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1. Introduction

We are interested in numerical solving of two nonlinear singularly perturbed problems of
elliptic and parabolic types.

The first one is the elliptic problem

−μ2u′′ + f(x, u) = 0, x ∈ ω = (0, 1), u(0) = 0, u(1) = 0,

fu ≥ c∗ = const > 0, (x, u) ∈ ω × (−∞,∞), fu = ∂f/∂u,
(1.1)

where μ is a positive parameter, and f is sufficiently smooth function. For μ � 1 this problem
is singularly perturbed, and the solution has boundary layers near x = 0 and x = 1 (see [1]
for details).

The second problem is the one-dimensional parabolic problem

−μ2uxx + ut + f(x, t, u) = 0, (x, t) ∈ Q = ω × (0, T], ω = (0, 1),

u(0, t) = 0, u(1, t) = 0, u(x, 0) = u0(x), x ∈ ω,

fu ≥ 0, (x, t, u) ∈ Q × (−∞,∞),

(1.2)
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where μ is a positive parameter. Under suitable continuity and compatibility conditions on
the data, a unique solution of this problem exists. For μ � 1 problem (1.2) is singularly
perturbed and has boundary layers near the lateral boundary of Q (see [2] for details).

In the study of numerical methods for nonlinear singularly perturbed problems, the
two major points to be developed are: (i) constructing robust difference schemes (this means
that unlike classical schemes, the error does not increase to infinity, but rather remains
bounded, as the small parameter approaches zero); (ii) obtaining reliable and efficient
computing algorithms for solving nonlinear discrete problems.

Our goal is to construct a μ-uniform numerical method for solving problem (1.1), that
is, a numerical method which generates μ-uniformly convergent numerical approximations
to the solution. We use a numerical method based on the classical difference scheme and the
piecewise uniform mesh of Shishkin-type [3]. For solving problem (1.2), we use the implicit
difference scheme based on the piecewise uniform mesh in the x-direction, which converges
μ-uniformly [4].

A major point about the nonlinear difference schemes is to obtain reliable and efficient
computational methods for computing the solution. The reliability of iterative techniques
for solving nonlinear difference schemes can be essentially improved by using component-
wise monotone globally convergent iterations. Such methods can be controlled every time.
A fruitful method for the treatment of these nonlinear schemes is the method of upper and
lower solutions and its associated monotone iterations [5]. Since an initial iteration in the
monotone iterative method is either an upper or lower solution, which can be constructed
directly from the difference equation without any knowledge of the exact solution, this
method simplifies the search for the initial iteration as is often required in the Newton
method. In the context of solving systems of nonlinear equations, the monotone iterative
method belongs to the class of methods based on convergence under partial ordering (see [5,
Chapter 13] for details).

The purpose of this paper is to construct μ-uniformly convergent monotone iterative
methods for solving μ-uniformly convergent nonlinear difference schemes.

The structure of the paper is as follows. In Section 2, we prove that the classical
difference scheme on the piecewise uniform mesh converges μ-uniformly to the solution
of problem (1.1). A robust monotone iterative method for solving the nonlinear difference
scheme is constructed. In Section 3, we construct a robust monotone iterative method for
solving problem (1.2). In the final Section 4, we present numerical experiments which
complement the theoretical results.

2. The Elliptic Problem

The following lemma from [1] contains necessary estimates of the solution to (1.1).

Lemma 2.1. If u(x) ∈ C0(ω) ∩ C2(ω) is the solution to (1.1), the following estimates hold:

max
x∈ω

|u(x)| ≤ c−1∗ max
x∈ω

∣
∣f(x, 0)

∣
∣,

∣
∣u′(x)

∣
∣ ≤ C

[

1 + μ−1Π(x)
]

,

Π(x) = exp
(

−
√
c∗
μ

)

+ exp
(

−
√
c∗(1 − x)

μ

)

,

(2.1)

where constant C is independent of μ.
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For μ � 1, the boundary layers appear near x = 0 and x = 1.

2.1. The Nonlinear Difference Scheme

Introduce a nonuniform mesh ωh

ωh = {xi, 0 ≤ i ≤ N; x0 = 0, xN = 1; hi = xi+1 − xi}. (2.2)

For solving (1.1), we use the classical difference scheme

Lhv(x) + f(x, v) = 0, x ∈ ωh, v(0) = 0, v(1) = 0,

Lhvi = −μ2(�i)−1
[

(vi+1 − vi)(hi)
−1 − (vi − vi−1)(hi−1)

−1
]

,
(2.3)

where vi = v(xi) and �i = (hi−1 + hi)/2. We introduce the linear version of this problem

(

Lh + c
)

w(x) = f0(x), x ∈ ωh, w(0) = 0, w(1) = 0, (2.4)

where c(x) ≥ 0. We now formulate a discrete maximum principle for the difference operator
Lh + c and give an estimate of the solution to (2.4).

