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15782 Santiago de Compostela, Spain

Correspondence should be addressed to Jifeng Chu, jifengchu@126.com

Received 12 February 2009; Accepted 29 April 2009

Recommended by Donal O’Regan

We present some recent existence results for second-order singular periodic differential equations.
A nonlinear alternative principle of Leray-Schauder type, a well-known fixed point theorem in
cones, and Schauder’s fixed point theorem are used in the proof. The results shed some light on
the differences between a strong singularity and a weak singularity.

Copyright q 2009 J. Chu and J. J. Nieto. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The main aim of this paper is to present some recent existence results for the positive T -
periodic solutions of second order differential equation

x′′ + a(t)x = f(t, x) + e(t), (1.1)

where a(t), e(t) are continuous and T -periodic functions. The nonlinearity f(t, x) is
continuous in (t, x) and T -periodic in t. We are mainly interested in the case that f(t, x) has a
repulsive singularity at x = 0:

lim
x→ 0+

f(t, x) = +∞, uniformly in t. (1.2)

It is well known that second order singular differential equations describe many
problems in the applied sciences, such as the Brillouin focusing system [1] and nonlinear
elasticity [2]. Therefore, during the last two decades, singular equations have attracted
many researchers, and many important results have been proved in the literature; see, for
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example, [3–10]. Recently, it has been found that a particular case of (1.1), the Ermakov-
Pinney equation

x′′ + a(t)x =
1
x3

(1.3)

plays an important role in studying the Lyapunov stability of periodic solutions of
Lagrangian equations [11–13].

In the literature, two different approaches have been used to establish the existence
results for singular equations. The first one is the variational approach [14–16], and
the second one is topological methods. Because we mainly focus on the applications of
topological methods to singular equations in this paper, here we try to give a brief sketch
of this problem. As far as the authors know, this method was started with the pioneering
paper of Lazer and Solimini [17]. They proved that a necessary and sufficient condition for
the existence of a positive periodic solution for equation

x′′ =
1
xλ

+ e(t) (1.4)

is that the mean value of e is negative, e < 0, here λ ≥ 1, which is a strong force
condition in a terminology first introduced by Gordon [18]. Moreover, if 0 < λ < 1, which
corresponds to a weak force condition, they found examples of functions e with negative
mean values and such that periodic solutions do not exist. Since then, the strong force
condition became standard in the related works; see, for instance, [2, 8–10, 13, 19–21], and
the recent review [22]. With a strong singularity, the energy near the origin becomes infinity
and this fact is helpful for obtaining the a priori bounds needed for a classical application of
the degree theory. Compared with the case of a strong singularity, the study of the existence
of periodic solutions under the presence of a weak singularity by topological methods is
more recent but has also attracted many researchers [4, 6, 23–28]. In [27], for the first time
in this topic, Torres proved an existence result which is valid for a weak singularity whereas
the validity of such results under a strong force assumption remains as an open problem.
Among topological methods, the method of upper and lower solutions [6, 29, 30], degree
theory [8, 20, 31], some fixed point theorems in cones for completely continuous operators
[25, 32–34], and Schauder’s fixed point theorem [27, 35, 36] are the most relevant tools.

In this paper, we select several recent existence results for singular equation (1.1)
via different topological tools. The remaining part of the paper is organized as follows. In
Section 2, some preliminary results are given. In Section 3, we present the first existence result
for (1.1) via a nonlinear alternative principle of Leray-Schauder. In Section 4, the second
existence result is established by using a well-known fixed point theorem in cones. The
condition imposed on a(t) in Sections 3 and 4 is that the Green function G(t, s) associated
with the linear periodic equations is positive, and therefore the results cannot cover the
critical case, for example, when a is a constant, a(t) = k2, 0 < k <

√
λ1 = π/T , and λ1 is

the first eigenvalue of the linear problem with Dirichlet conditions x(0) = x(T) = 0. Different
from Sections 3 and 4, the results obtained in Section 5, which are established by Schauder’s
fixed point theorem, can cover the critical case because we only need that the Green function
G(t, s) is nonnegative. All results in Sections 3–5 shed some lights on the differences between
a strong singularity and a weak singularity.
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To illustrate our results, in Sections 3–5, we have selected the following singular
equation:

x” + a(t)x = x−α + μxβ + e(t), (1.5)

here a, e ∈ C[0, T], α, β > 0, and μ ∈ R is a given parameter. The corresponding results are
also valid for the general case

x” + a(t)x =
b(t)
xα

+ μc(t)xβ + e(t), (1.6)

with b, c ∈ C[0, T]. Some open problems for (1.5) or (1.6) are posed.
In this paper, we will use the following notation. Given ψ ∈ L1[0, T], we write ψ � 0

if ψ ≥ 0 for a.e. t ∈ [0, T], and it is positive in a set of positive measure. For a given function
p ∈ L1[0, T] essentially bounded, we denote the essential supremum and infimum of p by p∗

and p∗, respectively.

