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1. Introduction and Notations

Cauchy-Dirichlet problem for general Schrödinger systems in domains containing conical
points has been investigated in [1, 2]. Cauchy-Neumann problems have been dealt with for
hyperbolic systems in [3] and for parabolic equations in [4–6]. In this paper we consider the
Cauchy-Neumann problem for the second-order general Schrödinger equations in infinite
cylinders with nonsmooth bases. The solvability of this problem has been considered in [7].
Our main purpose here is to study the regularity of weak solution of the mentioned problem.

The paper consists of six sections. In Section 1, we introduce some notations and
functional spaces used throughout the text. A weak solution of the problem is defined in
Section 2 together with some results of its unique existence and smoothness with the time
variable. Our main result, the regularity with respect to both of time and spatial variables
of the weak solution of the problem, is stated in Section 3. The proof of this result is given
in Section 4 with some auxiliary lemmas. In Section 5 we specify that result for the classical
Schrödinger equations in quantum mechanics. Finally, some conclusions of our results are
given in Section 6.
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Let Ω be a bounded domain in R
n, n � 2; Ω and ∂Ω denote the closure and the

boundary of Ω in R
n. We suppose that Γ = ∂Ω \ {0} is an infinitely differentiable surface

everywhere except the coordinate origin andΩ coincides with the coneK = {x : x/|x| ∈ G}
in a neighborhood of the origin point 0, where G is a smooth domain on the unit sphere Sn−1

in R
n.We begin by introducing some notations and functional spaces which are used fluently

in the rest.
DenoteQ∞ = Ω×(0,+∞),Q∞ is the closure ofQ∞, S∞ = Γ×(0,+∞), x = (x1, . . . , xn) ∈

Ω, ∂xj = ∂/∂xj , uxj = ∂xju, utk = ∂ku/∂tk, r = |x| =
√
x2
1 + · · · + x2

n. For each multi-index α =
(α1, . . . , αn) (αi ∈ N, i = 1, . . . , n), set |α| = α1 + · · · + αn, ∂α = ∂αx = ∂α1

x1 · · · ∂αn
xn
.

In this paper we will use usual functional spaces:
o

C∞ (Ω), L2(Ω),Hm(Ω), wherem ∈ N

(see [1, 2] for the precise definitions).
Denote Hl

β
(Ω) is a space of all measurable complex functions u(x, t) that satisfy

‖u‖Hl
β
(Ω) =

⎛
⎝∑

|α|�l

∫

Ω
r2(β+|α|−l)|∂αu|2dx

⎞
⎠

1/2

< +∞. (1.1)

Hm,l(e−γt, Q∞) (γ > 0)—a space of all measurable complex functions u(x, t) that have
generalized derivatives up to order m with respect to x and up to order l with respect to t
with the norm

‖u‖Hm,l(e−γt,Q∞) =

⎛
⎝
∫

Q∞

⎡
⎣ ∑

|α|�m

|∂αu|2 +
l∑

j=1

|utj |2
⎤
⎦e−2γtdx dt

⎞
⎠

1/2

< +∞. (1.2)

Hl,k
β
(e−γt, Q∞)—a space of all measurable complex functions u(x, t) with the norm

‖u‖Hl,k
β
(e−γt,Q∞) =

⎛
⎝
∫

Q∞

⎡
⎣∑

|α|�l

r2(β+|α|−l)|∂αu|2 +
k∑
j=1

|utj |2
⎤
⎦e−2γtdx dt

⎞
⎠

1/2

< +∞. (1.3)

Hl
β
(e−γt, Q∞)—a weighted space with the norm

‖u‖Hl
β
(e−γt,Q∞) =

⎛
⎝ ∑

|α|+j�l

∫

Q∞
r2(β+|α|+j−l)|∂αutj |2e−2γtdx dt

⎞
⎠

1/2

< +∞. (1.4)

Let X be a Banach space. Denote by L∞(0,∞;X) a space of all measurable functions u :
(0,+∞) → X, t �→ u(t) with the norm

