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1. Introduction and Main Results

In this paper, we study the existence and multiplicity of positive solutions for the following
singular elliptic equation:

−Δu − μ

|x|2u = λf(x)|u|q−2u + g(x)|u|p−2u in Ω,

u = 0 on ∂Ω,
(Pμ,λ,f,g)

where 0 ∈ Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, λ > 0, 0 ≤ μ <

μ = (N − 2)2/4, μ is the best constant in the Hardy inequality, 1 ≤ q < 2 < p, and f, g : Ω → R

are continuous functions which are somewhere positive but which may change sign on Ω.
We will assume in this paper that p is a critical Sobolev exponent, that is, p= 2∗ = 2N/(N −2).

When μ = 0 and weight functions f(x) ≡ g(x) ≡ 1 on Ω, (Pμ,λf,g) has been studied
extensively for 2 < p ≤ 2∗ and various q > 1. See, for example, [1–3] and the references
therein. In [4], Wu has proved that there exists λ0 > 0 such that (Pμ,λ,f,g) admits at least two
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solutions for all λ ∈ (0, λ0)with 1 ≤ q < 2, a subcritical exponent p ∈ (2, 2∗), g(x) ≡ 1 onΩ and
f is a continuous functionwhich change sign inΩ. In a recent work [5], Hsu-Lin have showed
the existence and multiplicity of positive solutions of (Pμ,λ,f,g) with a critical exponent p= 2∗

and sign-changing weight functions f, g.
To proceed, we make some motivations of the present paper. In [6], Chen studied

(Pμ,λ,f,g) assuming that 0 ≤ μ < μ − 1, 1 ≤ q < 2, p= 2∗ and f(x) ≡ g(x) ≡ 1 on Ω. He
proved that there exists Λ > 0 such that (Pμ,λ,f,g) has at least two positive solutions in H1

0(Ω)
for any λ ∈ (0,Λ). But we do not see any multiplicity results about (Pμ,λ,f,g) in the case of
the critical exponent p= 2∗ and the weight functions f, g sign-changing. In the present paper,
we continue the study of [5] by considering the general case μ ∈ [0, μ). We will extend the
results of [6] to the more general case with μ ∈ [0, μ) and the weight functions f, g which
may change sign on Ω. Our assumptions are

(f1) f ∈ C(Ω) and f+ = max{f, 0}/≡ 0 in Ω,

(g1) g ∈ C(Ω) and g+ = max{g, 0}/≡ 0 in Ω.

Set

Λ1 =
(

2 − q(
2∗ − q

)∣∣g+
∣∣
∞

)(2−q)/(2∗−2)( 2∗ − 2(
2∗ − q

)∣∣f+
∣∣
∞

)
|Ω|(q−2∗)/2∗S(N/2)−(N/4)q+(q/2)

μ > 0, (1.1)

where |Ω| is the Lebesgue measure ofΩ, and Sμ is the best Sobolev constant (see (2.2)). Now,
we state the first main result about the existence of positive solution of (Pμ,λ,f,g).

Theorem 1.1. Assume (f1) and (g1) hold. If λ ∈ (0,Λ1), then (Pμ,λ,f,g) (simply written as (Pμ)
from now on) has at least one positive solution in H1

0(Ω).

In order to get the second positive solution of (Pμ), we need some additional
assumptions about f and g. We assume the following conditions on f and g:

(f2) there exist β0 and ρ0 > 0 such that B(0, 2ρ0) ⊂ Ω and f(x) ≥ β0 for all x ∈ B(0, 2ρ0);

(g2) |g+|∞ = g(0) = maxx∈Ωg(x), g(x) > 0 for all x ∈ B(0, 2ρ0) and there exists β ∈
(
√
μ − μN/

√
μ,
√
μ − μ(N + 1)/

√
μ) such that

g(x) = g(0) + o
(|x|β) as x −→ 0. (1.2)

Theorem 1.2. Assume that (f1)-(f2) and (g1)-(g2) hold. Then there exists Λ2 > 0 such that for
λ ∈ (0,Λ2), (Pμ) has at least two positive solutions in H1

0(Ω).

This paper is organized as follows. In Sections 2 and 3, we give some preliminaries and
some properties of Nehari manifold. In Sections 4 and 5, we complete proofs of Theorems 1.1
and 1.2.