2. Preliminaries

Consider the linear equation

x′′ + a(t)x = p(t) (2.1)

with periodic boundary conditions

x(0) = x(T), x′(0) = x′(T). (2.2)

In Sections 3 and 4, we assume that

(A) the Green function G(t, s), associated with (2.1)–(2.2), is positive for all (t, s) ∈
[0, T] × [0, T].

In Section 5, we assume that

(B) the Green function G(t, s), associated with (2.1)–(2.2), is nonnegative for all (t, s) ∈
[0, T] × [0, T].

When a(t) = k2, condition (A) is equivalent to 0 < k2 < λ1 = (π/T)2 and condition (B)
is equivalent to 0 < k2 ≤ λ1. In this case, we have

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin k(t − s) + sin k(T − t + s)
2k(1 − cos kT)

, 0 ≤ s ≤ t ≤ T,

sin k(s − t) + sin k(T − s + t)
2k(1 − cos kT)

, 0 ≤ t ≤ s ≤ T.

(2.3)
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For a nonconstant function a(t), there is an Lp-criterion proved in [37], which is given
in the following lemma for the sake of completeness. Let K(q) denote the best Sobolev
constant in the following inequality:

C‖u‖2q ≤
∥
∥u′∥∥2

2, ∀u ∈ H1
0(0, T). (2.4)

The explicit formula for K(q) is

K
(
q
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2π
qT1+2/q

(
2

2 + q

)1−2/q( Γ(1/q)
Γ(1/2 + 1/q)

)2

if 1 ≤ q < ∞,

4
T
, if q = ∞,

(2.5)

where Γ is the Gamma function; see [21, 38]

Lemma 2.1. Assume that a(t) � 0 and a ∈ Lp[0, T] for some 1 ≤ p ≤ ∞. If

‖a‖p < K
(
2p̃

)
, (2.6)

then the condition (A) holds. Moreover, condition (B) holds if

‖a‖p ≤ K
(
2p̃

)
. (2.7)

When the hypothesis (A) is satisfied, we denote

m = min
0≤s,t≤T

G(t, s), M = max
0≤s,t≤T

G(t, s), σ =
m

M
. (2.8)

Obviously, M > m > 0 and 0 < σ < 1.
Throughout this paper, we define the function γ : R → R by

γ(t) =
∫T

0
G(t, s)e(s)ds, (2.9)

which corresponds to the unique T -periodic solution of

x′′ + a(t)x = e(t). (2.10)

3. Existence Result (I)

In this section, we state and prove the first existence result for (1.1). The proof is based on the
following nonlinear alternative of Leray-Schauder, which can be found in [39]. This part can
be regarded as the scalar version of the results in [4].
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Lemma 3.1. Assume Ω is a relatively compact subset of a convex set K in a normed space X. Let
T : Ω → K be a compact map with 0 ∈ Ω. Then one of the following two conclusions holds:

(a) T has at least one fixed point in Ω;

(b) thereexist x ∈ ∂Ω and 0 < λ < 1 such that x = λTx.

Theorem 3.2. Suppose that a(t) satisfies (A) and f(t, x) satisfies the following.

(H1) There exist constants σ > 0 and ν ≥ 1 such that

f(t, x) ≥ σx−ν, ∀t ∈ [0, T], ∀0 < x � 1. (3.1)

(H2) There exist continuous, nonnegative functions g(x) and h(x) such that

0 ≤ f(t, x) ≤ g(x) + h(x) ∀(t, x) ∈ [0, T] × (0,∞), (3.2)

g(x) > 0 is nonincreasing and h(x)/g(x) is nondecreasing in x ∈ (0,∞).

(H3) There exists a positive number r such that σr + γ∗ > 0, and

r

g
(
σr + γ∗

){
1 + h

(
r + γ∗

)
/g

(
r + γ∗

)} > ω∗, here ω(t) =
∫T

0
G(t, s)ds. (3.3)

Then for each e ∈ C(R/TZ,R), (1.1) has at least one positive periodic solution x with
x(t) > γ(t) for all t and 0 < ‖x − γ‖ < r.

Proof. The existence is proved using the Leray-Schauder alternative principle, together with
a truncation technique. The idea is that we show that

x′′ + a(t)x = f
(
t, x(t) + γ(t)

)
(3.4)

has a positive periodic solution x satisfying x(t) + γ(t) > 0 for t and 0 < ‖x‖ < r. If this is
true, it is easy to see that u(t) = x(t) + γ(t) will be a positive periodic solution of (1.1) with
0 < ‖u − γ‖ < r since

u′′ + a(t)u = x′′ + γ” + a(t)x + a(t)γ = f
(
t, x + γ

)
+ e(t) = f(t, u) + e(t). (3.5)

Since (H3) holds, we can choose n0 ∈ {1, 2, · · · } such that 1/n0 < σr + γ∗ and

ω∗g
(
σr + γ∗

)
{

1 +
h
(
r + γ∗

)

g
(
r + γ∗

)

}

+
1
n0

< r. (3.6)

Let N0 = {n0, n0 + 1, · · · }. Consider the family of equations

x′′ + a(t)x = λfn
(
t, x(t) + γ(t)

)
+
a(t)
n

, (3.7)
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where λ ∈ [0, 1], n ∈ N0, and

fn(t, x) =

⎧
⎪⎪⎨

⎪⎪⎩

f(t, x), if x ≥ 1
n
,

f

(
t,
1
n

)
, if x ≤ 1

n
.

