· + ym) ⇀ u inW1,p(RN).

Lemma 2.4. Let f ∈ C(RN × R) and suppose that

lim
|s|→∞

f(x, s)

|s|p∗−1
= 0 (2.16)

uniformly in x ∈ RN and

∣∣f(x, s)∣∣ ≤ C
(
|s|p−1 + |s|p∗−1

)
(2.17)

for all x ∈ RN and t ∈ R. If um ⇀ u0 inW1,p(RN) and um → u0 a.e. on RN , then

lim
m→∞

[∫

RN

F(x, um)dx −
∫

RN

F(x, u0)dx −
∫

RN

F(x, um − u0)dx
]
= 0, (2.18)

where F(x, u) =
∫u
0f(x, t)dt.

Proof. Let R > 0. Applying the mean value theorem we have

∫

RN

F(x, um)dx =
∫

|x|≤R
F(x, um)dx +

∫

|x|≥R
F(x, u0 + (um − u0))dx

=
∫

|x|≤R
F(x, um)dx +

∫

|x|≥R

(
F(x, um − u0) + f(x, θu0 + (um − u0))u0

)
dx,

(2.19)
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where θ depends on x and R and satisfies 0 < θ < 1. We now write

∣∣∣∣
∫

RN

F(x, um)dx −
∫

RN

F(x, u0)dx −
∫

RN

F(x, um − u0)dx
∣∣∣∣

≤
∣∣∣∣∣
∫

|x|≤R
(F(x, um) − F(x, u0))dx

∣∣∣∣∣ +
∣∣∣∣∣
∫

|x|≥R
F(x, u0)dx

∣∣∣∣∣

+

∣∣∣∣∣
∫

|x|≤R
F(x, um − u0)dx

∣∣∣∣∣ +
∣∣∣∣∣
∫

|x|≥R
f(x, θu0 + (um − u0)u0)dx

∣∣∣∣∣.

(2.20)

For each fixed R > 0

lim
m→∞

∫

|x|≤R
(F(x, um) − F(x, u0))dx = 0,

lim
m→∞

∫

|x|≤R
F(x, um − u0)dx = 0.

(2.21)

Applying (2.20) and the Holder inequality we get that

∣∣∣∣∣
∫

|x|≥R
f(x, θu0 + (um − u0)u0)dx

∣∣∣∣∣

≤ C

∫

|x|≥R

(
|θu0 + (um − u0)|p−1|u0| + |θu0 + (um − u0)|p

∗−1|u0|
)
dx

≤ C

(∫

|x|≥R
|u0|p

)1/p(∫

|x|≥R
|θu0 + (um − u0)|p

)(p−1)/p

+ C

(∫

|x|≥R
|u0|p

∗
)1/p∗(∫

|x|≥R
|θu0 + (um − u0)|p

∗
)(p∗−1)/p∗

.

(2.22)

Since {um} is bounded inW1,p(RN) we see that

lim
R→∞

∣∣∣∣∣
∫

|x|≥R
f(x, θu0 + (um − u0)u0)dx

∣∣∣∣∣ = 0. (2.23)

The result follows from (2.21) and (2.23).

Lemma 2.5. Functions Iλ and I∞λ are continuous on (0,∞) and minimizing sequences for problems
(Iλ) and (I∞

λ
) are bounded inW1,p(RN).
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Proof. From condition (A), we observe that for each ε > 0 there exists Cε > 0 such that

∣∣∣F(u)
∣∣∣, |F(x, u)| ≤ ε

∫

RN

|u|pdx + ε

∫

RN

|u|p+p2/Ndx + Cε

∫

RN

|u|αdx, (2.24)

where p < α < p + p2/N and ε > 0.
By the Holder and Sobolev inequalities we have

∫

RN

|u|p+p2/Ndx =
∫

RN

|u|p(p∗−p−p2/N)/(p∗−p)+p∗(p2/N)/(p∗−p)dx

≤
(∫

RN

|u|p
)(p∗−p−p2/N)/(p∗−p)(∫

RN

|u|p∗
)p2/N/(p∗−p)