Lemma 2.2. (i) If a mesh function w(x) satisfies the conditions

(

Lh + c
)

w(x) ≥ 0 (≤ 0), x ∈ ωh, w(0), w(1) ≥ 0 (≤ 0), (2.5)

then w(x) ≥ 0 (≤ 0), x ∈ ωh.
(ii) If c(x) ≥ c∗ = const > 0, then the following estimate of the solution to (2.4) holds true:

‖w‖ωh ≤ max ‖f0‖ωh/c∗, (2.6)

where ‖w‖ωh = maxx∈ωh |w(x)|, ‖f0‖ωh = maxx∈ωh |f0(x)|.

The proof of the lemma can be found in [6].

2.2. Uniform Convergence on the Piecewise Uniform Mesh

We employ a layer-adapted mesh of a piecewise uniform type [3]. The piecewise uniform
mesh is formed in the following manner. We divide the interval ω = [0, 1] into three parts
[0, ς], [ς, 1−ς], and [1−ς, 1]. Assuming thatN is divisible by 4, in the parts [0, ς], [1−ς, 1]we
use the uniform mesh with N/4 + 1 mesh points, and in the part [ς, 1 − ς] the uniform mesh
withN/2 + 1 mesh points is in use. The transition points ς and 1 − ς are determined by

ς = min
{

4−1,
μ lnN√

c∗

}

. (2.7)
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This defines the piecewise uniform mesh. If the parameter μ is small enough, then the
uniform mesh inside of the boundary layers with the step size hμ = 4ςN−1 is fine, and the
uniform mesh outside of the boundary layers with the step size h = 2(1 − 2ς)N−1 is coarse,
such that

N−1 < h < 2N−1, hμ = 4μ
(√

c∗N
)−1 lnN. (2.8)

In the following theorem, we give the convergence property of the difference scheme
(2.3).

Theorem 2.3. The difference scheme (2.3) on the piecewise uniform mesh (2.8) converges μ-
uniformly to the solution of (1.1):

max
x∈ωh

|v(x) − u(x)| ≤ CN−1 lnN, (2.9)

where constant C is independent of μ and N.

Proof. Using Green’s function Gi of the differential operator μ2d2/dx2 on [xi, xi+1], we
represent the exact solution u(x) in the form

u(x) = u(xi)φI
i (x) + u(xi+1)φII

i (x) +
∫xi+1

xi

Gi(x, s)f(s, u)ds,
(2.10)

where the local Green function Gi is given by

Gi(x, s) =
1

μ2wi(s)

⎧

⎨

⎩

φI
i (s)φ

II
i (x), x ≤ s,

φI
i (x)φ

II
i (s), x ≥ s,

wi(s) = φII
i (s)

[

φI
i (x)

]′

x=s
− φI

i (s)
[

φII
i (x)

]′

x=s
,

(2.11)

and φI
i (x), φII

i (x) are defined by

φI
i (x) =

xi+1 − x

hi
, φII

i (x) =
x − xi

hi
, xi ≤ x ≤ xi+1. (2.12)

Equating the derivatives du(xi − 0)/dx and du(xi + 0)/dx, we get the following integral-
difference formula:

Lhu(xi) =
1
�i

∫xi

xi−1
φII
i−1(s)f(s)ds +

1
�i

∫xi+1

xi

φI
i (s)f(s)ds, (2.13)
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where here and below we suppress variable u in f . Representing f(x) on [xi−1, xi] and
[xi, xi+1] in the forms

f(x) = f(xi − 0) +
∫x

xi

df

ds
ds, f(x) = f(xi + 0) +

∫x

xi

df

ds
ds, (2.14)

the above integral-difference formula can be written as

Lhu(x) + f(x, u) = Tr(x), x ∈ ωh, (2.15)

where the truncation error Tr(x) of the exact solution u(x) to (1.1) is defined by

Tr(xi) ≡ − 1
�i

∫xi

xi−1
φII
i−1(s)

(∫s

xi

df

dξ
dξ

)

ds − 1
�i

∫xi+1

xi

φI
i (s)

(∫ s

xi

df

dξ
dξ

)

ds. (2.16)

From here, it follows that

|Tr(xi)| ≤ 1
�i

∫xi

xi−1
φII
i−1(s)

(∫xi

xi−1

∣
∣
∣
∣

df

dξ

∣
∣
∣
∣
dξ

)

ds +
1
�i

∫xi+1

xi

φI
i (s)