(3.8)

Problem (3.7) is equivalent to the following fixed point problem:

x = λTnx +
1
n
, (3.9)

where Tn is defined by

(Tnx)(t) = λ

∫T

0
G(t, s)fn

(
s, x(s) + γ(s)

)
ds +

1
n
. (3.10)

We claim that any fixed point x of (3.9) for any λ ∈ [0, 1] must satisfy ‖x‖/= r.
Otherwise, assume that x is a fixed point of (3.9) for some λ ∈ [0, 1] such that ‖x‖ = r.
Note that

x(t) − 1
n
= λ

∫T

0
G(t, s)fn

(
s, x(s) + γ(s)

)
ds

≥ λm

∫T

0
fn
(
s, x(s) + γ(s)

)
ds

= σMλ

∫T

0
fn
(
s, x(s) + γ(s)

)
ds

≥ σmax
t∈[0,T]

{

λ

∫T

0
G(t, s)fn

(
s, x(s) + γ(s)

)
ds

}

= σ

∥∥∥∥x − 1
n

∥∥∥∥.

(3.11)

By the choice of n0, 1/n ≤ 1/n0 < σr + γ∗. Hence, for all t ∈ [0, T], we have

x(t) ≥ σ

∥∥∥∥x − 1
n

∥∥∥∥ +
1
n
≥ σ

(
‖x‖ − 1

n

)
+
1
n
≥ σr. (3.12)

Therefore,

x(t) + γ(t) ≥ σr + γ∗ >
1
n
. (3.13)
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Thus we have from condition (H2), for all t ∈ [0, T],

x(t) = λ

∫T

0
G(t, s)fn

(
s, x(s) + γ(s)

)
ds +

1
n

= λ

∫T

0
G(t, s)f

(
s, x(s) + γ(s)

)
ds +

1
n

≤
∫T

0
G(t, s)f

(
s, x(s) + γ(s)

)
ds +

1
n

≤
∫T

0
G(t, s)g

(
x(s) + γ(s)

)
{

1 +
h
(
x(s) + γ(s)

)

g
(
x(s) + γ(s)

)

}

ds +
1
n

≤ g
(
σr + γ∗

)
{

1 +
h
(
r + γ∗

)

g
(
r + γ∗

)

}∫T

0
G(t, s)ds +

1
n

≤ g
(
σr + γ∗

)
{

1 +
h
(
r + γ∗

)

g
(
r + γ∗

)

}

ω∗ +
1
n0

.

(3.14)

Therefore,

r = ‖x‖ ≤ g
(
σr + γ∗

)
{

1 +
h
(
r + γ∗

)

g
(
r + γ∗

)

}

ω∗ +
1
n0

. (3.15)

This is a contradiction to the choice of n0, and the claim is proved.
From this claim, the Leray-Schauder alternative principle guarantees that

x = Tnx +
1
n

(3.16)

has a fixed point, denoted by xn, in Br = {x ∈ X : ‖x‖ < r}, that is, equation

x′′ + a(t)x = fn
(
t, x(t) + γ(t)

)
+
a(t)
n

(3.17)

has a periodic solution xn with ‖xn‖ < r. Since xn(t) ≥ 1/n > 0 for all t ∈ [0, T] and xn is
actually a positive periodic solution of (3.17).

In the next lemma, we will show that there exists a constant δ > 0 such that

xn(t) + γ(t) ≥ δ, ∀t ∈ [0, T], (3.18)

for n large enough.
In order to pass the solutions xn of the truncation equations (3.17) to that of the original

equation (3.4), we need the following fact:

∥∥x′
n

∥∥ ≤ H (3.19)
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for some constant H > 0 and for all n ≥ n0. To this end, by the periodic boundary conditions,
x′

n(t0) = 0 for some t0 ∈ [0, T]. Integrating (3.17) from 0 to T , we obtain

∫T

0
a(t)xn(t)dt =

∫T

0

[
fn
(
t, xn(t) + γ(t)

)
+
a(t)
n

]
dt. (3.20)

Therefore

∥
∥x′

n

∥
∥ = max

0≤t≤T

∣
∣x′

n(t)
∣
∣ = max

0≤t≤T

∣
∣
∣
∣
∣

∫ t

t0

x′′
n(s)ds

∣
∣
∣
∣
∣

= max
0≤t≤T

∣
∣
∣
∣
∣

∫ t

t0

[
fn
(
s, xn(s) + γ(s)

)
+
a(s)
n

− a(s)xn(s)
]
ds

∣
∣
∣
∣
∣

≤
∫T

0

[
fn
(
s, xn(s) + γ(s)

)
+
a(s)
n

]
ds +

∫T

0
a(s)xn(s)ds

= 2
∫T

0
a(s)xn(s)ds < 2r‖a‖1 = H.

