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1. Introduction

In this paper, we deal with the following elliptic equation with nonlinear boundary condition:

−Δu + u =
f(x, u)

M(
∫
Ω|∇u|2 + |u|2dx) , in Ω,

∂u

∂γ
= g(x, u), on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N > 2, ∂/∂γ is the outer
unite normal derivative, M : R+ → R is continuous, f : Ω × R → R, g : ∂Ω × R → R are
Carathéodory functions.

For (1.1), if the nonlocal term M(
∫
Ω|∇u|2 + |u|2dx) is replaced by M(

∫
Ω|∇u|2dx), then

the equation

−M
(∫

Ω
|∇u|2dx

)

Δu = f(x, u), in Ω (1.2)
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is related to the stationary analog of the Kirchhoff equation:

utt −M

(∫

Ω
|∇xu|2dx

)

Δxu = f(x, t), (1.3)

whereM(s) = as+b, a, b > 0. It was proposed by Kirchhoff [1] as an extension of the classical
D’Alembert wave equations for free vibrations of elastic strings. The Kirchhoff model takes
into account the length changes of the string produced by transverse vibrations. Equation
(1.3) received much attention and an abstract framework to the problem was proposed after
the work [2]. Some interesting and further results can be found in [3, 4] and the references
therein. In addition, (1.2) has important physical and biological background. There are many
authors who pay more attention to this equation. In particularly, authors concerned with the
existence of solutions for (1.2) with zero Dirichlet boundary condition via Galerkin method,
and built the variational frame in [5, 6]. More recently, Perera and Zhang obtained solutions
of a class of nonlocal quasilinear elliptic boundary value problems using the variational
methods, invariant sets of descent flow, Yang index, and critical groups [7, 8].

If the nonlocal termM(
∫
Ω|∇u|2+ |u|2dx) is replaced byM(

∫
Ω|u|2dx), then the equation

−M
(∫

Ω
|u|2dx

)

Δu = f(x, u), in Ω (1.4)

arises in numerous physical models such as systems of particles in thermodynamical
equilibrium via gravitational (Coulomb) potential, 2-D fully turbulent behavior of real flow,
thermal runaway in Ohmic Heating, shear bands in metal deformed under high strain rates,
among others. Because of its importance, in [9, 10], the authors similarly studied the existence
of solution for (1.4)with zero Dirichlet boundary condition.

On the other hand, elliptic equations with nonlinear boundary conditions have
become rather an active area of research; see [11–15] and reference therein. Those references
present necessary and sufficient conditions of solutions of elliptic equations with nonlinear
boundary conditions. In [13], the authors study the elliptic equation

Δu = f(x, u), in Ω, (1.5)

with the nonlinear boundary condition

∂u

∂γ
= g(x, u), on ∂Ω. (1.6)

They obtain various existence results applying coincidence degree theory and the method of
upper and lower solutions.

Inspired by the above references, we deal with the existence of solutions for elliptic
equation (1.1) with nonlinear boundary condition based on Galerkin method and the
Mountain Pass Lemma.

The paper is organized as follows. In Section 2, we will give the existence of solution
for (1.1) via Galerkin method. In Section 3, we will study the solution for (1.1) using the
Mountain Pass Lemma.
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2. Existence

In this section, we state and prove themain theorem via GalerkinmethodwhenΩ is bounded.
For convenience, we give the following hypotheses.

(H1) A typical assumption for M is that there exists an m0 > 0 such that M(s) ≥ m0, for
all s ≥ 0.

(H2) For all s ∈ R, assume that the functions f , g satisfying

|f(x, s)| ≤ C1
(
1 + |s|p1−1), a.e. in Ω,

|g(x, s)| ≤ C2
(
1 + |s|p2−1), a.e. on ∂Ω,

(2.1)

where C1, C2 > 0 are constants, 2 < p1< 2∗ = 2N/(N − 2), 2 < p1 < 2̃∗ = 2(N −
1)/(N − 2).

(H3) The function x �→ f(x, 0) + g(x, 0) is not identically zero.