≤ S−1
(∫

RN

|u|p
)p/N∫

RN

|∇u|pdx,

(2.25)

where |u|pp∗ ≤ S−1|∇u|pp.
Similarly we have

∫

RN

|u|αdx =
∫

RN

|u|p((p∗−α)/(p∗−p))+p∗((α−p)/(p∗−p))dx

≤
(∫

RN

|u|pdx
)(p∗−α)/(p∗−p)(∫

RN

|u|p∗dx
)(α−p)/(p∗−p)

≤ S−p∗(α−p)/p(p∗−p)
(∫

RN

|u|pdx
)(p∗−α)/(p∗−p)(∫

RN

|∇u|pdx
)p∗(α−p)/p(p∗−p)

.

(2.26)

Consequently by the Young inequality we have

∫

RN

|u|αdx ≤ η

∫

RN

|∇u|pdx +K
(
η
)(∫

RN

|u|αdx
)p(p∗−α)/(p2p∗−p2−p∗α)

(2.27)

for η > 0, where K(η) > 0 is a constant.
Because u ∈ W1,p ∩W1,q(RN) so we can by Sobolev embedding and λ =

∫
RNa(x)|u|p +

b(x)|u|qdx letting λ̂ =
∫
RN |u|pdx < ∞, we derive the following estimates for I(u) and I∞(u):

I(u), I∞(u) ≥
(
1
p
− εS−1λ̂p/N − Cεη

)∫

RN

|∇u|pdx

+
1
q

∫

RN

|∇u|qdx − ελ̂ −K
(
η
)
Cελ̂

p(p∗−α)/(p2p∗−p2−p∗α).

(2.28)
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Choosing ε > 0 and η > 0 so that

1
p
− εS−1λ̂p/N − Cεη > 0, (2.29)

we see that Iλ and I∞λ are finite and moreover minimizing sequences for problems (Iλ) and
(I∞

λ
) are bounded. It is easy to check that Iλ and I∞

λ
are continuous on (0,∞).

We observe that I∞μ ≤ 0 for all μ > 0. Indeed, let u ∈ C∞
0 (RN) and

∫

RN

a(x)
∣∣∣∣
u(x/σ)
σN/q

∣∣∣∣
p

dx +
∫

RN

b(x)
∣∣∣∣
u(x/σ)
σN/q

∣∣∣∣
q

dx = μ, (2.30)

then for each σ > 0 we have

I∞μ ≤ 1
pσp+(p/q−1)N

∫

RN

|∇u|pdx +
1

qσq

∫

RN

|∇u|qdx − σN

∫

RN

F
(
σ−N/qu

)
dx −→ 0 (2.31)

as σ → ∞.

Lemma 2.6. Suppose that I∞
λ

< 0 for some λ > 0, then I∞μ /μ is nonincreasing on (0,∞) and
limμ→ 0+(I∞μ /μ) = 0. Moreover there exists λ∗ ≤ λ such that

I∞μ
μ

>
I∞
λ

λ
for μ ∈ (0, λ∗). (2.32)

Proof. We observe that

inf
I∞(u)∫

RNa(x)|u|p + b(x)|u|qdx

= inf
I∞

(
u
(
x/σ1/N))

∫
RNa

(
x/σ1/N

)∣∣u(x/σ1/N
)∣∣pdx + b

(
x/σ1/N

)∣∣u(x/σ1/N
)∣∣qdx .

