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1. Introduction

In the last few decades, fractional-order models are found to be more adequate than integer-
order models for some real world problems. Fractional derivatives provide an excellent
tool for the description of memory and hereditary properties of various materials and
processes. This is the main advantage of fractional differential equations in comparison with
classical integer-order models. Fractional differential equations arise in many engineering
and scientific disciplines as the mathematical modelling of systems and processes in the
fields of physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer
rheology, and so forth, involves derivatives of fractional order. In consequence, the subject
of fractional differential equations is gaining much importance and attention. For examples
and details, see [1–22] and the references therein. However, the theory of boundary value
problems for nonlinear fractional differential equations is still in the initial stages and many
aspects of this theory need to be explored.

Integrodifferential equations arise inmany engineering and scientific disciplines, often
as approximation to partial differential equations, which represent much of the continuum



2 Boundary Value Problems

phenomena. Many forms of these equations are possible. Some of the applications are
unsteady aerodynamics and aero elastic phenomena, visco elasticity, visco elastic panel in
super sonic gas flow, fluid dynamics, electrodynamics of complex medium, many models
of population growth, polymer rheology, neural network modeling, sandwich system
identification, materials with fading memory, mathematical modeling of the diffusion of
discrete particles in a turbulent fluid, heat conduction in materials with memory, theory of
lossless transmission lines, theory of population dynamics, compartmental systems, nuclear
reactors, and mathematical modeling of a hereditary phenomena. For details, see [23–29] and
the references therein.

Integral boundary conditions have various applications in applied fields such as blood
flow problems, chemical engineering, thermoelasticity, underground water flow, population
dynamics, and so forth. For a detailed description of the integral boundary conditions, we
refer the reader to a recent paper [30]. For more details of nonlocal and integral boundary
conditions, see [31–37] and references therein.

In this paper, we consider the following boundary value problem for a nonlinear
fractional integrodifferential equation with integral boundary conditions

cDqx(t) = f(t, x(t), (χx)(t)), 0 < t < 1, 1 < q ≤ 2,

αx(0) + βx′(0) =
∫1

0
q1(x(s))ds, αx(1) + βx′(1) =

∫1

0
q2(x(s))ds,

(1.1)

where cD is the Caputo fractional derivative, f : [0, 1] × X × X → X, for γ : [0, 1] × [0, 1] →
[0,∞),

(χx)(t) =
∫ t

0
γ(t, s)x(s)ds, (1.2)

q1, q2 : X → X and α > 0, β ≥ 0 are real numbers. Here, (X, ‖ · ‖) is a Banach space and C =
C([0, 1], X) denotes the Banach space of all continuous functions from [0, 1] → X endowed
with a topology of uniform convergence with the norm denoted by ‖ · ‖C.

2. Preliminaries

First of all, we recall some basic definitions [15, 18, 20].

Definition 2.1. For a function f : [0,∞) → R, the Caputo derivative of fractional order q is
defined as

cDqf(t) =
1

Γ(n − q)

∫ t

0
(t − s)n−q−1f (n)(s)ds, n − 1 < q < n, n = [q] + 1, (2.1)

where [q] denotes the integer part of the real number q.
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Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

Iqf(t) =
1

Γ(q)

∫ t

0

f(s)

(t − s)1−q
ds, q > 0, (2.2)

provided the integral exists.

Definition 2.3. The Riemann-Liouville fractional derivative of order q for a function f(t) is
defined by

Dqf(t) =
1

Γ(n − q)

(
d

dt

)n∫ t

0

f(s)

(t − s)q−n+1
ds, n = [q] + 1, (2.3)

provided the right hand side is pointwise defined on (0,∞).
In passing, we remark that the definition of Riemann-Liouville fractional derivative,

which did certainly play an important role in the development of theory of fractional
derivatives and integrals, could hardly produce the physical interpretation of the initial
conditions required for the initial value problems involving fractional differential equations.
The same applies to the boundary value problems of fractional differential equations. It was
Caputo definition of fractional derivative which solved this problem. In fact, the Caputo
derivative becomes the conventional nth derivative of the function f(t) as q → n and
the initial conditions for fractional differential equations retain the same form as that of
ordinary differential equations with integer derivatives. Another difference is that the Caputo
derivative for a constant is zero while the Riemann-Liouville fractional derivative of a
constant is nonzero. For more details, see [20].

Lemma 2.4 (see [22]). For q > 0, the general solution of the fractional differential equation
cDqx(t) = 0 is given by

x(t) = c0 + c1t + c2t
2 + · · · + cn−1tn−1, (2.4)

where ci ∈ R, i = 0, 1, 2, . . . , n − 1 (n = [q] + 1).

In view of Lemma 2.4, it follows that

IqcDqx(t) = x(t) + c0 + c1t + c2t
2 + · · · + cn−1tn−1, (2.5)

for some ci ∈ R, i = 0, 1, 2, . . . , n − 1 (n = [q] + 1).
Now, we state a known result due to Krasnosel’skiı̆ [38] which is needed to prove the

existence of at least one solution of (1.1).

