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1. Introduction
The study of antiperiodic solutions for nonlinear evolution equations is closely related to
the study of periodic solutions, and it was initiated by Okochi [1]. During the past twenty
years, antiperiodic problems have been extensively studied by many authors, see [1–31] and
the references therein. For example, antiperiodic trigonometric polynomials are important in
the study of interpolation problems [32, 33], and antiperiodic wavelets are discussed in [34].
Moreover, antiperiodic boundary conditions appear in physics in a variety of situations, see
[35–40]. In Section 2 we consider the antiperiodic problem

u′(t) = Au(t) + f(t, u(t)), t ∈ R,

u(t) = −u(t + T), t ∈ R,
(E 1.1)

where A is an n × n matrix, f : R × Rn → Rn is continuous, and f(t + T, x) = −f(t, x) for all
(t, x) ∈ R×Rn. Under certain conditions on the nondiagonal elements ofA and f we prove an
existence result for (E 1.1). In Section 3 we consider the antiperiodic boundary value problem

u′(t) = Gu(t) + f(t, u(t)), a.e. t ∈ J = [0, T], t /= tk,

u(0) = −u(T),
Δu(tk) = Ik(u(tk)), k = 1, 2, . . . , p,

(E 1.2)
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where G : Rn → Rn is a function satisfying G0 = 0, and f : J × Rn → Rn is a Caratheodory
function, Δu(tk) = u(t+

k
) − u(t−

k
), and Ik ∈ C(Rn, Rn). Under certain conditions on G, f , and

Ik(u) for k = 1, 2, . . . , p, we prove an existence result for (E 1.2).

2. Antiperiodic Problem for Differential Equations in Rn

Let | · | be the norm in Rn. In this section we study

u′(t) = Au(t) + f(t, u(t)), t ∈ R,

u(t) = −u(t + T).
(E 2.1)

First, we have the following result.

Theorem 2.1. Let A = (aij) be an n × n matrix, where aij is the element of A in the ith row and jth
column, f : R → Rn is continuous and f(t+T) = −f(t) for t ∈ R. Suppose (T/2)Σ1≤i<j≤n|aij −aji| <
1. Then the equation

u′(t) = Au(t) + f(t), t ∈ R,

u(t) = −u(t + T), t ∈ R
(E 2.2)

has a unique solution.

Proof. Put Wa = {v(·) ∈ C(R;Rn) : v(t) = −v(t + T)}. Then Wa is a Banach space under the
norm |v(·)|∞ = maxt∈[0,T]|v(t)|. For each v(·) ∈ Wa, consider the following equation:

u′(t) = Av(t) + f(t), t ∈ R,

u(t) = −u(t + T), t ∈ R.
(E 2.3)

It is easy to see that u(t) = −(1/2)∫T0 [Av(s)+f(s)]ds+
∫ t
0[Av(s)+f(s)]ds is the unique solution

of (E 2.3).
We define a mapping K : Wa → Wa as follows:

for any v(·) ∈ Wa, Kv(·) = u(·), u(·) is the solution of (E2.3). (2.1)

First we prove thatK is a continuous compact mapping. Now assume vn(·) ∈ Wa, n = 1, 2, . . .,
and vn(·) → v(·) ∈ Wa. Then |Avn(·) − Av(·)|∞ → 0 as n → ∞. This immediately implies
that

∫T
0 |(Kvn(t))

′ − (Kv(t))′|2dt → 0 as n → ∞.
We have Kvn(t) − Kv(t) = (1/2){∫ t0[(Kvn(s))

′ − (Kv(s))′]ds − ∫T
t [(Kvn(s))

′ −
(Kv(s))′]ds]}, and so Kvn(·) → Kv(·) inWa.

Now since (Kv(t))′ = Av(t) + f(t), t ∈ R, it is easy to see that

(∫T

0

∣∣(Kv(t))′
∣∣2dt

)1/2

≤
√
T |Av(·)|∞ +

(∫T

0

∣∣f(t)
∣∣2dt

)1/2

. (2.2)
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Thus K maps a bounded subset of Wa to a bounded equicontinuous subset in Wa, therefore
K is completely continuous.