‖u‖L∞(0,∞;X) = ess sup0<t<+∞‖u(t)‖X < +∞. (1.5)
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2. Formulation of the Problem and Obvious Results

In this paper we consider following problem:

iLu − ut = f in Q∞, (2.1)

u(x, 0) = 0 on Ω, (2.2)

Nu = 0 on S∞, (2.3)

where L is a formal self-adjoint differential operator of second-order defined in Q∞:

Lu = L(x, t, ∂)u =
n∑

j,k=1

∂

∂xj

(
ajk(x, t)

∂u

∂xk

)
+ a(x, t)u, (2.4)

(ajk(x, t) = akj(x, t) for all j, k = 1, 2, . . . , n; a(x, t) = a(x, t), for all (x, t) ∈ Q∞), and

Nu = N(x, t, ∂)u =
n∑

j,k=1

ajk(x, t)
∂u

∂xk
cos
(
xj , ν
)

(2.5)

is the conormal derivative on S∞, ν is the unit exterior normal to S∞, f is a given function.
Set

B(t, u, v) =
∫

Ω

⎛
⎝

n∑
j,k=1

ajk(x, t)
∂u

∂xk

∂v

∂xj
− a(x, t)uv

⎞
⎠dx. (2.6)

Throughout this paper, we assume that the coefficients of L are infinitely differentiable
and bounded in Q∞ together with all their derivatives. Moreover, suppose that ajk are
continuous in x ∈ Ω uniformly with respect to t ∈ (0,+∞) for all j, k = 1, . . . , n. In addition,
assume that B(t, ·, ·) is H1(Ω)—coercive uniformly with respect to t ∈ (0,+∞), that is,

B(t, u, u) � μ0‖u‖2H1(Ω) ∀u ∈ H1(Ω), t ∈ (0,+∞), (2.7)

where μ0 is a positive constant independent of u and t.
The function u(x, t) is called a weak solution in the space H1,0(e−γt, Q∞) of the problem

(2.1)–(2.3) if u(x, t) ∈ H1,0(e−γt, Q∞), satisfying for each T ∈ (0,+∞)

n∑
j,k=1

∫

Q∞
ajk

∂u

∂xk

∂η

∂xj
dx dt −

∫

Q∞
auη dx dt + i

∫

Q∞
uηt dx dt = i

∫

Q∞
fη dx dt, (2.8)

for all test functions η(x, t) ∈ H1,1(e−γt, Q∞), η(x, t) = 0 for all t ∈ [T,+∞).
Nowwe derive here some our obvious results of the unique existence and smoothness

with respect to time variable of the weak solution of the problem (2.1)–(2.3) as lemmas of
main results.
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Lemma 2.1. The solvability of the problem, (see [7, Theorems 3.1, 3.2]). There exists a positive number
γ0 such that if f, ft ∈ L∞(0,∞, L2(Ω)) then for every γ > γ0, the Cauchy-Neumann problem (2.1)–
(2.3) has exactly one weak solution u(x, t) inH1,0(e−γt, Q∞), that satisfies

‖u‖2H1,0(e−γt,Q∞) � C
(∥∥f∥∥2L∞(0,∞,L2(Ω)) +

∥∥ft
∥∥2
L∞(0,∞,L2(Ω))

)
, (2.9)

where the constant C does not depend on u, f .

The constant γ0 depends only on the operator L and the dimension of the space n.

Lemma 2.2. The regularity with respect to time variable of the weak solution (see [7, Theorem 4.1]).Let
h be a nonnegative integer. Suppose that ftk ∈ L∞(0,∞, L2(Ω)) for all k � h + 1, f(x, 0) = 0 and if
h � 2 then ftk(x, 0) = 0 for all k � h − 1, for all x ∈ Ω. Then for every γ > (2h + 1)γ0, the weak
solution u(x, t) of the problem (2.1)–(2.3) has generalized derivatives with respect to time variable up
to order h, which belong toH1,0(e−γt, Q∞), moreover

‖uts‖2H1,0(e−γt,Q∞) � C
h+1∑
k=0

∥∥ftk
∥∥2
L∞(0,∞,L2(Ω)), ∀s = 0, 1, . . . , h, (2.10)

where C is a constant independent of u, f .

