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1. Introduction and the Main Results

In this paper, we will consider the existence and uniqueness of positive solutions to a class
of second-order singular m-point boundary value problems of the following differential
equation:

−u′′(t) = f(t, u(t), u(t)), t ∈ (0, 1), (1.1)

with

u(0) =
m−2∑

i=1

αiu
(
ηi
)
, u(1) = 0, (1.2)

where 0 < αi < 1, i = 1, 2, . . . , m − 2, 0 < η1 < η2 < · · · < ηm−2 < 1, are constants,
∑m−2

i=1 αi <
1, m ≥ 3, and f satisfies the following hypothesis:
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(H) f(t, u, v) : (0, 1) × (0,+∞) × (0,+∞) → [0,+∞) is continuous, nondecreasing on u,
and nonincreasing on v for each fixed t ∈ (0, 1), there exists a real number b ∈ R+

such that for any r ∈ (0, 1),

f(t, u, rv) ≤ r−bf(t, u, v), ∀(t, u, v) ∈ (0, 1) × (0,+∞) × (0,+∞), (1.3)

there exists a function g : [1,∞) → (0,+∞), g(l) < l, and g(l)/l2 is integrable on
(1,+∞) such that

f(t, lu, v) ≤ g(l)f(t, u, v), ∀(t, u, v) ∈ (0, 1) × (0,+∞) × (0,+∞), l ∈ [1,+∞). (1.4)

Remark 1.1. (i) Inequality (1.3) implies

f(t, u, cv) ≥ c−bf(t, u, v), if c ≥ 1. (1.5)

Conversely, (1.5) implies (1.3).
(ii) Inequality (1.4) implies

f(t, cu, v) ≥
(
g
(
c−1

))−1
f(t, u, v), if 0 < c < 1. (1.6)

Conversely, (1.6) implies (1.4).

Remark 1.2. It follows from (1.3), (1.4) that

f(t, u, u) ≤

⎧
⎪⎪⎨

⎪⎪⎩

g
(u
v

)
f(t, v, v), if u ≥ v > 0,

(v
u

)b
f(t, v, v), if v ≥ u > 0.

(1.7)

When f(t, u) is increasing with respect to u, singular nonlinear m-point boundary
value problems have been extensively studied in the literature, see [1–3]. However, when
f(t, u, v) is increasing on u, and is decreasing on v, the study on it has proceeded very slowly.
The purpose of this paper is to fill this gap. In addition, it is valuable to point out that the
nonlinearity f(t, u, v) may be singular at t = 0, t = 1 and/or v = 0.

When referring to singularity we mean that the functions f in (1.1) are allowed to be
unbounded at the points v = 0, t = 0, and/or t = 1. A function u(t) ∈ C[0, 1]∩C2(0, 1) is called
a C[0, 1] (positive) solution to (1.1) and (1.2) if it satisfies (1.1) and (1.2) (u(t) > 0, for t ∈
(0, 1)). A C[0, 1] (positive) solution to (1.1) and (1.2) is called a smooth (positive) solution if
u′(0+) and u′(1−) both exist (u(t) > 0 for t ∈ (0, 1)). Sometimes, we also call a smooth solution
a C1[0, 1] solution. It is worth stating here that a nontrivial C[0, 1] nonnegative solution to
the problem (1.1), (1.2)must be a positive solution. In fact, it is a nontrivial concave function
satisfying (1.2) which, of course, cannot be equal to zero at any point t ∈ (0, 1).

To seek necessary and sufficient conditions for the existence of solutions to the above
problems is important and interesting, but difficult. Thus, researches in this respect are rare
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up to now. In this paper, we will study the existence and uniqueness of smooth positive
solutions to the second-order singular m-point boundary value problem (1.1) and (1.2). A
necessary and sufficient condition for the existence of smooth positive solutions is given by
constructing lower and upper solutions andwith themaximal principle. Also, the uniqueness
of the smooth positive solutions is studied.

A function α(t) is called a lower solution to the problem (1.1), (1.2), if α(t) ∈ C[0, 1] ∩
C2(0, 1) and satisfies

α′′(t) + f(t, α(t), α(t)) ≥ 0, t ∈ (0, 1),

α(0) −
m−2∑

i=1

αiα
(
ηi
) ≤ 0, α(1) ≤ 0.