(∫xi+1

xi

∣
∣
∣
∣

df

dξ

∣
∣
∣
∣
dξ

)

ds. (2.17)

From Lemma 2.1, the following estimate on df/dx holds:

∣
∣
∣
∣

df

dx

∣
∣
∣
∣
≤ C

[

1 + μ−1Π(x)
]

. (2.18)

We estimate the truncation error Tr in (2.17) on the interval (0, 1/2]. Consider the following
three cases: xi ∈ (0, ς), xi = ς, and xi ∈ (ς, 1/2]. If xi ∈ (0, ς), then hi−1 = hi = hμ, and taking
into account that Π(x) < 2 in (2.18), we have

|Tr(xi)| ≤ Chμ

(

1 + 2μ−1
)

, xi ∈ (0, ς), (2.19)

where here and throughout C denotes a generic constant that is independent of μ and N.
If xi = ς, then hi−1 = hμ, hi = h. Taking into account that ς = μ lnN/

√
c∗, Π(x) < 2, and

Π(x) ≤ 2 exp(−√c∗x/μ), we have

|Tr(ς)| ≤ C

hμ + h

[

h2
μ

(

1 + 2μ−1
)

+ h2 + 2
(√

c∗N
)−1]

≤ C
[

hμ

(

1 + 2μ−1
)

+ h + 2
(√

c∗N
)−1]

.

(2.20)

If xi ∈ (ς, 1/2], then hi−1 = hi = h, and we have

|Tr(xi)| ≤ C
[

h + 2
(√

c∗N
)−1]

, xi ∈ (ς, 1/2]. (2.21)
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Thus,

|Tr(xi)| ≤ C
[

hμ

(

1 + 2μ−1
)

+ h + 2
(√

c∗N
)−1]

, xi ∈ (0, 1/2]. (2.22)

In a similar way we can estimate Tr on [1/2, 1) and conclude that

|Tr(xi)| ≤ C
[

hμ

(

1 + 2μ−1
)

+ h + 2
(√

c∗N
)−1]

, xi ∈ ωh. (2.23)

From here and (2.8), we conclude that

max
xi∈ωh

|Tr(xi)| ≤ CN−1 lnN. (2.24)

From (2.3), (2.15), by the mean-value theorem, we conclude thatw = v−u satisfies the
difference problem

Lhw(x) + fuw(x) = −Tr(x), x ∈ ωh, w(0) = w(1) = 0. (2.25)

Using the assumption on fu from (1.1) and (2.24), by (2.6), we prove the theorem.

2.3. The Monotone Iterative Method

In this section, we construct an iterative method for solving the nonlinear difference scheme
(2.3) which possesses monotone convergence.

Additionally, we assume that f(x, u) from (1.1) satisfies the two-sided constraint

0 < c∗ ≤ fu ≤ c∗, c∗, c∗ = const. (2.26)

The iterative method is constructed in the following way. Choose an initial mesh
function v(0), then the iterative sequence {v(n)}, n ≥ 1, is defined by the recurrence formulae

(

Lh + c∗
)

z(n)(x) = −Rh
(

x, v(n−1)
)

, x ∈ ωh,

z(1)(0) = −v(0)(0), z(1)(1) = −v(0)(1), z(n)(0) = z(n)(1) = 0, n ≥ 2,

v(n)(x) = v(n−1)(x) + z(n)(x), x ∈ ωh,

Rh
(

x, v(n−1)
)

= Lhv(n−1)(x) + f
(

x, v(n−1)
)

,

(2.27)

where Rh(x, v(n−1)) is the residual of the difference scheme (2.3) on v(n−1).
We say that v(x) is an upper solution of (2.3) if it satisfies the inequalities

Lhv(x) + f(x, v) ≥ 0, x ∈ ωh, v(0), v(1) ≥ 0. (2.28)
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Similarly, v(x) is called a lower solution if it satisfies the reversed inequalities. Upper and
lower solutions satisfy the inequality

v(x) ≤ v(x), x ∈ ωh. (2.29)

Indeed, by the definition of lower and upper solutions and the mean-value theorem, for δv =
v − v we have

Lhδv + fu(x)δv(x) ≥ 0, x ∈ ωh, δv(x) ≥ 0, x = 0, 1, (2.30)

where fu(x) = cu[x, v(x) + ϑ(x)δv(x)], 0 < ϑ(x) < 1. In view of the maximum principle in
Lemma 2.2, we conclude the required inequality.

The following theorem gives the monotone property of the iterative method (2.27).