3. Formulation of the Main Result

Let L0(x, t, ∂) be the principal homogenous part of L(x, t, ∂). We can write L0(0, t, ∂) in the
form

L0(0, t, ∂) = r−2L(ω, t, ∂ω, r∂r), (3.1)

where r = |x|, ω = (ω1, . . . , ωn−1) is an arbitrary local coordinate system on Sn−1, L is a linear
operator with smooth coefficients.

Denote λ(t) is an eigenvalue of Neumann problem for following equation:

L(ω, t, λ(t), ∂ω)v(ω) = 0, ω ∈ G. (3.2)

It is well known in [8] that for each t ∈ (0,+∞), the spectrum of this problem is an enumerable
set of eigenvalues.

Recall that γ0 is the positive real number in Lemma 2.1. Now, let us give themain result
of the present paper.

Theorem 3.1. Let l be a nonnegative integer. Assume that u(x, t) is a weak solution in the space
H1,0(e−γt, Q∞) with γ > (2l + 5)γ0 of the problem (2.1)–(2.3) and ftk ∈ L∞(0,∞,Hl

0(Ω)) if k � 3,
ftk(x, 0) = 0 if k � l + 1. In addition, suppose that in the strip

1 − ε − n

2
� Imλ � l + 2 − n

2
, (3.3)
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where ε > 0 or ε = 0 according to n = 2 or n > 2, there is no point from the spectrum of the Neumann
problem for the equation (3.2) for all t ∈ (0,+∞). Then we have u ∈ Hl+2

0 (e−γt, Q∞) and the following
estimate holds

‖u‖2
Hl+2

0 (e−γt,Q∞) � C
3∑

k=0

∥∥ftk
∥∥2
L∞(0,∞,Hl

0(Ω)), (3.4)

where C is a constant independent of u, f .

4. Proof of Theorem 3.1

By using the same arguments as in [1, 2] and Lemmas 2.1, 2.2, we can prove following lemma.

Lemma 4.1. Let γ > 3γ0 arbitrary. Assume that u(x, t) is a weak solution of the problem (2.1)–
(2.3) in the space H1,0(e−γt, Q∞) and f, ft, ftt ∈ L∞(0,∞, L2(Ω)), f(x, 0) = 0. Then for almost all
t ∈ (0,+∞) the equation

n∑
k,j=1

∫

Ω
ajk

∂u

∂xk

∂χ

∂xj
dx −

∫

Ω
auχdx = i

∫

Ω

[
ut + f

]
χdx (4.1)

holds for all functions χ = χ(x) ∈ H1(Ω).

Now we surround the origin by a neighborhoodU0 with a sufficiently small diameter
such that the intersection of Ω and U0 coincides with the cone K. We begin by proving some
auxiliary lemmas.

Lemma 4.2. Let u(x, t) be a weak solution in H1,0(e−γt, Q∞) (γ > 3γ0) of the problem (2.1)–(2.3)
such that u(x, t) = 0 outsideU0. Moreover, we assume that f, ft, ftt ∈ L∞(0,∞, L2(Ω)), f(x, 0) = 0.
Then for almost all t ∈ (0,+∞), one has

(i) if n � 3 then u ∈ H2
1(Ω),

(ii) if n = 2 then u ∈ H2
1+ε(Ω), where ε > 0 arbitrary.