(1.8)

Upper solution is defined by reversing the above inequality signs. If there exist a lower
solution α(t) and an upper solution β(t) to problem (1.1), (1.2) such that α(t) ≤ β(t), then
(α(t), β(t)) is called a couple of upper and lower solution to problem (1.1), (1.2).

To prove the main result, we need the following maximal principle.

Lemma 1.3 (maximal principle). Suppose that 0 < η1 < η2 < · · · < ηm−2 < bn < 1, n = 1, 2, . . .,
and Fn = {u(t) ∈ C[0, bn] ∩ C2(0, bn), u(0) −

∑m−2
i=1 αiu(ηi) ≥ 0, u(bn) ≥ 0}. If u ∈ Fn such that

−u′′(t) ≥ 0, t ∈ (0, bn) then u(t) ≥ 0, t ∈ [0, bn].

Proof. Let

−u′′(t) = δ(t), t ∈ (0, bn), (1.9)

u(0) −
m−2∑

i=1

αiu
(
ηi
)
= r1, u(bn) = r2, (1.10)

then r1 ≥ 0, r2 ≥ 0, δ(t) ≥ 0, t ∈ (0, bn).
By integrating (1.9) twice and noting (1.10), we have

u(t) =
1

bn
(
1 −∑m−2

i=1 αi

)
+
∑m−2

i=1 αiηi

[((
1 −

m−2∑

i=1

αi

)
t +

m−2∑

i=1

αiηi

)
r2 + (bn − t)r1

]

+
∫bn

0
Gn(t, s)δ(s)ds +

bn − t

bn
(
1 −∑m−2

i=1 αi

)
+
∑m−2

i=1 αiηi

m−2∑

i=1

αi

∫bn

0
Gn

(
ηi, s

)
δ(s)ds,

(1.11)

where

Gn(t, s) =
1
bn

⎧
⎨

⎩
t(bn − s), 0 ≤ t ≤ s ≤ bn,

s(bn − t), 0 ≤ s ≤ t ≤ bn.
(1.12)
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In view of (1.11) and the definition of Gn(t, s), we can obtain u(t) ≥ 0, t ∈ [0, bn]. This
completes the proof of Lemma 1.3.

Now we state the main results of this paper as follows.

Theorem 1.4. Suppose that (H) holds, then a necessary and sufficient condition for the problem (1.1)
and (1.2) to have smooth positive solution is that

0 <

∫1

0
f(s, 1 − s, 1 − s)ds < ∞. (1.13)

Theorem 1.5. Suppose that (H) and (1.13) hold, then the smooth positive solution to problem (1.1)
and (1.2) is also the unique C[0, 1] positive solution.

2. Proof of Theorem 1.4

2.1. The Necessary Condition

Suppose that w(t) is a smooth positive solution to the boundary value problem (1.1) and
(1.2). We will show that (1.13) holds.

It follows from

w′′(t) = −f(t,w(t), w(t)) ≤ 0, t ∈ (0, 1), (2.1)

that w′(t) is nonincreasing on [0, 1]. Thus, by the Lebesgue theorem, we have

∫1

0
f(t,w(t), w(t))dt = −

∫1

0
w′′(t)dt = w′(0+) −w′(1−) < +∞. (2.2)

It is well known that w(t) can be stated as

w(t) =
∫1

0
G(t, s)f(s,w(s), w(s))ds

+
1 − t

(
1 −∑m−2

i=1 αi

)
+
∑m−2

i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s

)
f(s,w(s), w(s))ds,

(2.3)

where

G(t, s) =

⎧
⎨

⎩
t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.
(2.4)
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By (2.3) and (1.2) we have

1
(
1 −∑m−2

i=1 αi

)
+
∑m−2

i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s

)
f(s,w(s), w(s))ds =

m−2∑

i=1

αi

[
w
(
ηi
)]
, (2.5)

therefore because of (2.3) and (2.5),

w(t) ≥ (1 − t)
m−2∑

i=1

αi

[
w
(
ηi
)]
, t ∈ [0, 1]. (2.6)