Next take r0 > (1 − (T/2)Σ1≤i<j≤n|aij − aji|)−1(
√
T/2)(

∫T
0 |f(t)|2dt)1/2. We show that

Kv(·)/=λv(·) for all λ ≥ 1, and |v(·)|∞ = r0. If this is not true, there exist λ0 ≥ 1,w(·) ∈ Wa with
|w(·)|∞ = r0 such that Kw(·) = λ0w(·), that is, w(t) = −w(t + T), t ∈ R and

λ0w
′(t) = Aw(t) + f(t), t ∈ R. (2.3)

Multiply (2.3) by w′(t) (i.e., take inner product) and integrate over [0, T], and notice that
∫T
0wi(t)w′

j(t)dt = −∫T0w′
i(t)wj(t)dt to get

λ0

∫T

0
|w′(t)|2dt ≤ Σ1≤i<j≤n

∣
∣aij − aji

∣
∣
∫T

0

∣
∣
∣wi(t)w′

j(t)
∣
∣
∣dt +

(∫T

0

∣
∣f(t)

∣
∣2dt

)1/2(∫T

0

∣
∣w′(t)

∣
∣2dt

)1/2

,

(2.4)

where w(t) = (wi(t)), i = 1, 2, . . . , n. Notice that w(t) = (1/2)[
∫ t
0w

′(s)ds − ∫T
t w

′(s)]ds, so we
have

|w(·)|∞ ≤
√
T

2

(∫T

0

∣∣w′(t)
∣∣2dt

)1/2

. (2.5)

From (2.4), (2.5), we have

λ0

(∫T

0

∣∣w′(t)
∣∣2dt

)1/2

≤
√
TΣ1≤i<j≤n

∣∣aij − aji

∣∣|w(·)|∞ +

(∫T

0

∣∣f(t)
∣∣2dt

)1/2

. (2.6)

This with (2.5) gives

λ0|w(·)|∞ ≤ T

2
Σ1≤i<j≤n

∣∣aij − aji

∣∣|w(·)|∞ +

√
T

2

(∫T

0

∣∣f(t)
∣∣2dt

)1/2

. (2.7)

As a result

|w(·)|∞ ≤
(
1 − T

2
Σ1≤i<j≤n

∣∣aij − aji

∣∣
)−1√T

2

(∫T

0

∣∣f(t)
∣∣2dt

)1/2

, (2.8)

which contradicts |w(·)|∞ = r0.
Thus the Leray-Schauder degree deg(I −K,B(0, r0), 0) = 1, where B(0, r0) is the open

ball centered at 0 with radius r0 in Ca. Consequently, K has a fixed point in B(0, r0), that is,
(E 2.2) has a solution. For the uniqueness, if u(·), v(·) are two solutions of (E 2.2), set w(t) =
u(t) − v(t), then w′(t) = Aw(t), and w(t) = −w(t + T), for t ∈ R. Following the obvious
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strategy above (see the clear adjustment of (2.8)) gives |w(·)|∞ = 0. Thus the solution of
(E 2.2) is unique.

From Theorem 2.1 we have immediately the following result.

Corollary 2.2. Let A = (aij) be an n × n symmetric matrix, f : R → Rn is continuous and
f(t + T) = −f(t) for t ∈ R. Then

u′(t) = Au(t) + f(t), t ∈ R,

u(t) = −u(t + T), t ∈ R,
(E 2.4)

has a unique solution.

Using a proof similar to Theorem 2.1, we have the following result.

Theorem 2.3. LetA = (aij) be an n × n matrix, G : Rn → Rn is an even continuously differentiable
function, and f(t, u) : R × Rn → Rn is continuous and f(t + T, u) = −f(t, u) for (t, u) ∈ R × Rn.
Suppose the following conditions are satisfied:

(1) |f(t, x)| ≤ M|x| + g(t), for a.e. (t, x) ∈ R × Rn, where M > 0 is a constant, and g(·) ∈
L2(0, T);

(2) (T/2)[Σ1≤i<j≤n|aij − aji| +M] < 1.

Then

u′(t) = Au(t) + ∂Gu(t) + f(t, u(t)), t ∈ R,

u(t) = −u(t + T), t ∈ R
(E 2.5)

has a solution.

Remark 2.4. Equation (E 2.5) was studied by Haraux [18] and Chen et al. [14] in the case
A = 0, and also by Chen [12]with different assumptions on f and A.