(3.21)

The fact ‖xn‖ < r and (3.19) show that {xn}n∈N0
is a bounded and equicontinuous

family on [0, T]. Now theArzela-Ascoli Theorem guarantees that {xn}n∈N0
has a subsequence,

{xnk}k∈N, converging uniformly on [0, T] to a function x ∈ X. Moreover, xnk satisfies the
integral equation

xnk(t) =
∫T

0
G(t, s)f

(
s, xnk(s) + γ(s)

)
ds +

1
nk

. (3.22)

Letting k → ∞, we arrive at

x(t) =
∫T

0
G(t, s)f

(
s, x(s) + γ(s)

)
ds, (3.23)

where the uniform continuity of f(t, x) on [0, T]× [δ, r + γ∗] is used. Therefore, x is a positive
periodic solution of (3.4).

Lemma 3.3. There exist a constant δ > 0 and an integer n2 > n0 such that any solution xn of (3.17)
satisfies (3.18) for all n ≥ n2.

Proof. The lower bound in (3.18) is established using the strong force condition (H1) of f(t, x).
By condition (H1), there exists c0 ∈ (0, 1) small enough such that

f(t, x) ≥ σc−ν0 > max
{
r‖a‖1, a∗(r + γ∗

)
+ e∗

}
, ∀0 ≤ t ≤ T, 0 < x ≤ c0. (3.24)
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Take n1 ∈ N0 such that 1/n1 ≤ c0 and let N1 = {n1, n1 + 1, · · · }. For n ∈ N1, let

αn = min
0≤t≤T

[
xn(t) + γ(t)

]
, βn = max

0≤t≤T
[
xn(t) + γ(t)

]
. (3.25)

We claim first that βn > c0 for alln ∈ N1. Otherwise, suppose that βn ≤ c0 for some
n ∈ N1. Then from (3.24), it is easy to verify

fn
(
t, xn(t) + γ(t)

)
> r‖a‖1. (3.26)

Integrating (3.17) from 0 to T , we deduce that

0 =
∫T

0

[
x”
n(t) + a(t)xn(t) − fn

(
t, xn(t) + γ(t)

) − a(t)
n

]
dt

=
∫T

0
a(t)xn(t)dt −

(
1
n

)∫T

0
a(t)dt −

∫T

0
fn
(
t, xn(t) + γ(t)

)
dt

<

∫T

0
a(t)xn(t)dt − r‖a‖1 ≤ 0.

(3.27)

This is a contradiction. Thus βn > c0 for n ∈ N1.
Now we consider the minimum values αn. Let n ≥ n1. Without loss of generality, we

assume that αn < c0, otherwise we have (3.18). In this case,

αn = min
0≤t≤T

[
xn(t) + γ(t)

]
= xn(tn) + γ(tn) < c0 (3.28)

for some tn ∈ [0, T]. As βn > c0, there exists cn ∈ [0, 1] (without loss of generality, we assume
tn < cn) such that xn(cn) + γ(cn) = c0 and xn(t) + γ(t) ≤ c0 for tn ≤ t ≤ cn. By (3.24), it can be
checked that

fn
(
t, xn(t) + γ(t)

)
> a(t)

(
xn(t) + γ(t)

)
+ e(t), ∀t ∈ [tn, cn]. (3.29)

Thus for t ∈ (tn, cn], we have x”
n(t) + γ”(t) > 0. As x′

n(tn) + γ ′(tn) = 0, x′
n(t) + γ ′(t) > 0

for all t ∈ (tn, cn] and the function yn := xn + γ is strictly increasing on [tn, cn]. We use ξn to
denote the inverse function of yn restricted to [tn, cn].

In order to prove (3.18) in this case, we first show that, for n ∈ N1,

xn(t) + γ(t) ≥ 1
n
. (3.30)
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Otherwise, suppose that αn < 1/n for some n ∈ N1. Then there would exist bn ∈ (tn, cn)
such that xn(bn) + γ(bn) = 1/n and

xn(t) + γ(t) ≤ 1
n

for tn ≤ t ≤ bn,
1
n
≤ xn(t) + γ(t) ≤ c0 for bn ≤ t ≤ cn. (3.31)

Multiplying (3.17) by x′
n(t) + γ ′(t) and integrating from bn to cn, we obtain

∫R1

1/n
f
(
ξn
(
y
)
, y

)
dy =

∫ cn

bn

f
(
t, xn(t) + γ(t)

)(
x′
n(t) + γ ′(t)

)
dt

=
∫ cn

bn

fn
(
t, xn(t) + γ(t)

)(
x′
n(t) + γ ′(t)

)
dt

=
∫ cn

bn

(
x′′
n(t) + a(t)xn(t) − a(t)

n

)
(
x′
n(t) + γ ′(t)

)
dt

=
∫ cn

bn

x′′
n(t)

(
x′
n(t) + γ ′(t)

)
dt

+
∫ cn

bn

(
a(t)xn(t) − a(t)

n

)
(
x′
n(t) + γ ′(t)

)
dt.