Theorem 2.5. Let M be a closed convex and nonempty subset of a Banach space X. Let A,B be the
operators such that (i)Ax +By ∈ M whenever x, y ∈ M, (ii)A is compact and continuous, (iii) B is
a contraction mapping. Then there exists z ∈ M such that z = Az + Bz.
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Lemma 2.6. For any ζ, η1, η2 ∈ C[0, 1], the unique solution of the boundary value problem

cDqx(t) = ζ(t), 0 < t < 1, 1 < q ≤ 2,

αx(0) + βx′(0) =
∫1

0
η1(s)ds, αx(1) + βx′(1) =

∫1

0
η2(s)ds,

(2.6)

is given by

x(t) =
∫1

0
G(t, s)ζ(s)ds +

1
α2

[
(α(1 − t) + β)

∫1

0
η1(s)ds + (β + αt)

∫1

0
η2(s)ds

]
, (2.7)

where G(t, s) is the Green’s function given by

G(t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α(t − s)q−1 + (β − αt)(1 − s)q−1

αΓ(q)
+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)
, s ≤ t,

(β − αt)(1 − s)q−1

αΓ(q)
+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)
, t ≤ s.

(2.8)

Proof. Using (2.5), for some constants b1, b2 ∈ R, we have

x(t) = Iqζ(t) − b1 − b2t =
∫ t

0

(t − s)q−1

Γ(q)
ζ(s)ds − b1 − b2t. (2.9)

In view of the relations cDqIqx(t) = x(t) and IqIpx(t) = Iq+px(t) for q, p > 0, x ∈ L(0, 1), we
obtain

x′(t) =
∫ t

0

(t − s)q−2

Γ(q − 1)
ζ(s)ds − b2. (2.10)

Applying the boundary conditions for (2.6), we find that

b1 =
1
α2

[
β

∫1

0
η2(s)ds − (β + α)

∫1

0
η1(s)ds

]
− β

αΓ(q)

∫1

0
(1 − s)q−1ζ(s)ds

− β2

α2Γ(q − 1)

∫1

0
(1 − s)q−2ζ(s)ds,

b2 =
1
α

[∫1

0
η1(s)ds −

∫1

0
η2(s)ds

]
+

1
Γ(q)

∫1

0
(1 − s)q−1ζ(s)ds

+
β

αΓ(q − 1)

∫1

0
(1 − s)q−2ζ(s)ds.

(2.11)
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Thus, the unique solution of (2.6) is

x(t) =
∫ t

0

[
α(t − s)q−1 + (β − αt)(1 − s)q−1

αΓ(q)
+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)

]
ζ(s)ds

+
∫1

t

[
(β − αt)(1 − s)q−1

αΓ(q)
+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)

]
ζ(s)ds

+
1
α2

[
(α(1 − t) + β)

∫1

0
η1(s)ds + (β + αt)

∫1

0
η2(s)ds

]

=
∫1

0
G(t, s)ζ(s)ds +

1
α2

[
(α(1 − t) + β)

∫1

0
η1(s)ds + (β + αt)

∫1

0
η2(s)ds

]
,

(2.12)

where G(t, s) is given by (2.8). This completes the proof.

3. Main Results

Theorem 3.1. Assume that f : [0, 1]×X ×X → X is jointly continuous and maps bounded subsets
of [0, 1] ×X ×X into relatively compact subsets of X, γ : [0, 1] × [0, 1] → [0,∞) is continuous with
γ0 = max{γ(t, s) : (t, s) ∈ [0, 1] × [0, 1]}, and q1, q2 : X → X are continuous functions. Further,
there exist positive constants L1, L1, L2, L3,M2,M3 such that

(A1) ‖f(t, x(t), (χx)(t)) − f(t, y(t), (χy)(t))‖ ≤ L1‖x − y‖ + L1‖χx − χy‖, for all t ∈ [0, 1],
x, y ∈ X,

(A2) ‖q1(x)−q1(y)‖ ≤ L2‖x−y‖, ‖q2(x)−q2(y)‖ ≤ L3‖x−y‖ with ‖q1(x)‖ ≤ M2, ‖q2(x)‖ ≤
M3, for all x, y ∈ X.

Then the boundary value problem (1.1) has a unique solution provided

(
L1 + γ0L1

)[ β + 2α
αΓ(q + 1)

+
β2 + αβ

α2Γ(q)

]
+
β + α

α2
(L2 + L3) < 1 (3.1)

with

L1 + γ0L1 ≤ 1
2

[
β + 2α

αΓ(q + 1)
+
β2 + αβ

α2Γ(q)

]−1
. (3.2)

Proof. Define � : C → C by

(�x)(t) =
1

Γ(q)

∫ t

0
(t − s)q−1f(s, x(s), (χx)(s))ds

+
∫1

0

[
(β − αt)(1 − s)q−1

αΓ(q)
+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)

]
f(s, x(s), (χx)(s))ds

+
1
α2

[
(α(1 − t) + β)

∫1

0
q1(x(s))ds + (β + αt)

∫1

0
q2(x(s))ds

]
, t ∈ [0, 1].