Theorem 2.4. Let v(0), v(0) be upper and lower solutions of (2.3) and f satisfy (2.26). Then the
upper sequence {v(n)} generated by (2.27) converges monotonically from above to the unique solution
v of (2.3), the lower sequence {v(n)} generated by (2.27) converges monotonically from below to v:

v(n)(x) ≤ v(n+1)(x) ≤ v(x) ≤ v(n+1)(x) ≤ v(n)(x), x ∈ ωh, (2.31)

and the sequences converge at the linear rate q = 1 − c∗/c∗.

Proof. We consider only the case of the upper sequence. If v(0) is an upper solution, then from
(2.27)we conclude that

(

Lh + c∗
)

z(1)(x) ≤ 0, x ∈ ωh, z(1)(0), z(1)(1) ≤ 0. (2.32)

From Lemma 2.2, by the maximum principle for the difference operatorLh+c∗, it follows that
z(1)(x) ≤ 0, x ∈ ωh. Using the mean-value theorem and the equation for z(1), we represent
Rh(x, v(1)) in the form

Rh
(

x, v(1)
)

= −
(

c∗ − f
(1)
u (x)

)

z(1)(x), x ∈ ωh, (2.33)

where f (1)
u (x) = fu[x, v

(0)(x) + ϑ(1)(x)z(1)(x)], 0 < ϑ(1)(x) < 1. Since the mesh function z(1) is
nonpositive on ωh and taking into account (2.26), we conclude that v(1) is an upper solution.
By induction on n, we obtain that z(n)(x) ≤ 0, x ∈ ωh, n ≥ 1, and prove that {v(n)} is a
monotonically decreasing sequence of upper solutions.

We now prove that the monotone sequence {v(n)} converges to the solution of (2.3).
Similar to (2.33), we obtain

R
(

x, v(n−1)) = −
(

c∗ − f
(n−1)
u (x)

)

z(n−1)(x), x ∈ ωh, n ≥ 2, (2.34)
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and from (2.27), it follows that z(n+1) satisfies the difference equation

(L + c∗)z(n)(x) =
(

c∗ − f
(n−1)
u (x)

)

z(n−1)(x), x ∈ ωh. (2.35)

Using (2.26) and (2.6), we have

‖z(n)‖ωh ≤ qn−1‖z(1)‖ωh . (2.36)

This proves the convergence of the upper sequence at the linear rate q. Now by linearity of
the operator Lh and the continuity of f , we have also from (2.27) that the mesh function v
defined by

v(x) = lim
n→∞

v(n)(x), x ∈ ωh, (2.37)

is the exact solution to (2.3). The uniqueness of the solution to (2.3) follows from estimate
(2.6). Indeed, if by contradiction, we assume that there exist two solutions v1 and v2 to (2.3),
then by the mean-value theorem, the difference δv = v1 − v2 satisfies the difference problem

Lhδv + fuδv = 0, x ∈ ωh, δv(0) = δv(1) = 0. (2.38)

By (2.6), δv = 0 which leads to the uniqueness of the solution to (2.3). This proves the
theorem.

Consider the following approach for constructing initial upper and lower solutions
v(0) and v(0). Introduce the difference problems

(

Lh + c∗
)

v
(0)
ν = ν

∣
∣f(x, 0)

∣
∣, x ∈ ωh,

v
(0)
ν (0) = v

(0)
ν (1) = 0, ν = 1,−1,

(2.39)

where c∗ from (2.26). Then the functions v(0)
1 , v(0)

−1 are upper and lower solutions, respectively.
We check only that v(0)

1 is an upper solution. From the maximum principle in Lemma 2.2, it
follows that v(0)

1 ≥ 0 on ωh. Now using the difference equation for v(0)
1 and the mean-value

theorem, we have

Rh
(

x, v
(0)
1

)

= f(x, 0) +
∣
∣f(x, 0)

∣
∣ +

(

f
(0)
u − c∗

)

v
(0)
1 . (2.40)

Since f (0)
u ≥ c∗ and v

(0)
1 is nonnegative, we conclude that v(0)

1 is an upper solution.
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Theorem 2.5. If the initial upper or lower solution v(0) is chosen in the form of (2.39), then the
monotone iterative method (2.27) converges μ-uniformly to the solution v of the nonlinear difference
scheme (2.3)

∥
∥
∥v(n) − v

∥
∥
∥
ωh

≤ c0q
n

1 − q

∥
∥f(x, 0)

∥
∥
ωh ,

q = 1 − c∗/c∗ < 1, c0 = (3c∗ + c∗)/(c∗c∗).