Let W1,2(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)} be endowed with norm ‖u‖2 =
∫
Ω(|∇u|2 +

|u|2)dx. ThenW1,2(Ω) is a Banach space.
A function u ∈ W1,2(Ω) is a weak solution of (1.1) if

∫

Ω
∇u∇ϕdx +

∫

Ω
uϕdx −

∫

∂Ω
g(x, u)ϕdx =

∫

Ω

f

M(‖u)‖2)ϕdx, (2.2)

for all ϕ ∈ W1,2(Ω).

Lemma 2.1. Suppose that F : Rm → Rm is a continuous function such that 〈F(ξ), ξ〉 ≥ 0 on |ξ| = r,
where 〈·, ·〉 is the usual inner product in Rm and | · | its related norm. Then, there exists z0 ∈ Br(0)
such that F(z0) = 0.

Lemma 2.2 (see [16]). LetΩ be a domain in Rn satisfying the uniform Cm-regularity condition, and
suppose that there exists a simple (m, p)-extension operator E for Ω. Also suppose that mp < n and
p ≤ q ≤ p∗ = (n − 1)p/(n −mp). Then

Wm,p(Ω) ↪→ Lq(∂Ω). (2.3)

If mp = n, then the embedding still holds for p ≤ q < ∞. Moreover, if 1 < p ≤ q < p∗, then the
embedding is compact.

Theorem 2.3. Assume that (H1)–(H3) hold. In addition, we suppose that

(H4) there exist constants λ, η, μ, C3 such that f(x, u)u ≤ λ|u|2 + η|u|, ∀x ∈ Ω, u ∈
R, g(x, u)u ≤ μ(C3m0)

−1|u|2, ∀x on∂Ω with

λ + μ < m0. (2.4)
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Then problem (1.1) has at least one weak solution. Besides, any solution u satisfies the estimate

‖u‖ ≤ m0η|Ω|1/2
(m0 − λ − μ)

. (2.5)

Proof. Let {ψk} be different complete orthonormal systems forW1,2(Ω) and set

Vn = Span{ψ1, . . . , ψn}. (2.6)

Then Vn is isometric to Rn. Then, each u ∈ Vn is uniquely associated to ξ = (ξ1, . . . , ξn) by the
relation u =

∑
ξkϕk. Since {ψk} are, respectively, orthonormal inW1,2(Ω), we get ‖u‖2 = ‖ξ‖2Rn .

We search for solutions un ∈ Vn of the approximate problem

∫

Ω
∇un∇ψkdx +

∫

Ω
unψkdx −

∫

Ω

f(x, un)
M(‖un‖2)

ψkdx −
∫

∂Ω
g(x, un)ψkdy = 0,

∀ψk ∈ W1,2(Ω), k = 1, 2, . . . , n.

(2.7)

To solve this algebraic system we define the operator Pn : Rn → Rn

(Pnu)k =
∫

Ω
∇un∇ψkdx +

∫

Ω
unψkdx −

∫

Ω

f(x, un)
M(‖un‖2)

ψkdx

−
∫

∂Ω
g(x, un)ψkdy = 0, ∀u ∈ Vn.

(2.8)

By condition (H2), the growth of function f is subcritical, so u �→ f(·, u) defines a continuous
Nemytskii mapping Nf : Lp1(Ω) → Lp′1(Ω). Similarly, we also define a continuous mapping
Ng : Lp2(Ω) → Lp′2(Ω).

From the continuity of M and f(x, u), g(x, u), with respect to u, we denote that Pn is
continuous. Therefore, from (H1), (H2), (H4) and Hölder’s inequality, we note that u ∈ Vn

〈Pnu, u〉 ≥ ‖u‖2 − λ‖u‖2 + η|Ω|1/2‖u‖
m0

−
∫

∂Ω

(
μ

m0C3
|u|2

)
dy. (2.9)