Proof. Because f, ft, ftt ∈ L∞(0,∞, L2(Ω)), f(x, 0) = 0, from Lemma 2.2 we have ut ∈
H1,0(e−γt, Q∞) or ut ∈ L2(Ω) for almost all t ∈ (0,+∞). Following Lemma 4.1, u(x, t) is a
solution of the Neumann problem for elliptic equation

Lu = F, (4.2)

where F = −i(ut + f) ∈ L2(Ω) for almost all t ∈ (0,+∞).Denote Ωk = {x ∈ Ω : 2−k � |x| �
2−k+1}, k = 1, 2, . . . . Let k0 be large enough such thatΩk0−1 ⊂ U0. By choosing a smooth domain
Ω′

k0
such thatΩk0 ⊂ Ω′

k0
⊂ Ωk0−1∪Ωk0 ∪Ωk0+1, from the theory of the regular of solutions of the

boundary value problem for elliptic systems in smooth domains and near the piece smooth
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boundary of domain (see [9] for reference), we have u ∈ H2(Ω′
k0
) for almost all t ∈ (0,+∞)

and the following inequality holds

‖u(x, t) |2H2(Ω′
k0
) � C

[
‖F(x, t)‖2L2(Ω′

k0
)

∥∥∥∥ + ‖u(x, t)‖2L2(Ω′
k0
)

]
, (4.3)

where C is a positive constant independent of u, F. It follows

∫

Ωk0

|∂αu(x, t)|2dx � C

∫

Ωk0−1∪Ωk0∪Ωk0+1

[
|F(x, t)|2 + |u(x, t)|2

]
dx, ∀|α| � 2. (4.4)

By choosing k1 > k0 and setting x = (2k0/2k1)x′, one has

∫

Ωk0

∣∣∂αu(x′, t)
∣∣2dx′ � C

∫

Ωk0−1∪Ωk0∪Ωk0+1

⎡
⎣∣∣F(x′, t

)∣∣2
(

2k0

2k1

)4

+
∣∣u(x′, t

)∣∣2
⎤
⎦dx′, |α| � 2.

(4.5)

Return to the variable x, we get

(
2k0

2k1

)2|α|∫

Ωk1

|∂αu(x, t)|2dx � C

∫

Ωk1−1∪Ωk1∪Ωk1+1

⎡
⎣|F(x, t)|2

(
2k0

2k1

)4

+ |u(x, t)|2
⎤
⎦dx, (4.6)

where the positive constant C is independent of u, f, k1.

Case 1 (n � 3). Then

∫

Ω
r−2|u|2dx � C

∫

Ω
r−n|u|2dx < +∞. (4.7)

It follows from (4.6) that

∫

Ωk1

r2(|α|−1)|∂αu|2dx � C

∫

Ωk1−1∪Ωk1∪Ωk1+1

[
|F|2r2 + r−2|u|2

]
dx, (4.8)

where C does not depend on k1. Taking sum with respect to k1 > k0, one has

∑
k1>k0

∫

Ωk1

r2(|α|−1)|∂αu|2dx � C
∑

k1�k0

∫

Ωk1

[
|F|2r2 + r−2|u|2

]
dx. (4.9)

This implies

∫
⋃

k>k0
Ωk

r2(|α|−1)|∂αu|2dx � C

∫
⋃

k�k0
Ωk

[
|F|2r2 + r−2|u|2

]
dx. (4.10)
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Because in out of a neighborhood of conical point Ω is a smooth domain, so we have

∫

Ω
r2(|α|−1)|∂αu|2dx � C

∫

Ω

[
|F|2r2 + r−2|u|2

]
dx (4.11)

for all |α| � 2, almost all t ∈ (0,+∞). From (4.7), (4.11) and F ∈ L2(Ω) we receive u ∈ H2
1(Ω)

for almost all t ∈ (0,+∞).