(2.41)

Proof. From (2.27), (2.39), and the mean-value theorem, by (2.6),

∥
∥
∥z(1)

∥
∥
∥
ωh

≤ 1
c∗

∥
∥
∥Lhv(0)

∥
∥
∥
ωh

+
1
c∗

∥
∥
∥f(x, v(0))

∥
∥
∥
ωh

≤ 1
c∗
(

c∗
∥
∥
∥v(0)

∥
∥
∥
ωh

+
∥
∥f(x, 0)

∥
∥
ωh

)

+
1
c∗
∥
∥f(x, 0)

∥
∥
ωh +

∥
∥
∥v(0)

∥
∥
∥
ωh
.

(2.42)

From here and estimating v(0) from (2.39) by (2.6),

∥
∥
∥v(0)

∥
∥
∥
ωh

≤ 1
c∗

∥
∥f(x, 0)

∥
∥
ωh, (2.43)

we conclude the estimate on z(1) in the form

∥
∥
∥z(1)

∥
∥
∥
ωh

≤ c0
∥
∥f(x, 0)

∥
∥
ωh , (2.44)

where c0 is defined in the theorem. From here and (2.36), we conclude that

∥
∥
∥z(n)

∥
∥
∥
ωh

≤ c0q
n−1∥∥f(x, 0)

∥
∥
ωh . (2.45)

Using this estimate, we have

∥
∥
∥v(n+k) − v(n)

∥
∥
∥
ωh

≤
n+k−1∑

i=n

∥
∥
∥v(i+1) − v(i)

∥
∥
∥
ωh

=
n+k−1∑

i=n

∥
∥
∥z(i+1)

∥
∥
∥
ωh

≤ q

1 − q

∥
∥
∥z(n)

∥
∥
∥
ωh

≤ c0q
n

1 − q

∥
∥f(x, 0)

∥
∥
ωh .

(2.46)

Taking into account that limv(n+k) = v as k → ∞, where v is the solution to (2.3), we conclude
the theorem.

From Theorems 2.3 and 2.5 we conclude the following theorem.
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Theorem 2.6. Suppose that the initial upper or lower solution v(0) is chosen in the form of (2.39).
Then the monotone iterative method (2.27) on the piecewise uniformmesh (2.8) converges μ-uniformly
to the solution of problem (1.1):

∥
∥
∥v(n) − u

∥
∥
∥
ωh

≤ C
(

N−1 lnN + qn
)

, (2.47)

where q = 1 − c∗/c∗, and constant C is independent of μ and N.

3. The Parabolic Problem

3.1. The Nonlinear Difference Scheme

Introduce uniform mesh ωτ on [0, T]

ωτ = {tk = kτ, 0 ≤ k ≤ Nτ, Nττ = T}. (3.1)

For approximation of problem (1.2), we use the implicit difference scheme

Lv(x, t) − τ−1v(x, t − τ) = −f(x, t, v), (x, t) ∈ ωh ×ωτ \ {∅},

v(0, t) = 0, v(1, t) = 0, v(x, 0) = u0(x), x ∈ ωh,

L = Lh + τ−1,

(3.2)

where ωh and Lh are defined in (2.2) and (2.3), respectively. We introduce the linear version
of problem (3.2)

(L + c)w(x, t) = f0(x, t), x ∈ ωh,

w(0, t) = 0, w(1, t) = 0, c(x, t) ≥ 0, x ∈ ωh.
(3.3)

We now formulate a discrete maximum principle for the difference operator L + c and give
an estimate of the solution to (3.3).

Lemma 3.1. (i) If a mesh function w(x, t) on a time level t ∈ ωτ \ {∅} satisfies the conditions

(L + c)w(x, t) ≥ 0 (≤ 0), x ∈ ωh, w(0, t), w(1, t) ≥ 0 (≤ 0), (3.4)

then w(x, t) ≥ 0 (≤ 0), x ∈ ωh.
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(ii) If c(x, t) ≥ c∗ = const > 0, then the following estimate of the solution to (3.3) holds true:

‖w(t)‖ωh ≤ ∥
∥f0(t)

∥
∥
ωh/

(

c∗ + τ−1
)

, (3.5)

where ‖w(t)‖ωh = maxx∈ωh |w(x, t)|, ‖f0(t)‖ωh = maxx∈ωh |f0(x, t)|.

The proof of the lemma can be found in [6].