2. Preliminaries

Throughout this paper, (f1) and (g1) will be assumed. The dual space of a Banach space
E will be denoted by E−1. H1

0(Ω) denotes the standard Sobolev space, whose norm ‖ · ‖ is
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induced by the standard inner product. We denote the norm in L2(Ω) by | · |2 and the norm
in L2(RN) by | · |L2(RN). D1,2(RN) = {u ∈ L2∗(RN) : ∇u ∈ L2(RN)} with usual norm ‖ · ‖2D =∫
RN |∇·|2dx. |Ω| is the Lebesguemeasure ofΩ. B(x, r) is a ball centered at xwith radius r.O(εt)
denotes |O(εt)|/εt ≤ C, o(εt) denotes |o(εt)|/εt → 0 as ε → 0, and on(1) denotes on(1) → 0
as n → ∞. All integrals are taken over Ω unless stated otherwise. C, Ci will denote various
positive constants, the exact values of which are not important. OnH1

0(Ω), we use the norm

‖u‖2μ =
∫(

|∇u|2 − μ

|x|2u
2
)
dx. (2.1)

Thanks to the Hardy inequality, the norm ‖ · ‖μ is equivalent to the usual norm ‖ · ‖ ofH1
0(Ω).

H1
0(Ω)with the norm ‖ · ‖μ is simply denoted byH. For all μ ∈ [0, μ), we define the constant

Sμ = inf
u∈D1,2(RN)\{0}

∫
RN

(|∇u|2 − (μ/|x|2)u2)dx(∫
RN |u|2∗dx

)2/2∗ . (2.2)

From [7, 8], Sμ is independent of Ω ⊂ R
N in the sense that if

Sμ(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω

(|∇u|2 − (μ/|x|2)u2)dx(∫
Ω|u|2

∗dx
)2/2∗ , (2.3)

then Sμ(Ω) = Sμ(RN) = Sμ.

Let μ = ((N − 2)/2)2, γ1 =
√
μ −
√
μ − μ, γ2 =

√
μ +
√
μ − μ; Catrina and Wang [9],

Terracini [10] proved that Sμ is attained by the function

U(x) =
1[

|x|γ1/
√

μ + |x|γ2/
√

μ
]√μ

. (2.4)

Moreover, for ε > 0, Uε(x) = ε−(N−2)/2[4N(μ − μ)/(N − 2)](N−2)/4U(x/ε) satisfies

−Δu − μ

|x|2u = |u|2∗−2u in R
N \ {0},

u −→ 0 as |x| −→ ∞.

(2.5)

From [11, Theorem B], all the positive solutions of problem (2.5) must have the form of Uε.
Moreover, Uε attains Sμ.

We end these preliminaries by the following definition.

Definition 2.1. Let c ∈ R, E be a Banach space and I ∈ C1(E,R).

(i) {un} is a (PS)c-sequence in E for I if I(un) = c + on(1) and I ′(un) = on(1) strongly in
E−1 as n → ∞.

(ii) We say that I satisfies the (PS)c-condition if any (PS)c-sequence {un} in E for I has
a convergent subsequence.
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3. Nehari Manifold

Associated with (Pμ), we consider the energy functional Jλ inH, for each u ∈ H as follows:

Jλ(u) =
1
2
‖u‖2μ −

λ

q

∫
f |u|qdx − 1

2∗

∫
g|u|2∗dx. (3.1)

It is well known that Jλ is of C1 in H, and the solutions of (Pμ) are the critical points of the
energy functional Jλ (see Rabinowitz [12]).

As the energy functional Jλ is not bounded below on H, it is useful to consider the
functional Nehari manifold

Nλ =
{
u ∈ H \ {0} : 〈J ′λ(u), u〉 = 0

}
. (3.2)

Thus, u ∈ Nλ if and only if

〈J ′λ(u), u〉 = ‖u‖2μ − λ

∫
f |u|qdx −

∫
g|u|2∗dx = 0. (3.3)

Note that Nλ contains every nonzero solution of (Pμ). Moreover, we have the following
results.

Lemma 3.1. The energy functional Jλ is coercive and bounded below on Nλ.

Proof. If u ∈ Nλ, then by (f1), (3.3), the Hölder inequality and the Sobolev embedding
theorem

Jλ(u) =
2∗ − 2
2∗2

‖u‖2μ − λ

(
2∗ − q

2∗q

)∫
f |u|qdx (3.4)

≥ 1
N

‖u‖2μ − λ

(
2∗ − q

2∗q

)
S
−(q/2)
μ |Ω|

(
2∗−q
)
/2∗‖u‖qμ

∣∣f+∣∣
∞. (3.5)

Thus, Jλ is coercive and bounded below on Nλ.

Define

ψλ(u) =
〈
J ′λ(u), u

〉
. (3.6)

Then for u ∈ Nλ,

〈
ψ ′
λ(u), u

〉
= 2‖u‖2μ − λq

∫
f |u|qdx − 2∗

∫
g|u|2∗dx

= (2 − q)‖u‖2μ −
(
2∗ − q

)∫
g|u|2∗dx

= λ
(
2∗ − q

)∫
f |u|qdx − (2∗ − 2

)‖u‖2μ.

(3.7)
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Similar to the method used in Tarantello [13], we split Nλ into three parts:

N+
λ =
{
u ∈ Nλ :

〈
ψ ′
λ(u), u

〉
> 0
}
,

N0
λ =
{
u ∈ Nλ :

〈
ψ ′
λ(u), u

〉
= 0
}
,

N−
λ =
{
u ∈ Nλ :

〈
ψ ′
λ(u), u

〉
< 0
}
.