(3.32)

By the facts ‖xn‖ < r and ‖x′
n‖ ≤ H, one can easily obtain that the right side of the above

equality is bounded. As a consequence, there exists L > 0 such that

∫R1

1/n
f
(
ξn
(
y
)
, y

)
dy ≤ L. (3.33)

On the other hand, by the strong force condition (H1), we can choose n2 ∈ N1 large
enough such that

∫ c0

1/n
f
(
ξn
(
y
)
, y

)
dy ≥ σ

∫ c0

1/n
y−νdy > L (3.34)

for all n ∈ N2 = {n2, n2 + 1, · · · }. So (3.30) holds for n ∈ N2.
Finally, multiplying (3.17) by x′

n(t) + γ ′(t) and integrating from tn to cn, we obtain

∫ c0

αn

f
(
ξn
(
y
)
, y

)
dy =

∫ cn

tn

f
(
t, xn(t) + γ(t)

)(
x′
n(t) + γ ′(t)

)
dt

=
∫ cn

tn

fn
(
t, xn(t) + γ(t)

)(
x′
n(t) + γ ′(t)

)
dt

=
∫ cn

tn

(
x′′
n(t) + a(t)xn(t) − a(t)

n

)
(
x′
n(t) + γ ′(t)

)
dt.

(3.35)
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(We notice that the estimate (3.30) is used in the second equality above). In the same way,
one may readily prove that the right-hand side of the above equality is bounded. On the
other hand, if n ∈ N2, by (H1),

∫ c0

αn

f
(
ξn
(
y
)
, y

)
dy ≥ σ

∫ c0

αn

y−νdy −→ +∞ (3.36)

if αn → 0+. Thus we know that αn ≥ δ for some constant δ > 0.

From the proof of Theorem 3.2 and Lemma 3.3, we see that the strong force condition
(H1) is only used when we prove (3.18). From the next theorem, we will show that, for the
case γ∗ ≥ 0, we can remove the strong force condition (H1), and replace it by one weak force
condition.

Theorem 3.4. Assume that (A) and (H2)–( H3) are satisfied. Suppose further that

(H4) for each constant L > 0, there exists a continuous function φL � 0 such that f(t, x) ≥ φL(t)
for all (t, x) ∈ [0, T] × (0, L].

Then for each e(t) with γ∗ ≥ 0, (1.1) has at least one positive periodic solution x with x(t) > γ(t) for
all t and 0 < ‖x − γ‖ < r.

Proof. We only need to show that (3.18) is also satisfied under condition (H4) and γ∗ ≥ 0. The
rest parts of the proof are in the same line of Theorem 3.2. Since (H4) holds, there exists a
continuous function φr+γ∗ � 0 such that f(t, x) ≥ φr+γ∗(t) for all (t, x) ∈ [0, T] × (0, r + γ∗]. Let
xr+γ∗ be the unique periodic solution to the problems (2.1)–(2.2) with h = φr+γ∗ . That is

xr+γ∗(t) =
∫T

0
G(t, s)φr+γ∗(s)ds. (3.37)

Then we have

xr+γ∗(t) + γ(t) =
∫T

0
G(t, s)φr+γ∗(s)ds + γ(t) ≥ Φ∗ + γ∗ > 0, (3.38)

here

Φ(t) =
∫T

0
G(t, s)φr+γ∗(s)ds. (3.39)

Corollary 3.5. Assume that a(t) satisfies (A) and α > 0, β ≥ 0, μ > 0. Then

(i) if α ≥ 1, β < 1, then for each e ∈ C(R/TZ,R), (1.5) has at least one positive periodic
solution for all μ > 0;

(ii) if α ≥ 1, β ≥ 1, then for each e ∈ C(R/TZ,R), (1.5) has at least one positive periodic
solution for each 0 < μ < μ1, here μ1 is some positive constant.



12 Boundary Value Problems

(iii) if α > 0, β < 1, then for each e ∈ C(R/TZ,R) with γ∗ ≥ 0, (1.5) has at least one positive
periodic solution for all μ > 0;

(iv) if α > 0, β ≥ 1, then for each e ∈ C(R/TZ,R) with γ∗ ≥ 0, (1.5) has at least one positive
periodic solution for each 0 < μ < μ1.