3.2. The Monotone Iterative Method

Assume that f(x, t, u) from (3.2) satisfies the two-sided constraint

0 ≤ fu(x, t, u) ≤ c∗, c∗ = const. (3.6)

We consider the following iterative method for solving (3.2). Choose an initial mesh
function v(0)(x, t). On each time level, the iterative sequence {v(n)(x, t)}, n = 1, . . . , n∗, is
defined by the recurrence formulae

(L + c∗)z(n)(x, t) = −R
(

x, t, v(n−1)
)

, x ∈ ωh,

z(1)(0, t) = −v(0)(0, t), z(1)(1, t) = −v(0)(1, t),

z(n)(0, t) = z(n)(1, t) = 0, n ≥ 2, v(n)(x, t) = v(n−1)(x, t) + z(n)(x, t),

R
(

x, t, v(n−1)
)

= Lv(n−1)(x, t) + f
(

x, t, v(n−1)
)

− τ−1v(x, t − τ),

v(x, t) = v(n∗)(x, t), x ∈ ωh, v(x, 0) = u0(x), x ∈ ωh,

(3.7)

where R(x, t, v(n−1)) is the residual of the difference scheme (3.2) on v(n−1).
On a time level t ∈ ωτ \{∅}, we say that v(x, t) is an upper solution of (3.2)with respect

to v(x, t − τ) if it satisfies the inequalities

Lv(x, t) + f(x, t, v) − τ−1v(x, t − τ) ≥ 0, x ∈ ωh,

v(0, t) ≥ 0, v(1, t) ≥ 0.
(3.8)

Similarly, v(x, t) is called a lower solution if it satisfies all the reversed inequalities. Upper
and lower solutions satisfy the inequality

v(x, t) ≤ v(x, t), p ∈ ωh. (3.9)

This result can be proved in a similar way as for the elliptic problem.
The following theorem gives the monotone property of the iterative method (3.7).
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Theorem 3.2. Assume that f(x, t, u) satisfies (3.6). Let v(x, t − τ) be given and v(0)(x, t), v(0)(x, t)
be upper and lower solutions of (3.2) corresponding v(x, t − τ). Then the upper sequence {v(n)(x, t)}
generated by (3.7) converges monotonically from above to the unique solution v(x, t) of the problem

Lv(x, t) + f(x, t, v) − τ−1v(x, t − τ) = 0, x ∈ ∂ωh,

v(0, t) = 0, v(1, t) = 0,
(3.10)

the lower sequence {v(n)(x, t)} generated by (3.7) converges monotonically from below to v(x, t) and
the following inequalities hold

v(n−1)(x, t) ≤ v(n)(x, t) ≤ v(x, t) ≤ v(n)(x, t) ≤ v(n−1)(x, t), x ∈ ωh. (3.11)

Proof. We consider only the case of the upper sequence, and the case of the lower sequence
can be proved in a similar way.

If v(0) is an upper solution, then from (3.7) we conclude that

Lz(1)(x, t) ≤ 0, x ∈ ωh, z(1)(0, t) ≤ 0, z(1)(1, t) ≤ 0. (3.12)

From Lemma 3.1, it follows that

z(1)(x, t) ≤ 0, x ∈ ωh, (3.13)

and from (3.7), it follows that v(1) satisfies the boundary conditions.
Using the mean-value theorem and the equation for z(1) from (3.7), we represent

R(x, t, v(1)) in the form

R
(

x, t, v(1)
)

= −
(

c∗ − f
(1)
u (x, t)

)

z(1)(x, t), (3.14)

where f
(1)
u (x, t) = fu[x, t, v

(0)(x, t) + ϑ(1)(x, t)z(1)(x, t)], 0 < ϑ(1)(x, t) < 1. Since the mesh
function z(1) is nonpositive on ωh and taking into account (3.6), we conclude that v(1) is an
upper solution to (3.2). By induction on n, we obtain that z(n)(x, t) ≤ 0, x ∈ ωh, n ≥ 1, and
prove that {v(n)(x, t)} is a monotonically decreasing sequence of upper solutions.

We now prove that the monotone sequence {v(n)} converges to the solution of (3.2).
The sequence {v(n)} is monotonically decreasing and bounded below by v, where v is any
lower solution (3.9). Now by linearity of the operatorL and the continuity of f , we have also
from (3.7) that the mesh function v defined by

v(x, t) = lim
n→∞

v(n)(x, t), x ∈ ωh, (3.15)



Boundary Value Problems 13

is an exact solution to (3.2). If by contradiction, we assume that there exist two solutions v1

and v2 to (3.2), then by the mean-value theorem, the difference δv = v1 − v2 satisfies the
system

Lδv(x, t) + fuδv(x, t) = 0, x ∈ ωh, δv(0, t) = v(1, t) = 0. (3.16)

By Lemma 3.1, δv = 0 which leads to the uniqueness of the solution to (3.2). This proves the
theorem.

Consider the following approach for constructing initial upper and lower solutions
v(0)(x, t) and v(0)(x, t). Introduce the difference problems

Lv
(0)
ν (x, t) = ν

∣
∣
∣f(x, t, 0) − τ−1v(x, t − τ)

∣
∣
∣, x ∈ ωh,

v
(0)
ν (0, t) = v(0)(1, t) = 0, ν = 1,−1.