3. Antiperiodic Boundary Value Problem for Impulsive ODE

In this section, we prove an existence result for the equation

u′(t) = Gu(t) + f(t, u(t)), a.e. t ∈ J = [0, T], t /= tk,

u(0) = −u(T),
Δu(tk) = Ik(u(tk)), k = 1, 2, . . . , p,

(E 3.1)

where G : Rn → Rn is a Lipschitz function. We first introduce some notations. Let
J = [0, T], and 0 = t0 < t1 < · · · < tp < tp+1 = T . PC(J) = {u : J → Rn, u(tk ,tk+1] ∈
C((tk, tk+1], Rn), k = 0, 1, . . . , p, u(t−k) exist for k = 1, 2, . . . , p, and u(0+) = u(0)}, and
PW1,2(J) = {u ∈ PC(J) : u(tk ,tk+1) ∈ W1,2((tk, tk+1), Rn), k = 1, . . . , p}. It is clear that PC(J)
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and PW1,2(J) are Banach spaces with the respective norm ‖u‖PC(J) = sup{|u(t)|, t ∈ J}, and
‖u‖PW1,2(J) =

∑p

k=0 ‖uk‖W1,2(tk ,tk+1), where uk : (tk, tk+1] → R is defined by uk(t) = u(t) for
t ∈ (tk, tk+1], k = 0, 1, . . . , p.

We say a function u is a solution of (E 3.1) if u ∈ PW1,2(J) and u satisfies (E 3.1).
We first prove the following result.

Lemma 3.1. Let Ii : Rn → Rn be continuous functions for i = 1, 2, . . . , p, and Σp

k=1|Ik(xk)| ≤
α{max1≤k≤p|xk|} + δ for all xk ∈ Rn, k = 1, 2, . . . , p, where α, δ > 0 are constants, and α < 2.
Suppose u ∈ PW1,2(J) with u(0) = −u(T), and Δu(ti) = Ii(u(ti)), for i = 1, 2, . . . , p. Then

‖u‖PC(J) ≤
(
1 − 1

2
α

)−1
⎡

⎣1
2
δ +

√
T

2

(∫T

0

∣
∣u′(s)

∣
∣2ds

)1/2
⎤

⎦. (3.1)

Proof. By assumption, we have u(t) = u(0) +
∫ t
0u

′(s)ds for t ∈ [0, t1), and

u(t) = u(0) + Σk
i=1 Ii(u(ti)) +

∫ t

0
u′(s)ds (3.2)

for t ∈ [tk, tk+1), k = 1, 2, . . . , p. Since u(0) = −u(T), it follows that u(t) = −(1/2)[Σp

i=1Ii(u(ti)) +∫T
0u

′(s)ds] +
∫ t
0u

′(s)ds for t ∈ [0, t1), and

u(t) = −1
2

[

Σp

i=1 Ii(u(ti)) +
∫T

0
u′(s)ds

]

+ Σk
i=1 Ii(u(ti)) +

∫ t

0
u′(s)ds (3.3)

for t ∈ [tk, tk+1), k = 1, 2, . . . , p. Hence we have

‖u‖PC(J) ≤
1
2

[
α‖u‖PC(J) + δ

]
+

√
T

2

(∫T

0

∣∣u′(s)
∣∣2ds

)1/2

. (3.4)

Thus

‖u‖PC(J) ≤
(
1 − 1

2
α

)−1
⎡

⎣1
2
δ +

√
T

2

(∫T

0

∣∣u′(s)
∣∣2ds

)1/2
⎤

⎦. (3.5)

Theorem 3.2. Let G : Rn → Rn be a function satisfying G0 = 0, and f : [0, T] → Rn such that
f(·) ∈ L2([0, T]), and let Ik : Rn → Rn be continuous functions for k = 1, 2, . . . , p. Suppose the
following conditions are satisfied:

(1) |Gu −Gv| ≤ L|u − v| for all u, v ∈ Rn, and L > 0 is a constant;

(2) Σp

k=1|Ik(xk)| ≤ γ{max1≤k≤p|xk|} + δ for all xk ∈ Rn, k = 1, 2, . . . , p, where γ, δ > 0 are
constants;

(3) γ + TL < 2.
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Then the problem

u′(t) = Gu(t) + f(t), a.e. t ∈ J = [0, T], t /= tk,

u(0) = −u(T),
Δu(tk) = Ik(u(tk)), k = 1, 2, . . . , p

(E 3.2)

has a solution.