(3.8)

Then, we have the following results.

Lemma 3.2. Assume that uλ is a local minimizer for Jλ on Nλ and uλ /∈N0
λ
. Then J ′

λ
(uλ) = 0 in

H−1(Ω).

Proof. Our proof is almost the same as that in Brown-Zhang [14, Theorem 2.3] (or see Binding-
Drábek-Huang [15]) .

Lemma 3.3. If λ ∈ (0,Λ1), thenN0
λ = ∅, where Λ1 is the same as in (1.1).

Proof. Suppose otherwise, that is there exists λ ∈ (0,Λ1) such that N0
λ /=∅. Then by (3.7), for

u ∈ N0
λ
, we have

‖u‖2μ =
2∗ − q

2 − q

∫
g|u|2∗dx,

‖u‖2μ = λ
2∗ − q

2∗ − 2

∫
f |u|qdx.

(3.9)

Moreover, by (f1), (g1), the Hölder inequality, and the Sobolev embedding theorem, we have

‖u‖μ ≥
(

2 − q

(2∗ − q)|g+|∞
S2∗/2
μ

)1/(2∗−2)
,

‖u‖μ ≤
[
λ
2∗ − q

2∗ − 2
Sμ

−(q/2)|Ω|(2∗−q)/2∗∣∣f+∣∣
∞

]1/(2−q)
.

(3.10)

This implies

λ ≥
(

2 − q(
2∗ − q

)∣∣g+
∣∣
∞

)(2−q)/(2∗−2)( 2∗ − 2(
2∗ − q

)∣∣f+
∣∣
∞

)
|Ω|(q−2∗)/2∗S(N/2)−(N/4)q+(q/2)

μ = Λ1, (3.11)

which is a contradiction. Thus, we can conclude that if λ ∈ (0,Λ1), we have N0
λ = ∅.

By Lemma 3.3, we write Nλ = N+
λ
∪N−

λ
and define

αλ = inf
u∈Nλ

Jλ(u), α+
λ
= inf

u∈N+
λ

Jλ(u), α−
λ
= inf

u∈N−
λ

Jλ(u). (3.12)

Then we get the following result.
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Lemma 3.4. (i) If λ ∈ (0,Λ1), then one has αλ ≤ α+
λ < 0.

(ii) If λ ∈ (0, (q/2)Λ1), then α−
λ

> d0 for some positive constant d0 depending on
λ, μ, q, N, Sμ, |f+|∞, |g+|∞ and |Ω|.

Proof. (i) Let u ∈ N+
λ . By (3.7)

2 − q

2∗ − q
‖u‖2μ >

∫
g|u|2∗dx, (3.13)

and so

Jλ(u) =
(
1
2
− 1
q

)
‖u‖2μ +

(
1
q
− 1
2∗

)∫
g|u|2∗dx

<

[(
1
2
− 1
q

)
+
(
1
q
− 1
2∗

)
2 − q

2∗ − q

]
‖u‖2μ

= −2 − q

qN
‖u‖2μ < 0.

(3.14)

Therefore, from the definitions of αλ, α+
λ
, we can deduce that αλ ≤ α+

λ
< 0.

(ii) Let u ∈ N−
λ . By (3.7)

2 − q

2∗ − q
‖u‖2μ <

∫
g|u|2∗dx. (3.15)

Moreover, by (g1) and the Sobolev embedding theorem,

∫
g|u|2∗dx ≤ S

−(2∗/2)
μ ‖u‖2∗μ

∣∣g+∣∣
∞. (3.16)

This implies

‖u‖μ >

(
2 − q(

2∗ − q
)|g+|∞

)1/(2∗−2)
SN/4
μ ∀u ∈ N−

λ. (3.17)

By (3.5) in the proof of Lemma 3.1

Jλ(u) ≥ ‖u‖qμ
[
1
N

‖u‖2−qμ − λS
−(q/2)
μ

2∗ − q

2∗q
|Ω|(2∗−q)/2∗ |f+|∞

]

>

(
2 − q

(2∗ − q)
∣∣g+
∣∣
∞

)q/
(
2∗−2
)
S
qN/4
μ

[
1
N

S
(2−q)N/4
μ

(
2 − q(

2∗ − q
)∣∣g+
∣∣
∞

)(2−q)/(2∗−2)

− λS
−(q/2)
μ

2∗ − q

2∗q
|Ω|(2∗−q)/2∗∣∣f+∣∣

∞

]
.

(3.18)
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Thus, if λ ∈ (0, (q/2)Λ1), then

Jλ(u) > d0 ∀u ∈ N−
λ, (3.19)

for some positive constant d0 = d0(λ, q,N, Sμ, |f+|∞, |g+|∞, |Ω|). This completes the proof.