Case 2 (n = 2). Since u ∈ H1,0(e−γt, Q∞) so for almost all t ∈ (0,+∞) one has
∫
Ωr

0|∂βu|2dx <

+∞, |β| = 1. This implies
∫
Kr

2ε|∂βu|2dx � C
∫
K|∂βu|

2
dx < +∞, where ε > 0 arbitrary, C is a

positive constant. Because u ≡ 0 outside U0, so we have

∫

Ω
r2ε
∣∣∣∂βu

∣∣∣
2
dx � C

∫

Ω

∣∣∣∂βu
∣∣∣
2
dx < +∞. (4.12)

For all ε > 0 we have 2ε > 0 = 1 − n/2, so it follows from [8, Lemma 7.1.1, page 268] that

∫

Ω
r2(ε−1)|u|2dx � C

∑
|β|=1

∫

Ω
r2ε
∣∣∣∂βu

∣∣∣
2
dx � C

∑
|β|=1

∫

Ω

∣∣∣∂βu
∣∣∣
2
dx < +∞. (4.13)

From the inequality (4.6), for all |α| � 2 one gets

∫

Ωk1

r2(|α|−1+ε)|∂αu|2dx � C

∫

Ωk1−1∪Ωk1∪Ωk1+1

[
|F|2r2(ε+1) + r2(ε−1)|u|2

]
dx, (4.14)

where C does not depend on u, f, k1. By using analogous arguments used in Case 1, from
(4.13), (4.14)we have

∫

Ω
r2(1+ε+|α|−2)|∂αu|2dx � C

∫

Ω

⎡
⎣|F|2 +

∑
|β|=1

∣∣∣∂βu
∣∣∣
2

⎤
⎦dx < +∞, (4.15)

for all |α| � 2, almost all t ∈ (0,+∞). That is u ∈ H2
1+ε(Ω). The lemma is proved.

Lemma 4.3. Let ftk ∈ L∞(0,∞, L2(Ω)), k � 3, and f(x, 0) = ft(x, 0) = 0 for x ∈ Ω. Assume that
u(x, t) is a weak solution in H1,0(e−γt, Q∞) (γ > 5γ0) of the problem (2.1)–(2.3) such that u ≡ 0
outsideU0. In addition, suppose that the strip

1 − ε − n

2
� Imλ � 2 − n

2
, (4.16)

where ε = 0 or ε > 0 according to n � 3 or n = 2, does not contain any point of the spectrum of the
Neumann problem for the equation (3.2) for all t ∈ (0,+∞). Then u ∈ H2

0(e
−γt, Q∞).
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Proof. We can rewrite (2.1) in the form

L0(0, t, ∂)u = F̂(x, t) = −i(ut + f
)
+ [L0(0, t, ∂) − L(x, t, ∂)]u. (4.17)

If n � 3 then by applying Lemma 4.2 we have u ∈ H2
1(Ω). In another way, because

ajk are continuous in x ∈ Ω uniformly with respect to t ∈ (0,+∞) for all j, k = 1, . . . , n then
|ajk(x, t) − ajk(0, t)| � C|x|, for all t ∈ (0,+∞) and C is a constant independent of t. Therefore,
from the hypotheses of this lemma one gets F̂ ∈ L2(Ω) for almost all t ∈ (0,+∞). Since in the
strip 1 − n/2 � Imλ � 2 − n/2 there is no spectral point of the Neumann problem for the
equation (3.2) for all t ∈ (0,+∞), then following results of the work [9], one gets u ∈ H2

0(Ω)
and satisfies

‖u‖2
H2

0 (Ω) � C

[∥∥∥F̂
∥∥∥
2

L2(Ω)
+ ‖u‖2

H2
1 (Ω)

]
, (4.18)

for almost all t ∈ (0,+∞), where C is a positive constant. Using the same arguments in the
proof of Lemma 4.2, we have

‖u‖2
H2

0 (Ω) � C
(
‖ut‖2L2(Ω) +

∥∥f∥∥2L2(Ω) + ‖u‖2H1(Ω)

)
, (4.19)

for almost all t ∈ (0,+∞). Multiplying this inequality with e−2γt, then integrating with respect
to t from 0 to +∞, from Lemma 2.2 one gets

‖u‖2
H2,0

0 (e−γt,Q∞)
� C

3∑
k=0

∥∥ftk
∥∥2
L∞(0,∞,L2(Ω)) < +∞. (4.20)

Then u is a function in the space H2,0
0 (e−γt, Q∞).