Proof. For each v ∈ PC(J), consider the problem

u′(t) = Gv(t) + f(t) a.e. t ∈ J = [0, T], t /= tk,

u(0) = −u(T),
Δu(tk) = Ik(v(tk)), k = 1, 2, . . . , p.

(E 3.3)

One can easily show that the solution u of (E 3.3) is given by the following:

u(t) = −1
2

[

Σp

i=1 Ii(v(ti)) +
∫T

0

(
Gv(s) + f(s)

)
ds

]

+
∫ t

0

(
G(v(s)) + f(s)

)
ds, for t ∈ [0, t1),

u(t) = −1
2

[

Σp

i=1 Ii(v(ti)) +
∫T

0

(
Gv(s) + f(s)

)
ds

]

+ Σk
i=1 Ii(v(ti))

+
∫ t

0

(
Gv(s) + f(s)

)
ds,

(3.6)

for t ∈ [tk, tk+1), k = 1, . . . , p.
Obviously, the solution of (E 3.3) is unique. Now we define K : PC(J) → PW1,2(J) ⊂

PC(J) by u = Kv. We prove that K is continuous. Let vn ∈ PC(J) and vn → v in PC(J). It is
easy to see that

∫T

0

∣∣(Kvn(t) −Kv(t))′
∣∣2dt =

∫T

0
|Gvn(t) −Gv(t)|2dt ≤ L2

∫T

0
|vn(t) − v(t)|2dt. (3.7)

Therefore (
∫T
0 |(Kvn(t) −Kv(t))′|2dt)1/2 ≤

√
TL‖vn − v‖PC(J) → 0 as n → ∞.
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Note that Δ(Kvn −Kv)(tk) = Ik(vn(tk)) − Ik(v(tk)), and we have

Kvn(t) −Kv(t) = −1
2

[

Σp

i=1(Ii(vn(ti)) − Ii(v(ti))) +
∫T

0
(Kvn −Kv)′(s)ds

]

+
∫ t

0
(Kvn −Kv)′(s)ds, for t ∈ [0, t1),

Kvn(t) −Kv(t) = −1
2

[

Σp

i=1(Ii(vn(ti)) − Ii(v(ti))) +
∫T

0
(Kvn −Kv)′(s)ds

]

+ Σk
i=1(Ii(vn(ti)) − Ii(v(ti))) +

∫ t

0
(Kvn −Kv)′(s)ds

(3.8)

for t ∈ [tk, tk+1), k = 1, 2, . . . , p. From the continuity of Ii, i = 1, 2, . . . , p, and
∫T
0 |(Kvn(t) −

Kv(t))′|2dt → 0 as n → ∞, we deduce that K is continuous.
For each v ∈ PC(J), notice that 0 = G0, so we have

(∫T

0
|Kv|2dt

)1/2

≤
√
TL‖v‖PC(J) +

(∫T

0

∣∣f(s)
∣∣2ds

)1/2

. (3.9)

From (3.9) and Lemma 3.1, we know that K maps bounded subsets of PC(J) to relatively
compact subsets of PC(J).

Finally, for ∀λ ∈ (0, 1], we prove that the set of solutions of u = λKu is bounded. If
u = λKu for some λ ∈ (0, 1), then

u′(t) = λGu(t) + λf(t) a.e. t ∈ J = [0, T], t /= tk,

u(0) = −u(T),
Δu(tk) = λIk(u(tk)), k = 1, 2, . . . , p.

(3.10)

Therefore we have

u(t) = −1
2
λ

[

Σp

i=1 Ii(ui(ti)) +
∫T

0

(
Gu(s) + f(s)

)
ds

]

+ λ

∫ t

0

(
G(u(s)) + f(s)

)
ds (3.11)

for t ∈ [0, t1), and

u(t) = −1
2
λ

[

Σp

i=1 Ii(ui(ti)) +
∫T

0

(
Gu(s) + f(s)

)
ds

]

+ λΣk
i=1Ii(ui(ti))

+ λ

∫ t

0

(
G(u(s)) + f(s)

)
ds

(3.12)
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for t ∈ (tk, tk+1], k = 1, . . . , p. This implies that

‖u‖PC(J) ≤
1
2

[

γ‖u‖PC(J) + δ +
∫T

0

(|Gu(s)| + ∣
∣f(s)

∣
∣)ds

]

. (3.13)

Since 0 = G0, and |Gu| ≤ L|u|, so we have

‖u‖PC(J) ≤
1
2

[
1 − 1

2
(
γ + TL

)
]−1(

δ +
∫T

0

∣
∣f(s)

∣
∣ds

)

. (3.14)

The Leray-Schauder principle guarantees a fixed point of K, which is easily seen to be a
solution of (E 3.2).