For each u ∈ H with
∫
g|u|2∗dx > 0, we write

tmax =
( (2 − q)‖u‖2μ(

2∗ − q
) ∫

g|u|2∗dx

)1/(2∗−2)
> 0. (3.20)

Then the following lemma holds.

Lemma 3.5. Let λ ∈ (0,Λ1). For each u ∈ H with
∫
g|u|2∗dx > 0, one has the following:

(i) if
∫
f |u|qdx ≤ 0, then there exists a unique t− > tmax such that t−u ∈ N−

λ
and

Jλ
(
t−u) = sup

t≥0
Jλ(tu), (3.21)

(ii) if
∫
f |u|qdx > 0, then there exist unique 0 < t+ < tmax < t− such that t+u ∈ N+

λ , t
−u ∈ N−

λ
and

Jλ
(
t+u
)
= inf

0≤t≤tmax
Jλ(tu), Jλ

(
t−u
)
= sup

t≥0
Jλ(tu). (3.22)

Proof. The proof is almost the same as that in Brown-Wu [16, Lemma 2.6], and is omitted
here.

4. Proof of Theorem 1.1

First, we will use the idea of Tarantello [13] to get the following results.

Proposition 4.1. (i) If λ ∈ (0,Λ1), then there exists a (PS)αλ
-sequence {un} ⊂ Nλ inH for Jλ.

(ii) If λ ∈ (0, (q/2)Λ1), then there exists a (PS)α−
λ
-sequence {un} ⊂ N−

λ inH for Jλ.

Proof. The proof is almost the same as that in Wu [4, Proposition 9] (or see Hsu-Lin [5,
Proposition 3.3]).

Now, we establish the existence of a local minimum for Jλ on N+
λ .

Theorem 4.2. If λ ∈ (0,Λ1), then Jλ has a minimizer uλ inN+
λ
and it satisfies

(i) Jλ(uλ) = αλ = α+
λ
,

(ii) uλ is a positive solution of (Pμ),

(iii) Jλ(uλ) → 0 as λ → 0+.
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Proof. By Proposition 4.1(i), there exists a minimizing sequence {un} for Jλ on Nλ such that

Jλ
(
un

)
= αλ + on(1), J ′λ

(
un

)
= on(1) in H−1. (4.1)

Since Jλ is coercive on Nλ (see Lemma 3.1), we get that {un} is bounded in H. Going if
necessary to a subsequence, we can assume that there exists uλ ∈ H such that

un ⇀ uλ weakly in H,

un −→ uλ almost every where in Ω,

un −→ uλ strongly inLs(Ω) ∀1 ≤ s< 2∗.

(4.2)

First, we claim that uλ is a nontrivial solution of (Pμ). By (4.1) and (4.2), it is easy to see that
uλ is a solution of (Pμ). From un ∈ Nλ and (3.4), we deduce that

λ

∫
f
∣∣un

∣∣qdx =
q
(
2∗ − 2

)
2
(
2∗ − q

)∥∥un

∥∥2
μ −

2∗q
2∗ − q

Jλ
(
un

)
. (4.3)

Let n → ∞ in (4.3), by (4.1), (4.2), and αλ < 0, we get

λ

∫
f
∣∣uλ

∣∣qdx ≥ − 2∗q
2∗ − q

αλ > 0. (4.4)

Thus, uλ ∈ Nλ is a nontrivial solution of (Pμ). Nowwe prove that un → uλ strongly inH and
Jλ(uλ) = αλ. By (4.3), if u ∈ Nλ, then

Jλ(u) =
1
N

‖u‖2μ −
2∗ − q

2∗q
λ

∫
f |u|qdx. (4.5)

In order to prove that Jλ(uλ) = αλ, it suffices to recall that uλ ∈ Nλ, by (4.5) and applying
Fatou’s lemma to get

αλ ≤ Jλ
(
uλ

)
=

1
N

∥∥uλ

∥∥2
μ −

2∗ − q

2∗q
λ

∫
f
∣∣uλ

∣∣qdx

≤ lim inf
n→∞

(
1
N

∥∥un

∥∥2
μ −

2∗ − q

2∗q
λ

∫
f
∣∣un

∣∣qdx
)

≤ lim inf
n→∞

Jλ
(
un

)
= αλ.