(2.33)

So if
∫
RNa(x)|u|p + b(x)|u|qdx = k and

∫
RNa(x/σ1/N)|u(x/σ1/N)|pdx + b(x/σ1/N)|u(x/

σ1/N)|qdx = k then I∞(u(x)) = I∞(u(x/σ1/N)) = I∞k .
We have that if σ > 0 and α > 0 with

∫
RNa(x)|u|p + b(x)|u|qdx = α, then

∫

RN

a

(
x

σ1/N

)∣∣∣∣u
(

x

σ1/N

)∣∣∣∣
p

dx + b

(
x

σ1/N

)∣∣∣∣u
(

x

σ1/N

)∣∣∣∣
q

dx = σα, I∞
(
u

(
x

σ1/N

))
= I∞σα.

(2.34)
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Consequently, for all α1 > 0 and α2 > 0 we have

I∞α1
= inf

{
1
p

(
α1

α2

)(N−p)/N∫

RN

|∇u|pdx +
1
q

(
α1

α2

)(N−q)/N∫

RN

|∇u|qdx − α1

α2

∫

RN

F(u)dx;

∫

RN

a(x)|u|p + b(x)|u|qdx = α2

}
.

(2.35)

If 0 < α1 < α2, then for each ε > 0 there exists u ∈ W1,p ∩W1,q(RN) with
∫
RNa(x)|u|p +

b(x)|u|qdx = α2 such that

I∞α1
+ ε >

1
p

(
α1

α2

)(N−p)/N∫

RN

|∇u|pdx +
1
q

(
α1

α2

)(N−q)/N∫

RN

|∇u|qdx − α1

α2

∫

RN

F(u)dx

≥ α1

α2

(
1
p

∫

RN

|∇u|pdx +
1
q

∫

RN

|∇u|qdx −
∫

RN

F(u)dx
)

≥ α1

α2
I∞α2

.

(2.36)

This inequality yields

I∞α1

α1
>

I∞α2

α2
. (2.37)

Since I∞μ ≤ 0 for all μ > 0, we see that

lim
μ→ 0

I∞μ
μ

= c ≤ 0. (2.38)

We claim that c = 0. Indeed, it follows from (2.36) and from the estimate obtained in the
Lemma 2.1 that for every 0 < μ < λ there exists an uμ ∈ W1,p ∩W1,q(RN), with

∫
RNa(x)|uμ|p +

b(x)|uμ|qdx = λ such that

I∞μ + μ2 >
1
p

(μ
λ

)(N−p)/N∫

RN

∣∣∇uμ

∣∣pdx +
1
q

(μ
λ

)(N−q)/N∫

RN

∣∣∇uμ

∣∣qdx − μ

λ

∫

RN

F
(
uμ

)
dx

≥ μ

λ

(
1
p

∫

RN

∣∣∇uμ

∣∣pdx +
1
q

∫

RN

∣∣∇uμ

∣∣qdx −
∫

RN

F
(
uμ

)
dx

)

≥ μ

λ

(
C1(λ)

∫

RN

∣∣∇uμ

∣∣pdx + C2(λ)
∫

RN

∣∣∇uμ

∣∣qdx − C3(λ)
)
,

(2.39)

where C1(λ) > 0, C2(λ) > 0, and C3(λ) > 0 are constants. Hence

μ2 ≥ μ

λ

(
C1(λ)

∫

RN

∣∣∇uμ

∣∣pdx + C2(λ)
∫

RN

∣∣∇uμ

∣∣qdx − C3(λ)
)
, (2.40)
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that is,
∫
RN |∇uμ|pdx ≤ C4(λ),

∫
RN |∇uμ|pdx ≤ C5(λ) for some constant C4(λ), C5(λ) > 0

independent of μ. We see that there exists ε0 > 0 and a sequence μn → 0 such that

∫

RN

∣∣∇uμn

∣∣pdx ≥ ε0,

∫

RN

∣∣∇uμn

∣∣qdx ≥ ε0. (2.41)

If
∫
RN |∇uμn |pdx ≥ ε0 then

∫
RN |∇uμn |qdx ≥ η ≥ 0.