On the other hand, by Lemma 2.2, we have

∫

∂Ω

(
μC−1

3 m−1
0 |u|2)dy = μC−1

3 m−1
0 ‖u‖2

L2(∂Ω) ≤ μ(C3m0)
−1C3‖u‖2 =

μ

m0
‖u‖2, (2.10)

where C3 > 0 is constant.
From (2.9) and (2.10), we can prove that

〈Pnu, u〉 ≥
(
1 − λ + μ

m0

)
‖u‖2 − η

m0
|Ω|1/2‖u‖. (2.11)
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This shows that there exists R > 0, depending only onm0, λ, η, μ, C3,Ω, such that 〈Pnu, u〉 ≥ 0
if ‖u‖ = R. Then system (2.7) has a solution un ∈ Vn satisfying

‖un‖ ≤ R. (2.12)

From this bound estimate, going to a subsequence if necessary, there are ν and u such that

‖un‖2 −→ ν, un ⇀ u weakly in W1,2(Ω). (2.13)

Besides, since W1,2(Ω) ↪→ Lp1(Ω), W1,2(Ω) ↪→ Lp2(∂Ω) compactly and the mapping Nf,Ng

is, respectively, continuous Lp1(Ω) → Lp′1(Ω) and Lp2(∂Ω) → Lp′2(∂Ω)

un −→ u in Lp1(Ω), f(x, un) −→ f(x, u) in Lp′1(Ω),

un −→ u in Lp2(∂Ω), g(x, un) −→ g(x, u) in Lp′2(∂Ω).
(2.14)

Then fixing k in (2.7) and letting n → ∞, we conclude that

∫

Ω
∇u∇ψkdx +

∫

Ω
uψkdx −

∫

Ω

f(x, u)
M(ν)

ψkdx −
∫

∂Ω
g(x, u)ψkdy = 0. (2.15)

From the completeness of ψk, identity holds with ψk replaced by any ψ ∈ W1,2(Ω). In
particularly, when ψ = u, we get

∫

Ω
∇u∇ψkdx +

∫

Ω
uψkdx −

∫

Ω

f(x, u)
M(ν)

ψkdx −
∫

∂Ω
g(x, u)ψkdy = 0. (2.16)

On the other hand, let ψk = un in (2.7) and passing to the limit, we get

ν −
∫

Ω

f(x, u)u
M(ν)

dx −
∫

∂Ω
g(x, u)udy = 0. (2.17)

Then we conclude that ν = ‖u‖2, which shows that u is a solution of (1.1). Finally, if u is any
solution of (1.1) and u is nontrivial, then

‖u‖2 −
∫

Ω

f(x, u)u
M(‖u‖2) dx −

∫

∂Ω
g(x, u)udy = 0,

‖u‖ ≤ η|Ω|1/2
(m0 − λ − μ)

.

(2.18)

The proof is complete.
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3. Variational Method

In this section, we consider the following problem:

M

(∫

Ω
|∇u|2 + |u|2dx

)

(−Δu + u) = aup1−1 + b, in Ω,

∂u

∂γ
= cup2−1 + d, on ∂Ω,

(3.1)

where a, b, c, d are constants, and p1, p2 are defined in (H2).
The nontrivial solution of (3.1) comes from the Mountain Pass Lemma in [17].

Lemma 3.1 (Mountain Pass Lemma). Let E be a Banach space and let I ∈ C1(E,R) satisfy the
Palais-Smale condition. Suppose also that

(i) I(0) = 0,

(ii) there exist constants r, a > 0 such that I(u) ≥ a, if ‖u‖ = r,

(iii) there exists an element v ∈ H with ‖v‖ > r, I(v) ≤ 0.

Define Γ := {g ∈ C[0, 1]; H : g(0) = 0, g(1) = v}. Then

c = inf
g∈Γ

max
0≤t≤1

I[g(t)] (3.2)

is a critical value of I.

Theorem 3.2. Assume the conditions (H1)–(H3) hold. In addition, the functionM satisfies

(H5) there existm1 ≥ m0 with (m0/2) − (m1/p) > 0 and t0 > 0, such thatM(t) = m1, ∀t ≥ t0,
where p = min{p1, p2}.

Then (3.1) has a nontrivial solution.