Since w(t) is a smooth positive solution to (1.1) and (1.2), we have

w(t) =
∫1

t

(−w′(s)
)
ds ≤ max

t∈[0,1]

∣∣w′(t)
∣∣(1 − t), t ∈ [0, 1]. (2.7)

Let m =
∑m−2

i=1 αiw[(ηi)], M = maxt∈[0,1]|w′(t)|. From (2.6), (2.7) it follows that

m(1 − t) ≤ w(t) ≤ M(1 − t), t ∈ [0, 1]. (2.8)

Without loss of generality we may assume that 0 < m < 1 < M. This together with the
condition (H) implies

∫1

0
f(s, 1 − s, 1 − s)ds ≤

∫1

0
f

(
s,

1
m
w(s),

1
M

w(s)
)
ds

≤ g

(
1
m

)
Mb

∫1

0
f(s,w(s), w(s))ds < +∞.

(2.9)

On the other hand, notice that w(t) is a smooth positive solution to (1.1), (1.2), we
have

f(t,w(t), w(t)) = −w′′(t)/≡ 0, t ∈ (0, 1), (2.10)

therefore, there exists a positive number t0 ∈ (0, 1) such that f(t0, w(t0), w(t0)) > 0.Obviously,
w(t0) > 0 and 1 − t0 > 0. It follows from (1.7) that

0 < f(t0, w(t0), w(t0)) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g

(
w(t0)
1 − t0

)
f(t0, 1 − t0, 1 − t0), if w(t0) ≥ 1 − t0,

(
1 − t0
w(t0)

)b

f(t0, 1 − t0, 1 − t0), if w(t0) ≤ 1 − t0.

(2.11)
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Consequently f(t0, 1 − t0, 1 − t0) > 0, which implies that

∫1

0
f(s, 1 − s, 1 − s)ds > 0. (2.12)

From (2.9) and (2.12) it follows that

0 <

∫1

0
f(s, 1 − s, 1 − s) < +∞, (2.13)

which is the required inequality.

2.2. The Existence of Lower and Upper Solutions

Since g(l)/l2 is integrable on [1,+∞), thus

lim
l→+∞

inf
g(l)
l

= 0. (2.14)

Otherwise, if liml→+∞ inf g(l)/l = m0 > 0, then there exists a real number X > 0, such that
g(l)/l2 ≥ m0/2l when l > X, this contradicts with the condition that g(l)/l2 is integrable on
[1,+∞). By condition (H) and (2.14) we have

f(t, ru, v) ≥ h(r)f(t, u, v), r ∈ (0, 1), (2.15)

lim
r→ 0+

sup
r

h(r)
= lim

p→+∞
sup

p−1

h
(
p−1

) = lim
p→+∞

inf
g
(
p
)

p
= 0, (2.16)

where h(r) = (g(r−1))−1, r ∈ (0, 1).
Suppose that (1.13) holds. Let

b(t) =
∫1

0
G(t, s)f(s, 1 − s, 1 − s)ds

+
1 − t

1 −∑m−2
i=1 αi +

∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s

)
f(s, 1 − s, 1 − s)ds.

(2.17)

Since by (1.13), (2.17) we obviously have

b(t) ∈ C1[0, 1] ∩ C2(0, 1), b′′(t) = −f(t, 1 − t, 1 − t), t ∈ (0, 1), (2.18)

and there exists a positive number k < 1 such that

k(1 − t) ≤ b(t) ≤ 1
k
(1 − t), t ∈ [0, 1]. (2.19)



Boundary Value Problems 7

By (2.14) and (2.16)we see, if 0 < l < k is sufficiently small, then

h(lk) − l ≥ 0, g

(
1
lk

)
− 1

l
≤ 0. (2.20)

Let

H(t) = lb(t), Q(t) =
1
l
b(t), t ∈ [0, 1]. (2.21)

Then from (2.19) and (2.21)we have

lk(1 − t) ≤ H(t) ≤ 1 − t ≤ Q(t) ≤ 1
lk
(1 − t), t ∈ [0, 1]. (2.22)

Consequently, with the aid of (2.20), (2.22) and the condition (H) we have

H ′′(t) + f(t,H(t),H(t)) ≥ f(t, lk(1 − t), 1 − t) − lf(t, 1 − t, 1 − t)

≥ [h(lk) − l]f(t, 1 − t, 1 − t) ≥ 0,
(2.23)

Q′′(t) + f(t, Q(t), Q(t)) ≤ f

(
t,

1
lk
(1 − t), 1 − t

)
− 1

l
f(t, 1 − t, 1 − t)

≤
[
g

(
1
lk

)
− 1

l

]
f(t, 1 − t, 1 − t) ≤ 0.