Proof. We apply Theorems 3.2 and 3.4. Take

g(x) = x−α, h(x) = μxβ, (3.40)

then (H2) is satisfied, and the existence condition (H3) becomes

μ <
r
(
σr + γ∗

)α −ω∗

ω∗(r + γ∗
)α+β (3.41)

for some r > 0. Note that condition (H1) is satisfied when α ≥ 1, while (H4) is satisfied when
α > 0. So (1.5) has at least one positive periodic solution for

0 < μ < μ1 := sup
r>0

r
(
σr + γ∗

)α −ω∗

ω∗(r + γ∗
)α+β . (3.42)

Note that μ1 = ∞ if β < 1 and μ1 < ∞ if β ≥ 1. Thus we have (i)–(iv).

4. Existence Result (II)

In this section, we establish the second existence result for (1.1) using a well-known fixed
point theorem in cones. We are mainly interested in the superlinear case. This part is
essentially extracted from [24].

First we recall this fixed point theorem in cones, which can be found in [40]. Let K be
a cone in X and D is a subset of X, we write DK = D ∩K and ∂KD = (∂D) ∩K.

Theorem 4.1 (see [40]). Let X be a Banach space and K a cone in X. Assume Ω1,Ω2 are open

bounded subsets of X with Ω1
K /= ∅,Ω1

K ⊂ Ω2
K. Let

T : Ω
2
K −→ K (4.1)

be a completely continuous operator such that

(a) ‖Tx‖ ≤ ‖x‖ for x ∈ ∂KΩ1,

(b) There exists υ ∈ K \ {0} such that x /= Tx + λυ for all x ∈ ∂KΩ2 and all λ > 0.

Then T has a fixed point in Ω
2
K \Ω1

K.
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In applications below, we take X = C[0, T] with the supremum norm ‖ · ‖ and define

K =
{
x ∈ X : x(t) ≥ 0 ∀t ∈ [0, T], min

0≤t≤T
x(t) ≥ σ‖x‖

}
. (4.2)

Theorem 4.2. Suppose that a(t) satisfies (A) and f(t, x) satisfies (H2)–(H3). Furthermore, assume
that

(H5) there exist continuous nonnegative functions g1(x), h1(x) such that

f(t, x) ≥ g1(x) + h1(x), ∀(t, x) ∈ [0, T] × (0,∞), (4.3)

g1(x) > 0 is nonincreasing and h1(x)/g1(x) is nondecreasing in x;

(H6) there exists R > 0 with σR > r such that

σR

g1
(
R + γ∗

){
1 + h1

(
σR + γ∗

)
/g1

(
σR + γ∗

)} ≤ ω∗. (4.4)

Then (1.1) has one positive periodic solution x̃ with r < ‖x̃ − γ‖ ≤ R.

Proof. As in the proof of Theorem 3.2, we only need to show that (3.4) has a positive periodic
solution u ∈ X with u(t) + γ(t) > 0 and r < ‖u‖ ≤ R.

Let K be a cone in X defined by (4.2). Define the open sets

Ω1 = {x ∈ X : ‖x‖ < r}, Ω2 = {x ∈ X : ‖x‖ < R}, (4.5)

and the operator T : Ω
2
K → K by

(Tx)(t) =
∫T

0
G(t, s)f

(
s, x(s) + γ(s)

)
ds, 0 ≤ t ≤ T. (4.6)

For each x ∈ Ω
2
K \ Ω1

K, we have r ≤ ||x|| ≤ R. Thus 0 < σr + γ∗ ≤ x(t) + γ(t) ≤ R + γ∗

for all t ∈ [0, T]. Since f : [0, T] × [σr + γ∗, R + γ∗] → [0,∞) is continuous, then the operator

T : Ω
2
K \ Ω1

K → K is well defined and is continuous and completely continuous. Next we
claim that:

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ ∂KΩ1, and

(ii) there exists υ ∈ K \ {0} such that x /= Tx + λυ for all x ∈ ∂KΩ2 and all λ > 0.
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We start with (i). In fact, if x ∈ ∂KΩ1, then ‖x‖ = r and σr + γ∗ ≤ x(t) + γ(t) ≤ r + γ∗ for
all t ∈ [0, T]. Thus we have

(Tx)(t) =
∫T

0
G(t, s)f

(
s, x(s) + γ(s)

)
ds

≤
∫T

0
G(t, s)g

(
x(s) + γ(s)

)
{

1 +
h
(
x(s) + γ(s)

)

g
(
x(s) + γ(s)

)

}

ds

≤ g
(
σr + γ∗

)
{

1 +
h
(
r + γ∗

)

g
(
r + γ∗

)

}∫T

0
G(t, s)ds

≤ g
(
σr + γ∗

)
{

1 +
h
(
r + γ∗

)

g
(
r + γ∗

)

}

ω∗ < r = ‖x‖.