If n = 2 then following Lemma 4.2 we have u ∈ H2
1+ε(Ω) for almost all t ∈ (0,+∞).

This and the property of the functions ajk continuous in x ∈ Ω uniformly with respect to
t ∈ (0,+∞) follows F̂ ∈ H0

1(Ω). Because the strip 1−ε−n/2 � Imλ � 1−n/2 does not contain
any spectral point of the Neumann problem for (3.2), so from results of the work [9]we have
u ∈ H2

1(Ω) satisfying

‖u‖2
H2

1 (Ω) � C

[∥∥∥F̂
∥∥∥
2

H0
1 (Ω)

+ ‖u‖2
H2

1+ε

]
. (4.21)

Repeating the proof in the case n � 3 we achieve u ∈ H2,0
0 (e−γt, Q∞), too.

Now differentiating (2.1) with respect to t, we have

Lv = F1 = −i(vt + ft
)
+ Ltu, (4.22)

where v = ut, Lt =
∑n

j,k=1(∂/∂xj)((ajk)t(∂/∂xk)) + (a)t. From the hypotheses of the operator L
and Lemma 2.2 we have F1 ∈ L2(Ω) for almost all t ∈ (0,+∞). Repeating arguments used for
function u we receive v ∈ H2,0

0 (e−γt, Q∞) or ut ∈ H2,0
0 (e−γt, Q∞).
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In another way, it follows from Lemma 2.2 that

∫

Q∞
|ut2 |2e−2γtdx dt < +∞. (4.23)

From (4.23) and the assertion that both u and ut are in the space H2,0
0 (e−γt, Q∞) we

have u ∈ H2
0(e

−γt, Q∞). This lemma is proved.

Lemma 4.4. Let l be a nonnegative integer number, γ be a real number satisfying γ > (2l + 5)γ0,
u(x, t) be a weak solution in H1,0(e−γt, Q∞) of the problem (2.1)–(2.3) such that u ≡ 0 outside U0.
Assume that ftk ∈ L∞(0,∞,Hl

0(Ω)), k � 3, and ftk(x, 0) = 0 for k � l + 1, x ∈ Ω. Moreover,
suppose that the strip

1 − ε − n

2
� Imλ � l + 2 − n

2
(4.24)

does not contain any point of the spectrum of the Neumann problem for the equation (3.2) for all
t ∈ (0,+∞), where ε = 0 or ε > 0 according to n � 3 or n = 2. Then u ∈ Hl+2

0 (e−γt, Q∞), satisfying

‖u‖2
Hl+2

0 (e−γt,Q∞)
� C

3∑
k=0

∥∥ftk
∥∥2
L∞(0,∞,Hl

0(Ω)), (4.25)

where the constant C is independent of u, f.

Proof. We use the induction by l. For l = 0 then we had Lemma 4.3 with noting that H0
0(Ω) ≡

L2(Ω). Assume that lemma’s assertion holds up to l − 1, we need to prove this holds up to l.
It means that we have to prove following inequality:

‖utj‖2Hl+2−j
0 (e−γt,Q∞)

� C
3∑

k=0

∥∥ftk
∥∥2
L∞(0,∞,Hl

0(Ω)), (4.26)

for j = l, l − 1, . . . , 0, where C is a positive constant.
Since ftk ∈ L∞(0,∞,Hl

0(Ω)) for k � 3, so ftk ∈ L∞(0,∞, L2(Ω)) for k � l + 3. In another
way, ftk(x, 0) = 0 for k � l + 1. Then from Lemma 2.2 we have utl+1 ∈ H1,0(e−γt, Q∞), uts ∈
H1,0(e−γt, Q∞)) for all s � l.Hence, by using similar arguments in the proof of Lemma 4.3 we
get utl ∈ H2

0(e
−γt, Q∞). This means that (4.26) holds for j = l.