Then, using the fact that
∫
RNF(uμn)dx ≤ C for some constant C > 0, we get

I∞μn

μn
+ μn ≥ 1

p
λ−(N−p)/Nμn

−p/Nε0 +
1
q
λ−(N−q)/Nμn

−q/Nη − C

λ
−→ ∞ (2.42)

as μn → 0 and this contradicts the fact that limμ→ 0(I∞μ /μ) = c ≤ 0. Therefore

lim
μ→ 0

∫

RN

∣∣∇uμ

∣∣pdx = 0, lim
μ→ 0

I∞μ = 0, (2.43)

when
∫
RN |∇uμn |pdx ≥ ε0 > 0 we can use the samemethod to obtain that limμ→ 0

∫
RN |∇uμ|qdx =

0.
So

lim
μ→ 0

∫

RN

∣∣∇uμ

∣∣pdx = lim
μ→ 0

∫

RN

∣∣∇uμ

∣∣qdx = 0, lim
μ→ 0

I∞μ = 0, (2.44)

this implies that limμ→ 0
∫
RNF(uμ)dx = 0 and consequently

I∞μ
μ

+ μ ≥ − 1
λ

∫

RN

F
(
uμ

)
dx −→ 0. (2.45)

This shows that limμ→ 0+(I∞μ /μ) = 0. Finally, we observe that limμ→ 0(I∞μ /μ) = 0 > I∞λ /λ
which obtain (2.32).

3. Proof of Main Theorems

Theorem 3.1. Suppose that I∞λ < 0 for some λ > 0, then there exists 0 < α0 ≤ λ such that problem
(I∞α0

) has a minimizer. Moreover each minimizing sequence for (I∞α0
) up to a translation is relatively

compact inW1,p ∩W1,q(RN).

Proof. According to Lemma 2.6 the set

{
α1;

I∞α
α

>
I∞
λ

λ
for each α ∈ (0, α1)

}
(3.1)
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is nonempty. We define

α0 = sup
{
α1;

I∞α
α

>
I∞
λ

λ
for each α ∈ (0, α1)

}
. (3.2)

It follows from the continuity of I∞
λ

that

0 < α0 ≤ λ ,

I∞α0
=

α0

λ
I∞λ < 0,

I∞α >
α

λ
I∞λ ,

(3.3)

for all 0 < α < α0. This yields

I∞α0
=

α0

λ
I∞λ =

α0 − α

λ
I∞λ +

α

λ
I∞λ < I∞α0−α + I∞α (3.4)

for each α ∈ (0, α0).
Let {um} ⊂ W1,p ∩W1,q(RN) be a minimizing sequence for I∞α0

. Since {um} is bounded
we may assume that um ⇀ u in W1,p ∩W1,q(RN), um → u a.e. on RN . First we consider the
case u ≡ 0. In this case by Lemma 2.2 um → 0 for q < α < p∗ or Corollary there exists a
sequence {um} ⊂ RN such that um(· + ym) ⇀ v/= 0 in W1,p ∩W1,q(RN).

In the first case limm→∞
∫
RNF(um)dx = 0 and consequently

I∞α0
= lim

m→∞
I∞(um) = lim

m→∞

(
1
p

∫

RN

|∇um|pdx +
1
q

∫

RN

|∇um|qdx −
∫

RN

F(um)dx
)

≥ 0, (3.5)

which is impossible. Hence um(· + ym) ⇀ v/= 0 in W1,p ∩W1,q(RN) holds and letting vm(x) =
um(x + ym) from Brezis-Lieb lemma (see [21, Lemma 1.32]) we have

∫

RN

a(x)|um|p + b(x)|um|qdx =
∫

RN

a
(
x + ym

)|vm|p + b
(
x + ym

)|vm|qdx

=
∫

RN

a
(
x + ym

)|v|p + b
(
x + ym

)|v|qdx

+
∫

RN

a
(
x + ym

)|vm − v|p

+ b
(
x + ym

)|vm − v|qdx + o(1).