Proof. The weak solutions of (3.1) are critical points of the functional J : W1,2(Ω) → R
defined by

J(u) =
1
2
M̂(‖u‖2) − 1

p1

∫

Ω
aup1dx − 1

p2

∫

∂Ω
cup2dy −

∫

Ω
budx −

∫

∂Ω
dudy, (3.3)

where M̂(t) =
∫ t
0M(s)ds.

Let us check the (PS) condition. Let ψ ∈ W1,2, we have

J ′(u)ψ = M(‖u‖2)
(∫

Ω
(∇u∇ψ + uψ)dx

)

−
∫

Ω
aup1−1ψ dx

−
∫

∂Ω
cup2−1ψ dy −

∫

Ω
bψ dx −

∫

∂Ω
dψ dy.

(3.4)
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Let {un} be a Palais-Smale sequence in W1,2(Ω), that is, J(un) → c and J ′(un) → 0 and
assume the contradiction that ‖un‖ → +∞, then, from (H1), (H5), we have

J(un) − 1
p
J ′(un)un ≥

(
m0

2
− m1

p

)
‖un‖2 −

(
1
p1

− 1
p

)∫

Ω
au

p1
n dx

−
(

1
p2

− 1
p

)∫

∂Ω
cu

p2
n dy −

(
1 − 1

p

)∫

Ω
bundx −

(
1 − 1

p

)∫

∂Ω
dundy,

(3.5)

where a, b, c, d > 0. Then by the Sobolev embedding theorem and Lemma 2.2, we can select
C > 0 such that

C + C‖un‖ ≥ m0

(
1
2
− 1
p

)
‖un‖2, (3.6)

which is a contradiction with ‖un‖ → +∞. Hence {un} is bounded inW1,2(Ω). So {un} admits
a weakly convergence subsequence. From (H2), all the growth of f, gis subcritical, so the
standard argument shows that {un} admits a strongly convergence subsequence.

Next we will verify the hypotheses of Lemma 3.1. By Hölder’s inequality, Sobolev
embedding theorem, and Lemma 2.2, we have

∫

Ω
a|u|p1dx = a‖u‖p1

Lp1 (Ω) ≤ N1‖u‖p1 ,
∫

∂Ω
c|u|p2dy = c‖u‖p2

Lp2 (∂Ω) ≤ N2‖u‖p2 ,

∫

Ω
b|u|dx ≤ bN3‖u‖,

∫

∂Ω
d|u|dy ≤ dN4‖u‖.

(3.7)

So we obtain

J(u) ≥ 1
2
m0‖u‖2 −N1‖u‖p1 −N2‖u‖p2 − bN3‖u‖ − dN4‖u‖. (3.8)

Let ‖u‖ < 1, we get

J(u) ≥ 1
2
m0‖u‖2 −N5‖u‖p − bN3‖u‖ − dN4‖u‖. (3.9)

Let h(r) = (1/2)m0r
2 −N5r

p −N6ε · r, then we take r = r0 = 3N6ε/2m0 such that h(r0) = a =
(3N2

6/m0)ε2 −N53PN
p

6 ε
p > 0, when ε is sufficient small.

So for b and d small enough, then we have J(u) ≥ a > 0 for all ‖u‖ = r0.
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On the other hand, take ω0 ∈ W1,2(Ω)with
∫
Ωaω

p1
0 dx = 1 for k > 0, we have

J(kω0) =
1
2
M̂(‖kω0‖2) − kp1

p1

∫

Ω
aω

p1
0 dx − 1

p2

∫

∂Ω
c(kω0)

p2dy −
∫

Ω
bkω0dx −

∫

∂Ω
kdω0dy

≤ 1
2
m1‖kω0‖2 − kp1

p1

∫

Ω
aω

p1
0 dx − 1

p2

∫

∂Ω
c(kω0)

p2dy −
∫

Ω
bkω0dx −

∫

∂Ω
kdω0dy.

(3.10)

Since p1, p2 > 2, we obtain J(kω0) → −∞when k → +∞.
Let ω = kω0, with k large enough, we have ‖ω‖ > max{t0, r0} and J(ω) < a. So by the

Mountain Pass Lemma and (H3), we have a nontrivial solution u(x) for (3.1). The proof is
complete.
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