Assume that (4.26) holds for j = l, l − 1, . . . , s + 1. By putting v = uts ∈ Hl−s+1
0 (e−γt, Q∞)

(by inductive hypothesis) and differentiating (2.1) s-times with respect to t, we have

Lv = −i(vt + fts
)
+

s∑
p=1

C
p
sLtputs−p , (4.27)

where Ltp =
∑n

j,k=1(∂/∂xj)((ajk)tp(∂/∂xk))+(a)tp . Following the assumptions of the induction
of s and the hypotheses of the function f one has vt ∈ Hl−s+1

0 (e−γt, Q∞), fts ∈ Hl−s
0 (e−γt, Q∞).

It follows Fs = −i(vt + fts) +
∑s

p=1 C
p
sLtputs−p ∈ Hl−s

0 (e−γt, Q∞). In another way since
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Hl−s
0 (e−γt, Q∞) ⊆ Hl−s−1,0

−1 (e−γt, Q∞), so we have Fs ∈ Hl−s−1
−1 (e−γt, Q∞) for almost all t ∈

(0,+∞). Because the strip l + 1 − s − n/2 � Imλ � l + 2 − s − n/2 does not contain any
point of the spectrum of the Neumann problem for (3.2) for all t ∈ (0,+∞), then following
results of the work [9], one gets v ∈ Hl+1−s

−1 (Ω). This implies v ∈ Hl+1−s,0
−1 (e−γt, Q∞). Note

that Fs ∈ Hl−s,0
0 (e−γt, Q∞) then by applying [8, Theorem7.3.2] one gets v ∈ Hl+2−s,0

0 (e−γt, Q∞)
satisfying

‖v‖2
Hl+2−s,0

0 (e−γt,Q∞)
� C

(
‖Fs‖2Hl−s,0

0 (e−γt,Q∞)
+ ‖v‖2

Hl+1−s,0
−1 (e−γt,Q∞)

)
, (4.28)

where C is a positive constant. In another way, it is easy to see that

‖uts‖2Hl+2−s
0 (e−γt,Q∞) � ‖uts+1‖2Hl+2−s−1

0 (e−γt,Q∞) + ‖uts‖2Hl+2−s,0
0 (e−γt,Q∞)

. (4.29)

Hence from the inductive assumptions we receive

‖uts‖2Hl+2−s
0 (e−γt,Q∞) � C

3∑
k=0

∥∥ftk
∥∥2
L∞(0,∞,Hl

0(Ω)), (4.30)

whereC is a constant independent of u, f . It means that (4.26) is proved. Finally we only need
to fix j = 0 in (4.26) to complete the proof of this lemma.

Now let us prove Theorem 3.1.

Proof. Denote u0 = ϕ0u, where ϕ0 ∈
o

C∞(U0) and ϕ0 ≡ 1 in a neighborhood of coordinate
origin. The function u0 satisfies

iLu0 − (u0)t = ϕ0f + L1u, (4.31)

where L1u is a linear differential operator order 1. Coefficients of this operator depend on the
choice of the function ϕ0 and equal to 0 outsideU0.Denote u1 = ϕ1u = (1−ϕ0)u. It is easy to see
that u1 is equal to 0 in a neighborhood of conical point. Therefore we can apply the theorem
on the smoothness of a solution of elliptic problem in a smooth domain to this function to
conclude that u1 = ϕ1u ∈ Hl+2

0 (Ω) for almost all t ∈ (0,+∞). By applying Lemma 2.2 we
receive u1 ∈ Hl+2

0 (e−γt, Q∞) and

‖u1‖2Hl+2
0 (e−γt,Q∞) � C

3∑
k=0

∥∥ftk
∥∥2
L∞(0,∞,Hl

0(Ω)), C = const > 0. (4.32)

Now, let us prove Theorem 3.1 by induction by l. When l = 0 then functions u0, f̂ =
ϕ0f + L1u satisfy the hypotheses of Lemma 4.3. So u0 ∈ H2

0(e
−γt, Q∞). It follows that u =

u0 + u1 is in H2
0(e

−γt, Q∞). Assume that the theorem holds up to l − 1 then we have u ∈
Hl+1

0 (e−γt, Q∞). By using analogous arguments in the proof of Lemma 4.4, with note that f̂ts ∈
Hl−s

0 (e−γt, Q∞) (from the hypothesis of induction), we can prove that u0 ∈ Hl+2
0 (e−γt, Q∞). So
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u ∈ Hl+2
0 (e−γt, Q∞). The inequality in Theorem 3.1 can derive from inequality (4.25) (for u0)

and inequality (4.32). The theorem is proved completely.