(4.7)

Next we consider (ii). Let υ(t) ≡ 1, then υ ∈ K \ {0}. Next, suppose that there exists
x ∈ ∂KΩ2 and λ > 0 such that x = Tx + λυ. Since x ∈ ∂KΩ2, then σR + γ∗ ≤ x(t) + γ(t) ≤ R + γ∗

for all t ∈ [0, T]. As a result, it follows from (H5) and (H6) that, for all t ∈ [0, T],

x(t) = (Tx)(t) + λ =
∫T

0
G(t, s)f

(
s, x(s) + γ(s)

)
ds + λ

≥
∫T

0
G(t, s)g1

(
x(s) + γ(s)

)
{

1 +
h1
(
x(s) + γ(s)

)

g1
(
x(s) + γ(s)

)

}

ds + λ

≥ g1
(
R + γ∗

)
{

1 +
h1
(
σR + γ∗

)

g1
(
σR + γ∗

)

}∫T

0
G(t, s)ds + λ

≥ g1
(
R + γ∗

)
{

1 +
h1
(
σR + γ∗

)

g1
(
σR + γ∗

)

}

ω∗ + λ

> g1
(
R + γ∗

)
{

1 +
h1
(
σR + γ∗

)

g1
(
σR + γ∗

)

}

ω∗ ≥ σR.

(4.8)

Hence min
0≤t≤T

x(t) > σR, this is a contradiction and we prove the claim.

Now Theorem 4.1 guarantees that T has at least one fixed point x ∈ Ω
2
K \ Ω1

K with
r ≤ ‖x‖ ≤ R. Note ‖x‖/= r by (4.7).

Combined Theorem 4.2 with Theorems 3.2 or 3.4, we have the following two
multiplicity results.

Theorem 4.3. Suppose that a(t) satisfies (A) and f(t, x) satisfies (H1)–( H3) and (H5)–( H6). Then
(1.1) has two different positive periodic solutions x and x̃ with 0 < ‖x − γ‖ < r < ‖x̃ − γ‖ ≤ R.

Theorem 4.4. Suppose that a(t) satisfies (A) and f(t, x) satisfies (H2)–( H6). Then (1.1) has two
different positive periodic solutions x and x̃ with 0 < ‖x − γ‖ < r < ‖x̃ − γ‖ ≤ R.
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Corollary 4.5. Assume that a(t) satisfies (A) and α > 0, β > 1, μ > 0. Then

(i) if α ≥ 1, then for each e ∈ C(R/TZ,R), (1.5) has at least two positive periodic solutions
for each 0 < μ < μ1;

(ii) if α > 0, then for each e ∈ C(R/TZ,R) with γ∗ ≥ 0, (1.5) has at least two positive periodic
solutions for each 0 < μ < μ1.

Proof. Take g1(x) = x−α, h1(x) = μxβ. Then (H5) is satisfied and the existence condition (H6)
becomes

μ ≥ σR
(
R + γ∗

)α −ω∗

ω∗
(
σR + γ∗

)α+β . (4.9)

Since β > 1, it is easy to see that the right-hand side goes to 0 as R → +∞. Thus, for any given
0 < μ < μ1, it is always possible to find such R � r that (4.9) is satisfied. Thus, (1.5) has an
additional positive periodic solution x̃.

5. Existence Result (III)

In this section, we prove the third existence result for (1.1) by Schauder’s fixed point theorem.
We can cover the critical case because we assume that the condition (B) is satisfied. This part
comes essentially from [35], and the results for the vector version can be found in [4].

Theorem 5.1. Assume that conditions (B) and (H2), (H4) are satisfied. Furthermore, suppose that

(H7) there exists a positive constant R > 0 such that R > Φ∗,Φ∗+γ∗ > 0 and R ≥ g(Φ∗+γ∗){1+
h(R + γ∗)/g(R + γ∗)}ω∗, here Φ∗ = mintΦ(t), Φ(t) =

∫T
0G(t, s)φR+γ∗(s)ds.

Then (1.1) has at least one positive T -periodic solution.

Proof. A T -periodic solution of (1.1) is just a fixed point of the map T : X → X defined by
(4.6). Note that T is a completely continuous map.

Let R be the positive constant satisfying (H7) and r = Φ∗ > 0. Then we have R > r > 0.
Now we define the set

Ω = {x ∈ X : r ≤ x(t) ≤ R ∀t}. (5.1)

Obviously, Ω is a closed convex set. Next we prove T(Ω) ⊂ Ω.
In fact, for each x ∈ Ω, using that G(t, s) ≥ 0 and condition (H4),

(Tx)(t) ≥
∫T

0
G(t, s)φR+γ∗(s)ds ≥ Φ∗ = r > 0. (5.2)
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On the other hand, by conditions (H2) and (H7), we have

(Tx)(t) ≤
∫T

0
G(t, s)g

(
x(s) + γ(s)

)
{

1 +
h
(
x(s) + γ(s)

)

g
(
x(s) + γ(s)

)

}

ds

≤ g
(
Φ∗ + γ∗

)
{

1 +
h
(
R + γ∗

)

g
(
R + γ∗

)

}

ω∗ ≤ R.

(5.3)

In conclusion, T(Ω) ⊂ Ω. By a direct application of Schauder’s fixed point theorem, the proof
is finished.