(2.24)

From (2.17), (2.21) it follows that

H(0) =
m−2∑

i=1

αiH
(
ηi
)
, H(1) = 0, (2.25)

Q(0) =
m−2∑

i=1

αiQ
(
ηi
)
, Q(1) = 0, (2.26)

therefore, (2.23)–(2.26) imply that H(t), Q(t) are lower and upper solutions to the problem
(1.1) and (1.2), respectively.

2.3. The Sufficient Condition

First of all, we define a partial ordering in C[0, 1] ∩ C2(0, 1) by u ≤ v, if and only if

u(t) ≤ v(t), ∀t ∈ [0, 1]. (2.27)
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Then, we will define an auxiliary function. For all u(t) ∈ C[0, 1] ∩ C2(0, 1),

g(t, u(t)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(t,H(t),H(t)), if u(t) ≤ H(t),

f(t, u(t), u(t)), if H(t) ≤ u(t) ≤ Q(t),

f(t, Q(t), Q(t)), if u(t) ≥ Q(t).

(2.28)

By the assumption of Theorem 1.4, we have that g : (0, 1) × (−∞,+∞) → [0,+∞) is
continuous.

Let {bn} be a sequence satisfying ηm−2 < b1 < · · · < bn < bn+1 < · · · < 1, and bn → 1 as
n → +∞, and let {rn} be a sequence satisfying

H(bn) ≤ rn ≤ Q(bn), n = 1, 2, . . . . (2.29)

For each n, let us consider the following nonsingular problem:

−u′′(t) = g(t, u(t)), t ∈ [0, bn],

u(0) −
m−2∑

i=1

αiu
(
ηi
)
= 0, u(bn) = rn.

(2.30)

Obviously, it follows from the proof of Lemma 1.3 that problem (2.30) is equivalent to the
integral equation

u(t) = Anu(t) =

((
1 −∑m−2

i=1 αi

)
t +

∑m−2
i=1 αiηi

)
rn

bn
(
1 −∑m−2

i=1 αi

)
+
∑m−2

i=1 αiηi
+
∫bn

0
Gn(t, s)g(s, u(s))ds

+
bn − t

bn
(
1 −∑m−2

i=1 αi

)
+
∑m−2

i=1 αiηi

m−2∑

i=1

αi

∫bn

0
Gn

(
ηi, s

)
g(s, u(s))ds, t ∈ [0, bn],

(2.31)

where Gn(t, s) is defined in the proof of Lemma 1.3. It is easy to verify that An : Xn →
Xn = C[0, bn] is a completely continuous operator and An(Xn) is a bounded set. Moreover,
u ∈ C[0, bn] is a solution to (2.30) if and only if Anu = u. Using the Schauder’s fixed point
theorem, we assert that An has at least one fixed point un ∈ C2[0, bn].

We claim that

H(t) ≤ un(t) ≤ Q(t), t ∈ [0, bn]. (2.32)

From this it follows that

−u′′(t) = f(t, u(t), u(t)), t ∈ [0, bn]. (2.33)
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Suppose by contradiction that un(t) ≤ Q(t) is not satisfied on [0, bn]. Let

z(t) = Q(t) − un(t), t ∈ [0, bn], (2.34)

therefore

z(t∗) = min
t∈[0,bn]

z(t) < 0. (2.35)

Since by the definition of Q(t) and (2.30)we obviously have t∗ /= 0, t∗ /= bn.
Let

c = inf{t1 | z(t) < 0, t ∈ (t1, t∗]},
d = sup{t2 | z(t) < 0, t ∈ [t∗, t2)}.