(3.6)

We now show that

∫

RN

a
(
x + ym

)|v|p + b
(
x + ym

)|v|qdx = α0. (3.7)



14 Boundary Value Problems

In the contrary case from Lemma 2.1 we have

0 <

∫

RN

a
(
x + ym

)|v|p + b
(
x + ym

)|v|qdx < α0. (3.8)

By (3.21) we have

lim
m→∞

∫

RN

a
(
x + ym

)|vm − v|p + b
(
x + ym

)|vm − v|qdx −→ α0 − λ,

λ =
∫

RN

a
(
x + ym

)|v|p + b
(
x + ym

)|v|qdx.
(3.9)

On the other hand, by Lemmas 2.1 and 2.4 we have

∫

RN

F(vm)dx =
∫

RN

F(v)dx +
∫

RN

F(vm − v)dx + o(1),

∫

RN

|∇vm|p + |∇vm|qdx ≥
∫

RN

|∇v|p + |∇v|qdx +
∫

RN

|∇(vm − v)|p + |∇(vm − v)|qdx + o(1),

(3.10)

and this implies that

I∞α0
≥ I∞(v) + I∞(vm − v) + o(1) ≥ I∞λ + I∞α0−λ0 + o(1). (3.11)

Lettingm → ∞we get I∞α0
≥ I∞

λ
+ I∞

α0−λ0 which contradicts (3.4). Therefore
∫
RNa(x + ym)|v|p +

b(x+ym)|v|qdx = α0. It then follows from (3.6) that vm → v in Lp∩Lq(RN). By the Gagliardo-
Nirenberg inequality vm → v in Ls(RN), q ≤ s < ∞. Obviously this implies that I∞α0

= I∞(v) =
I∞(v(·−ym)) and

∫
RNa(x)|v(·−ym)|p+b(x)|v(·−ym)|qdx = α0. To complete the proof we show

that vm → v inW1,p ∩W1,q(RN). Indeed, we have

I∞α0
=

1
p

∫

RN

|∇vm|pdx +
1
q

∫

RN

|∇vm|qdx −
∫

RN

F(vm)dx + o(1)

≥ 1
p

∫

RN

|∇v|pdx +
1
q

∫

RN

|∇v|qdx +
1
p

∫

RN

|∇vm − v|pdx +
1
q

∫

RN

|∇vm − v|qdx

−
∫

RN

F(v)dx +
∫

RN

(
F(v) − F(vm)

)
dx + o(1).

(3.12)

Since limm→∞
∫
RN (F(v)−F(vm))dx = 0, we deduce from (3.12) that∇vm → ∇v in Lp∩Lq(RN)

and hence vm → v inW1,p ∩W1,q(RN).
If u/= 0, we repeat the previous argument to show that I∞α0

is attained.

Theorem 3.2. Suppose that F(x, t) ≥ F(t) on RN × R and that Iλ < 0 for some λ > 0, then the
infimum Iλ0 is attained for some 0 < λ0 ≤ λ.
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Proof. Since F(x, t) ≥ F(t) on RN × R we have Iμ ≤ I∞μ for μ ≥ 0. We distinguish two cases: (i)
Iλ = I∞

λ
< 0, (ii) Iλ < I∞

λ
.

Case (i). By Theorem 3.1 there exists λ0 ∈ (0, λ] such that

I∞λ0 = I∞(u),
∫

RN

a(x)|u|p + b(x)|u|qdx = λ0 for some u ∈ W1,p ∩W1,q
(
RN

)
. (3.13)

Thus

Iλ0 ≤ I(u) =
1
p

∫

RN

|∇u|pdx +
1
q

∫

RN

|∇u|qdx −
∫

RN

F(x, u)dx

≤ 1
p

∫

RN

|∇u|pdx +
1
q

∫

RN

|∇u|qdx −
∫

RN

F(u)dx = I∞(u) = I∞λ0 .