By using a similar method to Theorem 3.2, one can deduce the following result.

Theorem 3.3. Let G : Rn → Rn be a function satisfying G0 = 0, and f(t, x) : [0, T] × Rn → Rn

a Caratheodory function, that is, f is measurable in t for each x ∈ Rn, and f is continuous in x for
each t ∈ [0, T], such that |f(t, x)| ≤ g(t) for (t, x) ∈ [0, T] × Rn, where g(·) ∈ L2([0, T]), and
let Ik : Rn → Rn be continuous functions for k = 1, 2, . . . , p. Suppose the following conditions are
satisfied:

(1) |Gu −Gv| ≤ L|u − v| for all u, v ∈ Rn, and L > 0 is a constant;

(2) Σp

k=1|Ik(xk)| ≤ γ{max1≤k≤p|xk|} + δ for all xk ∈ Rn, k = 1, 2, . . . , p, where γ, δ > 0 are
constants;

(3) γ + TL < 2.

Then the equation

u′(t) = Gu(t) + f(t, u(t)), a.e. t ∈ J = [0, T], t /= tk,

u(0) = −u(T),
Δu(tk) = Ik(u(tk)), k = 1, 2, . . . , p

(E 3.4)

has a solution.

4. Examples

In this section, we give examples to show the application of our results to differential and
impulsive differential equations.
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Example 4.1. Consider the antiperiodic problem

u′
1(t) = λ1u1(t) + 5u2(t) + sinπt, t ∈ R,

u′
2(t) =

7
2
u1(t) + λ2u2(t) + cosπt, t ∈ R,

u1(t) = −u1(t + 1), u2(t) = −u2(t + 1), t ∈ R.

(E 4.1)

Set

u =

(
u1

u2

)

, f(t) =

(
sinπt

cosπt

)

, A =

⎛

⎝
λ1 5

7
2

λ2

⎞

⎠. (4.1)

Now (E 4.1) is equivalent to

u′(t) = Au(t) + f(t), t ∈ R,

u(t) = −u(t + 1), t ∈ R.
(E 4.2)

Also f(t) = −f(t+1), for t ∈ R and (1/2)|a12−a21| = 3/4. By Theorem 2.1, (E 4.2) has a unique
solution, so (E 4.1) has a unique solution.

Example 4.2. Consider the antiperiodic boundary value problem

u′
1(t) =

1
2 + u2

1(t) + u2
2(t)

[3u1(t) − 2u2(t)] + sinπt, t ∈ (0, 1), t /=
1
4
,

u′
2(t) =

1
2 + u2

1(t) + u2
2(t)

[2u1(t) + 3u2(t)] − cosπt, t ∈ (0, 1), t /=
1
4
,

Δu1

(
1
4

)
=

1
5(1 + |u2(1/4)|) , Δu2

(
1
4

)
=

1
8(1 + |u1(1/4)|) ,

u1(0) = −u1(1), u2(0) = −u2(1).

(E 4.3)

Set

u =

(
u1

u2

)

, f(t) =

(
sinπt

− cosπt

)

, Gu =

⎛

⎜⎜
⎝

3u1 − 2u2

2 + u2
1 + u2

2
2u1 + 3u2

2 + u2
1 + u2

2

⎞

⎟⎟
⎠, I(u)

⎛

⎜⎜
⎝

1
5(1 + |u2|)

1
8(1 + |u1|)

⎞

⎟⎟
⎠.

(4.2)
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It is easy to check that |Gu − Gv| ≤ (
√
13/2)|u − v| for u, v ∈ R2, |I(u)| < 2/5 for u ∈ R2, and√

13/2 < 2. Now (E 4.3) is equivalent to the equation

u′(t) = Gu(t) + f(t), t ∈ (0, 1), t /=
1
4
,

Δu

(
1
4

)
= I

(
u

(
1
4

))
, u(0) = −u(1).

(E 4.4)

By Theorem 3.2, we know that (E 4.4) has a solution, so (E 4.3) has a solution.
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