(2.36)

So, when t ∈ (c, d), we have Q(t) < un(t), and

g(t, un(t)) = f(t, Q(t), Q(t)),

u′′
n(t) + g(t, Q(t)) = 0,

Q′′(t) + g(t, Q(t)) = Q′′(t) + f(t, Q(t), Q(t)) ≤ 0.

(2.37)

Therefore z′′(t) = Q′′(t)−u′′
n(t) ≤ 0, t ∈ (c, d), that is, z(t) is an upper convex function in (c, d).

By (2.30) and (2.36), for c, d we have the following two cases:

(i) z(c) = z(d) = 0,

(ii) z(c) < 0, z(d) = 0.

For case (i): it is clear that z(t) ≥ 0, t ∈ (c, d), this is a contradiction.
For case (ii): in this case c = 0, z′(t∗) = 0. Since z′(t) is decreasing on [c, d], thus,

z′(t) ≤ 0, t ∈ [t∗, d], that is, z(t) is decreasing on [t∗, d]. From z(d) = 0, we see z(t∗) ≥ 0,
which is in contradiction with z(t∗) < 0.

From this it follows that un(t) ≤ Q(t), t ∈ [0, bn].
Similarly, we can verify that H(t) ≤ un(t), t ∈ [0, bn]. Consequently (2.32) holds.
Using the method of [4] and [5, Theorem 3.2], we can obtain that there is a C[0, 1]

positive solution w(t) to (1.1), (1.2) such that H(t) ≤ w(t) ≤ Q(t), and a subsequence of
{un(t)} converges to w(t) on any compact subintervals of (0, 1).
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3. Proof of Theorem 1.5

Suppose that u1(t) and u2(t) areC[0, 1] positive solutions to (1.1) and (1.2), and at least one of
them is a smooth positive solution. If u1(t)/≡u2(t) for any t ∈ [0, 1],without loss of generality,
we may assume that u2(t∗) > u1(t∗) for some t∗ ∈ (0, 1). Let

T = inf{t1 | 0 ≤ t1 < t∗, u2(t) > u1(t), t ∈ (t1, t∗]},
S = sup{t2 | t∗ ≤ t2 < 1, u2(t) > u1(t), t ∈ [t∗, t2)},

y(t) = u1(t)u′
2(t) − u2(t)u′

1(t), t ∈ (0, 1).

(3.1)

It follows from (3.1) that

0 ≤ T < S ≤ 1, u2(t) ≥ u1(t), t ∈ (T, S). (3.2)

By (1.2), it is easy to check that there exist the following two possible cases:

(1) u1(T) = u2(T), u1(S) = u2(S),

(2) u1(T) < u2(T), u1(S) = u2(S).

Assume that case (1) holds. By u′′
i (t) ≤ 0 on (0, 1), it is easy to see that u′

i(T+0) (i = 1, 2)
exist (finite or∞), moreover, one of themmust be finite. The same conclusion is also valid for
u′
i(S − 0) (i = 1, 2). It follows from (3.2) that

[u2(t) − u1(t)]|′t=T+0 ≥ 0, (3.3)

consequently

u′
2(T + 0) ≥ u′

1(T + 0), u′
1(T + 0) is finite. (3.4)

Similarly

u′
2(S − 0) ≤ u′

1(S − 0), u′
1(S − 0) is finite. (3.5)

From (3.1), (3.4), and (3.5)we have

lim inf
t−→T+0

y(t) ≥ 0 ≥ lim sup
t−→S−0

y(t). (3.6)

On the other hand, (3.2), (1.7), and condition (H) yield

f(t, u2(t), u2(t)) ≤ g

(
u2(t)
u1(t)

)
f(t, u1(t), u1(t))

≤ u2(t)
u1(t)

f(t, u1(t), u1(t)), t ∈ (T, S),

(3.7)
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that is,

f(t, u2(t), u2(t))
u2(t)

≤ f(t, u1(t), u1(t))
u1(t)

, t ∈ (T, S), (3.8)

therefore

u′′
1(t)

u1(t)
≤ u′′

2(t)
u2(t)

, t ∈ (T, S). (3.9)