5. Cauchy-Neumann Problem For Classical Schrödinger Equation In
Quantum Mechanics

In this section we apply the previous result to the Cauchy-Neumann problem for classical
Schrödinger equations in quantum mechanics. It is shown that the smoothness of the weak
solution of this problem depends on the structure of the boundary of the domain, the right
hand side and the dimension n of the space Rn.

The classical Schrödinger equation in quantum mechanics has the form

iΔu(x, t) − ut(x, t) = f(x, t), (5.1)

where Δ is the Laplace operator. Now we consider the Cauchy-Neumann problem for (5.1)
in infinite cylinder Q∞ with the initial condition

u(x, 0) = 0 on Ω, (5.2)

and the boundary condition

∂u

∂ν
=

n∑
k=1

∂u

∂xk
cos(xk, ν) = 0 on S∞, (5.3)

where ν is the unit exterior normal to S∞.
The Laplace operator in polar coordinate (r, ω) in R

n can be written in the form

Δu(r, ω) =
1

rn−1
∂

∂r

(
rn−1

∂

∂r

)
u(r, ω) +

1
r2
Δωu(r, ω), (5.4)

where Δω is the Laplace-Beltrami operator on the unit sphere Sn−1. Therefore, the
corresponding spectral problem for (3.2) is the Neumann problem for following equation:

Δωv +
[
(iλ)2 + i(2 − n)λ

]
v = 0, ω ∈ G. (5.5)

The regularity of the weak solution of the problem (5.1)–(5.3) can be stayed as follows.

Theorem 5.1. Let n > 4, u be a weak solution in the space H1,0(e−γt, Q∞) (γ > 5γ0) of the Cauchy-
Neumann problem (5.1)–(5.3) and ftk ∈ L∞(0,∞, L2(Ω)) if k � 3, f(x, 0) = ft(x, 0) = 0. Then
u ∈ H2

0(e
−γt, Q∞).

Proof. Note k be nonnegative eigenvalues of the Neumann problem for equation

Δωv + kv = 0, ω ∈ G. (5.6)
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Then λ = i((2 − n)/2 ±
√
((n − 2)/2)2 + k) are eigenvalues of the Neumann problem for (5.5).

It is easy to see that when n > 4 the strip

1 − n

2
� Imλ � 2 − n

2
(5.7)

does not contain any eigenvalue of the Neumann problem for (5.5). By applying Theorem 3.1
we have u ∈ H2

0(e
−γt, Q∞). The theorem is proved.

6. Conclusions

The Schrödinger equation has received a great deal of attention from mathematicians,
in particular because of its application to quantum mechanics and optics. It is therefore
important to research boundary value problems for it. Such problems have been previously
proposed and analyzed for Schrödinger equations whose coefficients are independent of the
time variable and in finite cylinders QT (T < +∞) (see, e.g., [10]). In infinite cylinder Q∞,
the first initial boundary value problem for this kind of equation with coefficients depend on
both of time and spatial variables has been considered (see [1, 2]). In this paper, for a general
Schrödinger equation in infinite cylinder Q∞ with conical points in the boundary of base,
we proved regularity property of solution of second initial boundary value problem. As a
special application of these new results, we received the regularity of solution of a classical
Schrödinger equation in quantummechanics when the dimension of space n > 4. The similar
questions for the case n � 4 can be answered after researching the asymptotic of solution in
the case the strip 1 − n/2 � Imλ � 2 + l − n/2 contains eigenvalues of the associated spectral
problem. This is also the aim of our future research.
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