(3.17)

The functions v(0)
1 (x, t), v(0)

−1 (x, t) are upper and lower solutions, respectively. This result can
be proved in a similar way as for the elliptic problem.

Theorem 3.3. Let initial upper or lower solution be chosen in the form of (3.17), and let f satisfy
(3.6). Suppose that on each time level the number of iterates n∗ ≥ 2. Then for the monotone iterative
methods (3.7), the following estimate on convergence rate holds:

max
1≤k≤Nτ

‖v(tk) − v∗(tk)‖ωh ≤ Cηn∗−1, η =
c∗

(

c∗ + τ−1
) , (3.18)

where v∗(x, t) is the solution to (3.2), v(x, t) = v(n∗)(x, t), and constant C is independent of μ, N,
and τ .

Proof. Similar to (3.14), using the mean-value theorem and the equation for z(n) from (3.7),
we have

Lv(n)(x, t) + f
(

x, t, v(n)
)

− τ−1v(x, t − τ) = −
[

c∗ − f
(n)
u (x, t)

]

z(n)(x, t),

f
(n)
u (x, t) ≡ fu

[

x, t, v(n−1)(x, t) + ϑ(n)(x, t)z(n)(x, t)
]

, 0 < ϑ(n)(x, t) < 1.
(3.19)

From here and (3.7), we have

(L + c∗)z(n)(x, t) =
(

c∗ − f
(n)
u

)

z(n−1)(x, t), x ∈ ωh. (3.20)
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Using (3.5) and (3.6), we have

∥
∥
∥z(n)

∥
∥
∥
ωh

≤ ηn−1
∥
∥
∥z(1)

∥
∥
∥
ωh
, (3.21)

where η is defined in (3.18).
Introduce the notation

w(x, t) = v∗(x, t) − v(x, t), (3.22)

where v(x, t) = v(n∗)(x, t). Using the mean-value theorem, from (3.2) and (3.19), we conclude
that w(x, τ) satisfies the problem

Lw(x, τ) + fu(x, τ)w(x, τ) =
(

c∗ − f
(n∗)
u (x, τ)

)

z(n∗)(x, τ), x ∈ ωh,

w(0, τ) = w(1, τ) = 0, x ∈ ∂ωh,

(3.23)

where f (n∗)
u (x, τ) = fu[x, τ, v(x, τ) + ϑ(x, τ)w(x, τ)], 0 < ϑ(x, τ) < 1, and we have taken into

account that v(x, 0) = v∗(x, 0) = u0(x). By (3.5), (3.6), and (3.21),

‖w(τ)‖ωh ≤ c∗τηn∗−1
∥
∥
∥z(1)(τ)

∥
∥
∥
ωh
. (3.24)

Using (3.6), (3.17), and the mean-value theorem, estimate z(1)(x, τ) from (3.7) by (3.5),

∥
∥
∥z(1)(τ)

∥
∥
∥
ωh

≤ τ
∥
∥
∥Lv(0)(τ)

∥
∥
∥
ωh

+ c∗τ
∥
∥
∥v(0)(τ)

∥
∥
∥
ωh

+ τ
∥
∥
∥f(x, τ, 0) − τ−1u0

∥
∥
∥
ωh

≤
(

2τ + c∗τ2
)∥
∥
∥f(x, τ, 0) − τ−1u0

∥
∥
∥
ωh

≤ (2 + c∗τ)
(

τ
∥
∥f(x, τ, 0)

∥
∥
ωh +

∥
∥
∥u0

∥
∥
∥
ωh

)

≤ C1,

(3.25)

where C1 is independent of τ (τ ≤ T), μ, and N. Thus,

‖w(τ)‖ωh ≤ c∗C1τη
n∗−1. (3.26)

Similarly, from (3.2) and (3.19), it follows that

Lw(x, 2τ) + fu(x, 2τ)w(x, 2τ) =
(

c∗ − f
(n∗)
u (x, 2τ)

)

z(n∗)(x, 2τ) + τ−1w(x, τ), x ∈ ωh. (3.27)

Using (3.21), by (3.5),

‖w(2τ)‖ωh ≤ ‖w(τ)‖ωh + c∗τηn∗−1
∥
∥
∥z(1)(2τ)

∥
∥
∥
ωh
. (3.28)
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Using (3.17), estimate z(1)(x, 2τ) from (3.7) by (3.5),

∥
∥
∥z(1)(2τ)

∥
∥
∥
ωh

≤ (2 + c∗τ)
(

τ
∥
∥f(x, 2τ, 0)