(3.14)

If Iλ0 = I∞
λ0
, then I also attains its infimum Iλ0 at u. Therefore it remains to consider the case

Iλ0 < I∞
λ0
. Consequently we need to prove the following claim.
If Iλ < I∞λ for some λ > 0, then there exists α0 ∈ (0, λ] such that problem (Iα0) has a

solution. This obviously completes the proof of case (i) and also provides the proof of case
(ii).

By virtue of Lemma 2.5, Iβ + I∞λ−β is continuous for β ∈ [0, λ] and also I0 = I∞0 = 0. If
Iλ < I∞

λ
for some λ > 0, then there exists γ > 0 such that

Iλ < Iβ + I∞λ−β (3.15)

for all β ∈ [0, γ). Let

α0 = sup
{
γ ; Iλ < Iβ + I∞λ−β, for 0 ≤ β < γ

}
. (3.16)

Then we have

Iλ = Iα0 + I∞λ−α0
,

Iλ < Iα + I∞λ−α
(3.17)

for 0 ≤ α < α0. This implies that

Iα0 + I∞λ−α0
= Iλ < I∞λ ≤ 0, (3.18)

and hence

Iα0 < I∞λ − I∞λ−α0
≤ I∞α0

≤ 0, (3.19)

we show that Iα0 is attained by a u ∈ W1,p ∩ W1,q(RN) and every minimizing sequence for
Iα0 is relatively compact inW1,p ∩W1,q(RN). Let {um} be a minimizing sequence for Iα0 . Since
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{um} is bounded, we may assume that um ⇀ u in W1,p ∩ W1,q(RN), um ⇀ u a.e. on RN .
Arguing indirectly we assume that u ≡ 0 on RN . We see that

lim
m→∞

∫

B(0,R)
|F(x, um)|dx = lim

m→∞

∫

B(0,R)

∣∣∣F(um)
∣∣∣dx = 0 (3.20)

for each R > 0. We now write

I(um) =
1
p

∫

RN

|∇um|pdx +
1
q

∫

RN

|∇um|qdx −
∫

RN

F(x, um)dx

= I∞(um) +
∫

RN

(
F(um) − F(x, um)

)
dx.

(3.21)

We show that

lim
m→∞

∫

RN

(
F(um) − F(x, um)

)
dx = 0. (3.22)

Towards this end we write

∫

RN

∣∣∣F(um) − F(x, um)
∣∣∣dx

≤
∫

B(0,R)
|F(x, um)|dx +

∫

B(0,R)

∣∣∣F(um)
∣∣∣dx

+

(∫

|x|≥R,|um|≤δ
+
∫

|x|≥R,δ≤|um|≤1/δ
+
∫

|x|≥R,|um|>1/δ

)∣∣∣F(um) − F(x, um)
∣∣∣.

(3.23)

We now define the following quantities:

ε1(δ) = sup
0<|t|<δ,x∈RN

∣∣∣F(t) − F(x, t)
∣∣∣

|t|p

ε(R) = sup
δ≤|t|≤1/δ,|x|≥R

∣∣∣F(t) − F(x, t)
∣∣∣,

ε2(δ) = sup
|t|≥1/δ

∣∣∣F(t) − F(x, t)
∣∣∣

|t|pN/(N−p) .

(3.24)
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It follows from assumption (A) that limδ→ 0ε1(δ) = limδ→ 0ε2(δ) = 0 and by
(B) limR→∞ε(R) = 0 for each fixed δ > 0. Inserting these quantities into (3.23) we derive
the following estimate:

∫

RN

∣∣∣F(um) − F(x, um)
∣∣∣dx

≤ ε1(δ)
∫

RN

|um|pdx +
ε(R)
δp

∫

RN

|um|pdx

+ ε2(δ)
∫

RN

|um|pN/(N−p)dx +
∫

B(0,R)
|F(x, um)|dx +

∫

B(0,R)

∣∣∣F(um)
∣∣∣dx.