(4.6)

This implies that Jλ(uλ) = αλ and limn→∞‖un‖2μ = ‖uλ‖2μ. Let vn = un − uλ, then by Brézis-Lieb
lemma [17] implies that

∥∥vn

∥∥2
μ =
∥∥un

∥∥2
μ −
∥∥uλ

∥∥2
μ + on(1). (4.7)
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Therefore, un → uλ strongly in H. Moreover, we have uλ ∈ N+
λ . On the contrary, if uλ ∈

N−
λ
, then by Lemma 3.5, there are unique t+0 and t−0 such that t+0uλ ∈ N+

λ
and t−0uλ ∈ N−

λ
. In

particular, we have t+0 < t−0 = 1. Since

d

dt
Jλ(t+0uλ) = 0,

d2

dt2
Jλ
(
t+0uλ

)
> 0, (4.8)

there exists t+0 < t ≤ t−0 such that Jλ(t+0uλ) < Jλ(tuλ). By Lemma 3.5,

Jλ
(
t+0uλ

)
< Jλ
(
tuλ

) ≤ Jλ
(
t−0uλ

)
= Jλ
(
uλ

)
, (4.9)

which is a contradiction. Since Jλ(uλ) = Jλ(|uλ|) and |uλ| ∈ N+
λ , by Lemma 3.2 we may assume

that uλ is a nontrivial nonnegative solution of (Pμ). Standard arguments implies that uλ is a
positive solution of (Pμ). Moreover, by Lemma 3.4 (i) and (3.5), we have

0 > αλ > −λ
(
2∗ − q

2∗q

)
S
−(q/2)
μ |Ω|(2∗−q)/2∗∥∥uλ

∥∥q
μ

∣∣f+∣∣
∞. (4.10)

This implies that Jλ(uλ) → 0 as λ → 0+.

Now, we begin the proof of Theorem 1.1: By Theorem 4.2, we obtain (Pμ) has a positive
solution uλ.

5. Proof of Theorem 1.2

Next, we will establish the existence of the second positive solution of (Pμ) by proving that
J ′
λ
satisfies the (PS)α−

λ
-condition.

Lemma 5.1. Assume that (f1) and (g1) hold. If {un} is a (PS)c-sequence for Jλ with un ⇀ u in
H, then J ′λ(u) = 0, and there exists a constant C0 depending on q,N, Sμ, |f+|∞ and |Ω|, such that
Jλ(u) ≥ −C0λ

2/(2−q).

Proof. If {un} is a (PS)c-sequence for J
′
λ
with un ⇀ u in H, it is easy to see that J ′

λ
(u) = 0. This

implies that 〈J ′λ(u), u〉 = 0, and

∫
g(x)|u|2∗dx = ‖u‖2μ − λ

∫
f(x)|u|qdx. (5.1)

Consequently,

Jλ(u) =
(
1
2
− 1
2∗

)
‖u‖2μ −

(
1
q
− 1
2∗

)
λ

∫
f(x)|u|qdx. (5.2)
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Using the Hölder inequality, the Young inequality, and the Sobolev embedding theorem, we
have

Jλ(u) =
(
1
2
− 1
2∗

)
‖u‖2μ −

(1
q
− 1
2∗

)
λ

∫
f(x)|u|qdx

≥ 1
N

‖u‖2μ −
2∗ − q

2∗q
∣∣f+∣∣

∞|u|
q

2∗ |Ω|(2∗−q)/2∗λ

≥ 1
N

‖u‖2μ −
2∗ − q

2∗q
∣∣f+∣∣

∞S
−(q/2)
μ ‖u‖qμ|Ω|(2∗−q)/2∗λ

≥ 1
N

‖u‖2μ −
1
N

‖u‖2μ − C0λ
2/(2−q) = −C0λ

2/(2−q),

(5.3)

where C0 is a positive constant depending on q,N, Sμ, |f+|∞, and |Ω|.

Lemma 5.2. Assume that (f1) and (g1) hold. Then the functional Jλ satisfies the (PS)c-condition
for all c ∈ (−∞, (1/N)|g+|−(N−2)/2

∞ SN/2
μ − C0λ

2/(2−q)) where C0 is the positive constant given in
Lemma 5.1.

Proof. Let {un} ⊂ H be a (PS)c-sequence which satisfies Jλ(un) = c + on(1) and J ′
λ
(un) =

on(1). Using standard arguments it follows that {un} is bounded in H. Thus, there exists a
subsequence still denoted by {un} and a function u ∈ H such that

un ⇀ u weakly in H,

un −→ u strongly in Ls(Ω) ∀1 ≤ s< 2∗,

un −→ u a.e. on Ω.

(5.4)

By (f1), (g1), and Lemma 5.1, we have that J ′λ(u) = 0 and

λ

∫
f(x)
∣∣un

∣∣qdx = λ

∫
f(x)|u|qdx + on(1), (5.5)

Let vn = un − u. Then by g is continuous on Ω, Brézis-Lieb lemma (see [17]), and
Vitali’s theorem, we obtain

∥∥vn

∥∥2
μ =
∥∥un

∥∥2
μ − ‖u‖2μ + on(1), (5.6)

∫
g(x)
∣∣vn

∣∣2∗dx =
∫
g(x)
∣∣un

∣∣2∗dx −
∫
g(x)|u|2∗dx + on(1). (5.7)
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Since Jλ(un) = c + on(1), J ′λ(un) = on(1) and (5.5)–(5.7), we can deduce that

1
2
∥∥vn

∥∥2
μ −

1
2∗

∫
g(x)
∣∣vn

∣∣2∗dx = c − Jλ(u) + on(1), (5.8)

∥∥vn

∥∥2
μ −
∫
g(x)
∣∣vn

∣∣2∗dx = on(1). (5.9)

Hence, we may assume that

∥∥vn

∥∥2
μ −→ l,

∫
g(x)|vn|2∗dx −→ l. (5.10)

By the Sobolev inequality, we have ‖vn‖2μ ≥ Sμ|vn|22∗ , combining with (5.10), we get that l ≥
|g+|−(N−2)/N

∞ Sμl
(N−2)/N . Either l = 0 or l ≥ |g+|−(N−2)/2

∞ SN/2
μ . If l = 0, this completes the proof.