∥
∥
ωh + ‖v(τ)‖ωh

) ≤ C2, (3.29)

where v(x, τ) = v(n∗)(x, τ). As follows from Theorem 3.2, themonotone sequences {v(n)(x, τ)}
and {v(n)(x, τ)} are bounded from above and below by, respectively, v(0)(x, τ) and v(0)(x, τ).
Applying (3.5) to problem (3.17) at t = τ , we have

∥
∥
∥v(0)(τ)

∥
∥
∥
ωh

≤ τ
∥
∥
∥f(x, τ, 0) − τ−1u0(x)

∥
∥
∥
ωh

≤ K1, (3.30)

where constant K1 is independent of μ, N, and τ . Thus, we prove that C2 is independent of
μ,N, and τ . From (3.26) and (3.28), we conclude

‖w(2τ)‖ωh ≤ c∗(C1 + C2)τηn∗−1. (3.31)

By induction on k, we prove

‖w(tk)‖ωh ≤ c∗
(

k∑

l=1

Cl

)

τηn∗−1, k = 1, . . . ,Nτ , (3.32)

where all constants Cl are independent of μ, N, and τ . Taking into account that Nττ = T , we
prove the estimate (3.18)with C = c∗Tmax1≤l≤NτCl.

In [4], we prove that the difference scheme (3.2) on the piecewise uniform mesh (2.8)
converges μ-uniformly to the solution of problem (1.2):

max
1≤k≤Nτ

‖v∗(tk) − u(tk)‖ωh ≤ C
(

N−1 lnN + τ
)

, (3.33)

where v∗(x, t) is the exact solution to (3.2), and constant C is independent of μ, N, and τ .
From here and Theorem 3.3, we conclude the following theorem.

Theorem 3.4. Suppose that on each time level the initial upper or lower solution v(0) is chosen in the
form of (3.17) and n∗ ≥ 2. Then the monotone iterative method (3.7) on the piecewise uniform mesh
(2.8) converges μ-uniformly to the solution of problem (1.2):

‖v(tk) − u(tk)‖ωh ≤ C
(

N−1 lnN + τ + ηn∗−1
)

, (3.34)

where η = c∗/(c∗ + τ−1), and constant C is independent of μ,N, and τ .

4. Numerical Experiments

It is found that in all numerical experiments the basic feature of monotone convergence of
the upper and lower sequences is observed. In fact, the monotone property of the sequences
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Table 1: Numbers of iterations for the Newton iterative method.

v(0) \N 128 256 512 1024
−1 7 7 9 ∗
1 8 11 18 ∗
3 73 ∗ ∗ ∗

holds at every mesh point in the domain. This is, of course, to be expected from the analytical
consideration.

4.1. The Elliptic Problem

Consider problem (1.1) with f(u) = (u − 3)/(4 − u). We mention that ur = 3 is the solution
of the reduced problem, where μ = 0. This problem gives c∗ = 1/25, c∗ = 1, and initial lower
and upper solutions are chosen in the form of (2.39). The stopping criterion for the monotone
iterative method (2.27) is

∥
∥
∥v(n) − v(n−1)

∥
∥
∥
ωh

≤ 10−5. (4.1)

Our numerical experiments show that for 10−1 ≤ μ ≤ 10−6 and 32 ≤ N ≤ 1024, iteration
counts for monotone method (2.27) on the piecewise uniformmesh are independent of μ and
N, and equals 12 and 8 for the lower and upper sequences, respectively. These numerical
results confirm our theoretical results stated in Theorem 2.5.

In Table 1, we present numbers of iterations for solving the test problem by theNewton
iterative method with the initial iterations v(0)(x) = −1, 1, 3, x ∈ ωh. Here μ = 10−3 is in
use, and we denote by an “∗” if more than 100 iterations is needed to satisfy the stopping
criterion, or if the method diverges. The numerical results indicate that the Newton method
cannot be used successfully for this test problem.

4.2. The Parabolic Problem

For the parabolic problem (1.2), we consider the test problem with f(u) = exp(−1) − exp(−u)
and u0 = 0. This problem gives c∗ = exp(−1), c∗ = 1, and the initial lower and upper solutions
are chosen in the form of (3.17).

The stopping test for the monotone method (3.7) is defined by

∥
∥
∥v(n)(t) − v(n−1)(t)

∥
∥
∥
ωh

≤ 10−5. (4.2)

Our numerical experiments show that for 10−1 ≤ μ ≤ 10−6 and 32 ≤ N ≤ 1024, on
each time level the number of iterations for monotone method (3.7) on the piecewise uniform
mesh is independent of μ and N and equal 4, 4, and 3 for τ = 0.1, 0.05, 0.01, respectively.
These numerical results confirm our theoretical results stated in Theorem 3.3.
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