(3.25)

First letting m → ∞, R → ∞, and then δ → 0, relation (3.22) readily follows. Combining
(3.21) and (3.22) we obtain

I(um) = I∞(um) + o(1), (3.26)

which implies I(um) ≥ I∞α0
+ o(1) and consequently Iα0 ≥ I∞α0

and this contradicts (3.19).
Therefore 0 <

∫
RNa(x)|u|p + b(x)|u|qdx ≤ α0. Suppose that λ =

∫
RNa(x)|u|p + b(x)|u|qdx < α0.

Writing

∫

RN

|∇um|p + |∇um|qdx ≥
∫

RN

|∇u|p + |∇u|qdx +
∫

RN

|∇(um − u)|p + |∇(um − u)|qdx + o(1)

∫

RN

a(x)|um|p + b(x)|um|qdx =
∫

RN

a(x)|u|p + b(x)|u|qdx

+
∫

RN

a(x)|um − u|p + b(x)|um − u|qdx + o(1),

(3.27)
∫

RN

F(x, um)dx =
∫

RN

F(x, u)dx +
∫

RN

F(x, um − u)dx + o(1), (3.28)

we deduce that

Iα0 ≥ I(u) + I(um − u) + o(1). (3.29)

By a similar method used to obtain (3.22)we also have

I(um − u) = I∞(um − u) + o(1). (3.30)

Hence the last two relations yield

Iα0 ≥ I(u) + I∞(um − u) + o(1) ≥ Iλ + I∞α0−λ, (3.31)
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and this contradicts (3.19). Consequently
∫
RNa(x)|u|p + b(x)|u|qdx = α0 and (3.27) yields

um → u in Lp ∩ Lq(RN). By the Gagliardo-Nirenberg inequality we have um → u in Ls(RN),
q ≤ s < p∗. This obviously show that Iα0 = I(u) and

∫
RNa(x)|u|p + b(x)|u|qdx = α0; that is, u is

a solution of problem (Iα0). Finally, writing

Iα0 ≥
1
p

∫

RN

|∇u|pdx +
1
q

∫

RN

|∇u|qdx +
1
p

∫

RN

|∇(un − u)|pdx +
1
q

∫

RN

|∇(un − u)|qdx

−
∫

RN

F(u)dx −
∫

RN

(
F(x, um) − F(um)

)
dx +

∫

RN

(
F(u) − F(um)

)
dx + o(1),

(3.32)

and using (3.22) we deduce from this that ∇um → ∇u in Lp ∩ Lq(RN) and hence um → u in
W1,p ∩W1,q(RN).

Theorem 3.3. Suppose that F(x, t) ≥ F(t) on RN × R and that F(ζ) > 0 for some ζ ∈ R, then
problem (Iλ) has a minimizer for some λ > 0.

Proof. The condition F(ζ) > 0 for some ζ > 0 implies that
∫
RNF(u(x))dx > 0 for some u ∈

W1,p ∩W1,q(RN). Letting v(x) = u(x/σ), σ > 0, we have

I∞(v) = σN

(
1

pσp

∫

RN

|∇u|pdx +
1

qσq

∫

RN

|∇u|qdx −
∫

RN

F(u(x))dx
)

< 0 (3.33)

for σ > 0 sufficiently large. Hence there exists λ > 0 such that Iλ ≤ I∞
λ

< 0 and the result
follows from Theorem 3.2.

Remark 3.4. It is a standard argument that minimizers of Iμ correspond to weak solutions of
problem (1.1)with λ appearing as a Lagrange multiplier. Such a λ is then called the principal
eigenvalue for problem (1.1).

Remark 3.5. If a ∈ LN/p(RN), b ∈ LN/q(RN), a, b < 0, we can use the similar method to study
it, where Iλ = inf{I(u);u ∈ W1,p ∩ W1,q(RN),

∫
RNa

−(x)|u|p + b−(x)|u|qdx = λ}, λ > 0, a− =
−a, b− = −b.
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