Assume that l ≥ |g+|−(N−2)/2
∞ SN/2

μ , from Lemmas 5.1, (5.8), and (5.10), we get

c ≥
(
1
2
− 1
2∗

)
l + Jλ(u) ≥ 1

N

∣∣g+∣∣−(N−2)/2
∞ SN/2

μ − C0λ
2/(2−q), (5.11)

which is a contradiction. Therefore, l = 0 and we conclude that un → u inH.

Lemma 5.3. Assume that (f1)-(f2) and (g1)-(g2) hold. Then there exist v ∈ H and Λ∗ > 0 such
that for λ ∈ (0,Λ∗), one has

sup
t≥0

Jλ(tv) <
1
N

∣∣g+∣∣−(N−2)/2
∞ SN/2

μ − C0λ
2/(2−q), (5.12)

where C0 is the positive constant given in Lemma 5.1.
In particular, α−

λ < 1/N|g+|−(N−2)/2
∞ SN/2

μ − C0λ
2/(2−q) for all λ ∈ (0,Λ∗).

Proof. Without loss of generality, we can assume that |g+|∞ = 1. In fact, if |g+|∞ /= 1, we may
consider new coefficients g∗(x) = g(x)/|g+|∞ whose maximum equals to 1.

For convenience, we introduce the following notations:

I(u) =
1
2
‖u‖2μ −

1
2∗

∫
g|u|2∗dx,

χB(0,2ρ0) =

⎧⎨
⎩
1 ifx ∈ B

(
0, 2ρ0

)
,

0 ifx /∈B
(
0, 2ρ0

)
,

Q(u) =
‖u‖2μ∣∣(gχB(0,2ρ0)
)1/2∗

u
∣∣2
2∗

.

(5.13)
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From (g2), we know that there exists 0 < δ0 ≤ ρ0 such that for all x ∈ B(0, 2δ0),

g(x) = g(0) + o
(|x|β) for some β ∈

⎛
⎜⎝
√
μ − μN√

μ
,

√
μ − μ(N + 1)√

μ

⎞
⎟⎠ . (5.14)

Motivated by some ideas of selecting cut-off functions in [18], we take such cut-off function
η(x) that satisfies η(x) ∈ C∞

0 (B(0, 2δ0)), η(x) = 1 for |x| < δ0, η(x) = 0 for |x| > 2δ0, 0 ≤ η ≤ 1
and |∇η| ≤ C. For ε > 0, let

uε(x) =
η(x)

[
ε|x|γ1/

√
μ + |x|γ2/

√
μ
]√μ

, (5.15)

where μ ∈ [0, μ), μ = ((N − 2)/2)2, γ1 =
√
μ −
√
μ − μ, and γ2 =

√
μ +
√
μ − μ.

Step 1. Show that supt≥0I(tuε) ≤ (1/N)SN/2
μ +O(ε(N−2)/2).

On that purpose, we need to establish the following estimates (as ε → 0):

∣∣∣(gχB(0,2ρ0)
)1/2∗

uε

∣∣∣2
2∗

= ε−(N−2)/2|U|2
L2∗ (RN)

+O(ε), (5.16)

∥∥uε

∥∥2
μ = ε−(N−2)/2

∫
RN

(
|∇U|2 − μ

|x|2U
2
)
dx +O(1), (5.17)

where U is defined as in (2.4), and ωN = 2πN/2/NΓ(N/2) is the volume of the unit
ball B(0, 1) in R

N . We only show that equality (5.16) is valid, proofs of (5.17) are very similar
to [18]. By (g2) and the definition of uε, we get that

∣∣∣(gχB(0,2ρ0)
)1/2∗

uε

∣∣∣2∗
2∗
=
∫
B(0,2δ0)

g(x)
∣∣uε

∣∣2∗dx

=
∫
RN

η2∗(x)g(x)
[
ε|x|γ1/

√
μ + |x|γ2/

√
μ
]N dx.

(5.18)

On the other hand, it is clear that

∫
RN

1
(
ε|x|γ1/

√
μ + |x|γ2/

√
μ
)N dx = ε−(N/2)

∫
RN

1
[|y|γ1/√μ + |y|γ2/

√
μ
]N dy

= ε−(N/2)|U|2∗
L2∗ (RN).