From this it follows that

y′(t) = u1(t)u′′
2(t) − u2(t)u′′

1(t) ≥ 0, t ∈ (T, S). (3.10)

If y′(t) ≡ 0 on (T, S), then, by (3.6) we have y(t) ≡ 0, and then (u2(t)/u1(t))
′ ≡ 0,

which imply that there exists a positive number c such that u2(t) = cu1(t) on (T, S). It follows
from (3.2) that c > 1, therefore T = 0, S = 1. Substituting u2(t) = cu1(t) into (1.1) and using
condition (H), we have

cf(t, u1(t), u1(t)) = f(t, cu1(t), cu1(t))

≤ g(c)f(t, u1(t), u1(t)), t ∈ (0, 1).
(3.11)

Noticing (3.11) and f(t, u1(t), u1(t))/≡ 0, t ∈ (0, 1), we have

c ≤ g(c), (3.12)

which contradicts with the condition that g(c) < c. Therefore, y′(t) ≥ 0 and y′(t)/≡ 0 on (T, S).
Thus, y(T + 0) < y(S − 0), which contradicts with (3.6). So case (1) is impossible.

By analogous methods, we can obtain a contradiction for case (2). So u1(t) ≡ u2(t) for
any t ∈ [0, 1], which implies that the result of Theorem 1.5 holds.

4. Concerned Remarks and Applications

Remark 4.1. The typical function satisfying (H) is f(t, u, u) =
∑n

i=1 ai(t)uλi +
∑m

j=1 bj(t)u
−μj ,

where ai, bj ∈ C(0, 1), 0 < λi < 1, μj > 0, (i = 1, 2, . . . , n, j = 1, 2, . . . , m).

Remark 4.2. Condition (H) includes e-concave function (see [6]) as special case. For example,
Liu and Yu [7] consider the existence and uniqueness of positive solution to a class of singular
boundary value problem under the following condition:

f
(
t, λu,

v

λ

)
≥ λαf(t, u, v), ∀u, v > 0, λ ∈ (0, 1), (4.1)

where α ∈ [0, 1) and f(t, u, v) is nondecreasing on u, nonincreasing on v. Clearly, condition
(H) is weaker than the above condition (4.1).
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In fact, for any λ ≥ 1, from (4.1) it follows that

f(t, λu, v) ≤ f

(
t, λu,

1
λ
v

)
≤ λαf(t, u, v). (4.2)

On the other hand, for any 0 < λ < 1, from (4.1) it follows that

f(t, u, v) ≥ f
(
t, λu, λ

v

λ

)
≥ λαf(t, u, λv), (4.3)

that is, f(t, u, λv) ≤ λ−αf(t, u, v).
In what follows, by using the results obtained in this paper, we study the boundary

value problem

u′′(t) + μt−γ(1 − t)−l
(
u−α(t) + uβ(t) +A

)
= 0, 0 < t < 1,

u(0) =
m−2∑

i=1

αiu
(
ηi
)
, u(1) = 0,

(4.4)

where μ > 0, α > 0, β < 1, A ≥ 0. We have the following theorem.

Theorem 4.3. A necessary and sufficient condition for problem (4.4) to have smooth positive solution
is that

max
{
γ + α, l + α, γ − β, l − β, γ, l

}
< 1. (4.5)

Moreover, when the positive solution exists, it is unique.

Remark 4.4. Consider (1.1) and the following singular m-point boundary value conditions:

u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
. (4.6)

By analogous methods, we have the following results.
Assume that u(t) is a C[0, 1] positive solution to (1.1) and (4.6), then u(t) can be stated

u(t) =
∫1

0
G(t, s)f(s, u(s), u(s)) +

t

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s

)
f(s, u(s), u(s))ds, (4.7)

where G(t, s) is defined in (2.4).

Theorem 4.5. Suppose that (H) holds, then a necessary and sufficient condition for the problem (1.1)
and (4.6) to have smooth positive solution is that

0 <

∫1

0
f(s, s, s)ds < ∞. (4.8)
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Theorem 4.6. Suppose (H) and (4.8) hold, then the smooth positive solution to problem (1.1) and
(4.6) is also unique C[0, 1] positive solution.
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