As an application of Theorem 5.1, we consider the case γ∗ = 0. The following corollary
is a direct result of Theorem 5.1.

Corollary 5.2. Assume that conditions (B) and (H2), (H4) are satisfied. Furthermore, assume that

(H8) there exists a positive constant R > 0 such that R > Φ∗ and

R ≥ g(Φ∗)

{

1 +
h
(
R + γ∗

)

g
(
R + γ∗

)

}

ω∗. (5.4)

If γ∗ = 0, then (1.1) has at least one positive T -periodic solution.

Corollary 5.3. Suppose that a satisfies (B) and 0 < α < 1, β ≥ 0, then for each e(t) ∈ C(R/TZ,R)
with γ∗ = 0,one has the following:

(i) if α + β < 1 − α2, then (1.5) has at least one positive periodic solution for each μ ≥ 0.

(ii) if α+β ≥ 1−α2, then (1.5) has at least one positive T -periodic solution for each 0 ≤ μ < μ2,
where μ2 is some positive constant.

Proof. We apply Corollary 3.5 and follow the same notation as in the proof of Corollary 3.5.
Then (H2) and (H4) are satisfied, and the existence condition (H8) becomes

μ <
RΦα

∗ −ω∗

ω∗(R + γ∗
)α+β , (5.5)

for some R > 0 with R > Φ∗. Note that

Φ∗ =
(
R + γ∗

)−α
ω∗
. (5.6)

Therefore, (5.5) becomes

μ <
R
(
R + γ∗

)−α2

ωα
∗ −ω∗

ω∗(R + γ∗
)α+β , (5.7)

for some R > 0.
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So (1.5) has at least one positive T -periodic solution for

0 < μ < μ2 = sup
R>0

R
(
R + γ∗

)−α2

ωα
∗ −ω∗

ω∗(R + γ∗
)α+β . (5.8)

Note that μ2 = ∞ if α + β < 1 − α2 and μ2 < ∞ if α + β ≥ 1 − α2. We have the desired results (i)
and (ii).

Remark 5.4. The validity of (ii) in Corollary 5.3 under strong force conditions remains still
open to us. Such an open problem has been partially solved by Corollary 3.5. However, we do
not solve it completely because we need the positivity ofG(t, s) in Corollary 3.5, and therefore
it is not applicable to the critical case. The validity for the critical case remains open to the
authors.

The next results explore the case when γ∗ > 0.

Theorem 5.5. Suppose that a(t) satisfies (B) and f(t, x) satisfies condition (H2). Furthermore,
assume that

(H9) there exists R > γ∗ such that

g
(
γ∗
)
{

1 +
h
(
R + γ∗

)

g
(
R + γ∗

)

}

ω∗ ≤ R. (5.9)

If γ∗ > 0, then (1.1) has at least one positive T -periodic solution.

Proof. We follow the same strategy and notation as in the proof of Theorem 5.1. Let R be the
positive constant satisfying (H9) and r = γ∗, then R > r > 0 since R > γ∗. Next we prove
T(Ω) ⊂ Ω.

For each x ∈ Ω, by the nonnegative sign of G(t, s) and f(t, x), we have

(Tx)(t) =
∫T

0
G(t, s)f(s, x(s))ds + γ(t) ≥ γ∗ = r > 0. (5.10)

On the other hand, by (H2) and (H9), we have

(Tx)(t) ≤
∫T

0
G(t, s)g

(
x(s) + γ(s)

)
{

1 +
h
(
x(s) + γ(s)

)

g
(
x(s) + γ(s)

)

}

ds

≤ g
(
γ∗
)
{

1 +
h
(
R + γ∗

)

g
(
R + γ∗

)

}

ω∗ ≤ R.

(5.11)

In conclusion, T(Ω) ⊂ Ω, and the proof is finished by Schauder’s fixed point theorem.
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Corollary 5.6. Suppose that a(t) satisfies (B) and α, β ≥ 0, then for each e ∈ C(R/TZ,R) with
γ∗ > 0, one has the following:

(i) if α + β < 1, then (1.5) has at least one positive T -periodic solution for each μ ≥ 0;

(ii) if α + β ≥ 1, then (1.5) has at least one positive T -periodic solution for each 0 ≤ μ < μ3,
where μ3 is some positive constant.

Proof. We apply Theorem 5.5 and follow the same notation as in the proof of Corollary 3.5.
Then (H2) is satisfied, and the existence condition (H9) becomes

μ <
Rγ∗α −ω∗

ω∗(R + γ∗
)α+β (5.12)

for some R > 0. So (1.5) has at least one positive T -periodic solution for

0 < μ < μ3 = sup
R>0

Rγ∗α −ω∗

ω∗(R + γ∗
)α+β . (5.13)

Note that μ3 = ∞ if α + β < 1 and μ3 < ∞ if α + β ≥ 1. We have the desired results (i) and
(ii).
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