(5.19)
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Combining the equalities above, we have

ε−(N/2)|U|2∗
L2∗ (RN) − |(gχB(0,2ρ0)

)1/2∗
uε|2∗2∗

=
∫
RN\B(0,δ0)

1 − η2∗(x)g(x)[
ε|x|γ1/

√
μ + |x|γ2/

√
μ
]N dx +

∫
B(0,δ0)

1 − g(x)[
ε|x|γ1/

√
μ + |x|γ2/

√
μ
]N dx,

(5.20)

hence

0 ≤ ε−(N/2)|U|2∗
L2∗ (RN) −

∣∣(gχB(0,2ρ0)
)1/2∗

uε

∣∣2∗
2∗

≤
∫
RN\B(0,δ0)

1[
ε|x|γ1/

√
μ + |x|γ2/

√
μ
]N dx +

∫
B(0,δ0)

o
(|x|β)[

ε|x|γ1/
√

μ + |x|γ2/
√

μ
]N dx,

≤
∫
RN\B(0,δ0)

1

|x|γ2N/
√

μ
dx +

∫
B(0,δ0)

o
(|x|β)

|x|γ2N/
√

μ
dx,

= NωN

∫∞
δ0

rN−1

rγ2N/
√

μ
dr +
∫δ0
0

o
(
rβ
)
rN−1

rγ2N/
√

μ
dr,

=
ωN

√
μ√

μ − μ
δ
−(
√

μ−μ/
√

μ

)
N

0 +
o(1)δ

β−(
√

μ−μ/
√

μ)N
0

β −
(√

μ − μ/
√
μ
)
N

≤ C1 = Const.,

(5.21)

which leads to

0 ≤ 1 −
∣∣∣(gχB(0,2ρ0)

)1/2∗
uε

∣∣∣2∗
2∗
|U|−2∗

L2∗ (RN)ε
N/2 ≤ C1|U|−2∗

L2∗ (RN)ε
N/2, (5.22)

that is,

1 − C1|U|−2∗
L2∗ (RN)ε

N/2 ≤
∣∣∣(gχB(0,2ρ0)

)1/2∗
uε

∣∣∣2∗
2∗
|U|−2∗

L2∗ (RN)ε
N/2 ≤ 1. (5.23)

Now, let ε be small enough such that C1|U|−2∗2∗ εN/2 < 1, then from (5.23) we can deduce that

1 − C1|U|−2∗
L2∗ (RN)ε

N/2≤
(
1 − C1|U|−2∗

L2∗ (RN)ε
N/2
)2/2∗

≤ ∣∣(gχB(0,2ρ0)
)1/2∗

uε

∣∣2
2∗ |U|−2

L2∗ (RN)ε
(N−2)/2 ≤ 1,

(5.24)

which yields that

|U|2
L2∗ (RN)ε

−(N−2)/2 − C1|U|2−2∗
L2∗ (RN)ε ≤ ∣∣(gχB(0,2ρ0)

)1/2∗
uε

∣∣2
2∗ ≤ |U|2

L2∗ (RN)ε
−(N−2)/2, (5.25)



14 Boundary Value Problems

equivalently, equality (5.16) is valid.
Set |U|2μ =

∫
RN (|∇U|2 − (μ/|x|2)U2)dx. Combining with (5.16) and (5.17), we obtain

that

Q
(
uε

)
=

ε−(N−2)/2|U|2μ +O(1)

ε−(N−2)/2|U|2
L2∗ (RN)

+O(ε)

=
|U|2μ +O

(
ε(N−2)/2)

|U|2
L2∗ (RN)

+O
(
εN/2
) .

(5.26)

Hence

Q(uε) − Sμ =
|U|2μ +O

(
ε(N−2)/2)

|U|2
L2∗ (RN)

+O
(
εN/2
) − |U|2μ

|U|2
L2∗ (RN)

=
|U|2

L2∗ (RN)
O
(
ε(N−2)/2) − |U|2μO(εN/2)(

|U|2
L2∗ (RN)

+O
(
εN/2
))|U|2

L2∗ (RN)

= O
(
ε(N−2)/2).

(5.27)

Using the fact

max
t≥0

(
t2

2
a − t2

∗

2∗
b

)
= 1/N

(
a

b2/2
∗

)N/2

for any a, b > 0, (5.28)

we can deduce that

sup
t≥0

I
(
tuε

)
=

1
N

(
Q
(
uε

))N/2
. (5.29)

From (5.27), we conclude that supt≥0I(tuε) ≤ (1/N)SN/2
μ +O(ε(N−2)/2).

Step 2. Let ε = λ4/(2−q)(N−2). We claim that there exists Λ∗ > 0 such that supt≥0Jλ(tuε) <

(1/N)SN/2
μ − C0λ

2/(2−q) for all λ ∈ (0,Λ∗).
Let δ1 > 0 be such that

1
N

SN/2
μ − C0λ

2/(2−q) > 0, ∀λ ∈ (0, δ1). (5.30)

Using the definitions of Jλ, uε and by (f2), (g2), we get

Jλ
(
tuε

) ≤ t2

2
∥∥uε

∥∥2
μ, ∀t ≥ 0, λ > 0, (5.31)
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which implies that there exists t0 ∈ (0, 1) satisfying

sup
0≤t≤t0

Jλ
(
tuε

)
<

1
N

SN/2
μ − C0λ

2/(2−q), ∀λ ∈ (0, δ1). (5.32)

Using the definitions of Jλ, uε, and by the results in Step 1 and (f2), we have

sup
t≥t0

Jλ
(
tuε

)
= sup

t≥t0

(
I
(
tuε

) − tq

q
λ

∫
f(x)
∣∣uε

∣∣qdx
)

≤ 1
N

SN/2
μ +O

(
ε(N−2)/2) − t

q

0

q
β0λ

∫
B(0,δ0)

∣∣uε

∣∣qdx.
(5.33)

Let 0 < ε ≤ δ
(γ2−γ1)/

√
μ

0 , we have

∫
B(0,δ0)

∣∣uε

∣∣qdx =
∫
B(0,δ0)

1[
ε|x|γ1/

√
μ + |x|γ2/

√
μ
]√μq

dx

≥
∫
B(0,δ0)

1

(
2δ

γ2/
√

μ

0

)√μq
dx

= C1
(
N, q, μ, δ0

)
.

(5.34)

Combining with (5.33) and (5.34), for all ε = λ4/(2−q)(N−2) ∈ (0, δ
(γ2−γ1)/

√
μ

0 ), we get

sup
t≥t0

Jλ
(
tuε

) ≤ 1
N

SN/2
μ +O

(
λ2/(2−q)

) − t
q

0

q
β0C1λ. (5.35)

Hence, we can choose δ2 > 0 such that

O
(
λ2/(2−q)

) − t
q

0

q
β0C1λ < −C0λ

2/(2−q) λ ∈ (0, δ2). (5.36)

If we set Λ∗ = min{δ1, δ(2−q)
√

μ−μ
0 , δ2} > 0, then for λ ∈ (0,Λ∗) and ε = λ4/(2−q)(N−2), we have

sup
t≥0

Jλ
(
tuε

)
<

1
N

SN/2
μ − C0λ

2/(2−q). (5.37)

Step 3. Prove that α−
λ < (1/N)SN/2

μ − C0λ
2/(2−q) for all λ ∈ (0,Λ∗).

By (f2), (g2), and the definition of uε, we have

∫
f(x)
∣∣uε

∣∣qdx > 0,
∫
g(x)
∣∣uε

∣∣2∗dx > 0. (5.38)
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Combining this with Lemma 3.5, from the definition of α−
λ and the results in Step 2, we obtain

that there exists tε > 0 such that tεuε ∈ N−
λ
and

α−
λ ≤ Jλ

(
tεuε

) ≤ sup
t≥0

Jλ
(
tuε

)
<

1
N

SN/2
μ − C0λ

2/(2−q) (5.39)

for all λ ∈ (0,Λ∗).

Now, we establish the existence of a local minimum of Jλ on N−
λ .

Theorem 5.4. There exists Λ2 > 0 such that for λ ∈ (0,Λ2) the functional Jλ has a minimizer Uλ in
N−

λ
and satisfies

(i) Jλ(Uλ) = α−
λ ,

(ii) Uλ is a positive solution of (Pμ) inH,

where Λ2 = min{Λ∗, (q/2)Λ1}, Λ∗ is defined as in Lemma 5.3, and Λ1 is defined as in (1.1).

Proof. By Proposition 4.1(ii), there exists a (PS)α−
λ
-sequence {un} ⊂ N−

λ in H for Jλ for all
λ ∈ (0, (q/2)Λ1). From Lemmas 5.2, 5.3 and 3.4(ii), for λ ∈ (0,Λ∗), Jλ satisfies (PS)α−

λ
-condition

and α−
λ
> 0. Since Jλ is coercive on Nλ (see Lemma 3.1), we get that {un} is bounded in H.

Therefore, there exist a subsequence still denoted by {un} and Uλ ∈ N−
λ
such that un → Uλ

strongly in H and Jλ(Uλ) = α−
λ > 0 for all λ ∈ (0,Λ2). Finally, by using the same arguments

as in the proof of Theorem 4.2, for all λ ∈ (0,Λ2), we have that Uλ is a positive solution of
(Pμ).

Now, we complete the proof of Theorem 1.2: By Theorems 4.2 and 5.4, we obtain (Pμ)
has two positive solutions uλ and Uλ such that uλ ∈ N+

λ
, Uλ ∈ N−

λ
. Since N+

λ
∩ N−

λ
= ∅, this

implies that uλ and Uλ are distinct.
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