(3.3)
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Setting supt∈[0,1]‖f(t, 0, 0)‖ = M1 (by the assumption on f) and Choosing

r ≥ 2
[
M1

(
β + 2α

αΓ(q + 1)
+
β2 + αβ

α2Γ(q)

)
+
α + β

α2
(M2 +M3)

]
, (3.4)

we show that �Br ⊂ Br, where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br, we have

‖(�x)(t)‖ ≤ 1
Γ(q)

∫ t

0
(t − s)q−1‖f(s, x(s), (χx)(s))‖ds

+
∫1

0
|β − αt|

[
(1 − s)q−1

αΓ(q)
+
β(1 − s)q−2

α2Γ(q − 1)

]
‖f(s, x(s), (χx)(s))‖ds

+
α + β

α2
(M2 +M3)

≤ 1
Γ(q)

∫ t

0
(t − s)q−1

[‖f(s, x(s), (χx)(s)) − f(s, 0, 0)‖ + ‖f(s, 0, 0)‖]ds

+
∫1

0
|β − αt|

[
(1 − s)q−1

αΓ(q)
+
β(1 − s)q−2

α2Γ(q − 1)

]

× [‖f(s, x(s), (χx)(s)) − f(s, 0, 0)‖ + ‖f(s, 0, 0)‖]ds + α + β

α2
(M2 +M3)

≤ ((
L1 + γ0L1

)
r +M1

)[ 1
Γ(q)

∫ t

0
(t − s)q−1ds

+
∫1

0
|β − αt|

(
(1 − s)q−1

αΓ(q)
+
β(1 − s)q−2

α2Γ(q − 1)

)
ds

]

+
α + β

α2
(M2 +M3)

=
((
L1 + γ0L1

)
r +M1

)[ tq

Γ(q + 1)
+ |β − αt|

(
1

αΓ(q + 1)
+

β

α2Γ(q)

)]

+
α + β

α2
(M2 +M3)

≤ (
L1 + γ0L1

)[ 2α + β

αΓ(q + 1)
+
β2 + αβ

α2Γ(q)

]
r

+M1

[
2α + β

αΓ(q + 1)
+
β2 + αβ

α2Γ(q)

]
+
α + β

α2
(M2 +M3) ≤ r.

(3.5)
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Now, for x, y ∈ C and for each t ∈ [0, 1], we obtain

‖(�x)(t) − (�y)(t)‖

≤ 1
Γ(q)

∫ t

0
(t − s)q−1‖f(s, x(s), (χx)(s)) − f(s, y(s), (χy)(s))‖ds

+
∫1

0
|β − αt|

[
(1 − s)q−1

αΓ(q)
+
β(1 − s)q−2

α2Γ(q − 1)

]
‖f(s, x(s), (χx)(s)) − f(s, y(s), (χy)(s))‖ds

+
α + β

α2

[∫1

0
‖q1(x(s)) − q1(y(s))‖ds +

∫1

0
‖q2(x(s)) − q2(y(s))‖ds

]

≤ (
L1 + γ0L1

)‖x − y‖C
[

tq

Γ(q + 1)
+ |β − αt|

(
1

αΓ(q + 1)
+

β

α2Γ(q)

)]

+
α + β

α2
(L2 + L3)‖x − y‖C

≤
{(

L1 + γ0L1
)[ 2α + β

αΓ(q + 1)
+
β2 + αβ)
α2Γ(q)

]
+
α + β

α2
(L2 + L3)

}
‖x − y‖C

≤ Λα,β,q,γ0,L1,L1,L2,L3
‖x − y‖C,

(3.6)

where

Λα,β,q,γ0,L1,L1,L2,L3
=
(
L1 + γ0L1

)[ 2α + β

αΓ(q + 1)
+
β2 + αβ

α2Γ(q)

]
+
α + β

α2
(L2 + L3), (3.7)

which depends only on the parameters involved in the problem. As Λα,β,q,L1,L1,L2,L3
< 1,

therefore � is a contraction. Thus, the conclusion of the theorem follows by the contraction
mapping principle.

Theorem 3.2. Assume that (A1)-(A2) hold with ‖f(t, x(t), (χx)(t))‖ ≤ μ(t), for all (t, x, χx) ∈
[0, 1] ×X ×X, where μ ∈ L1([0, 1], R+) and

(
L1 + γ0L1

)( α + β

αΓ(q + 1)
+
β2 + αβ

α2Γ(q)

)
+
α + β

α2
(L2 + L3) < 1. (3.8)

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. Let us fix

r ≥ ‖μ‖L1

[
2α + β

αΓ(q + 1)
+
β2 + αβ

α2Γ(q)

]
+
α + β

α2
(M2 +M3), (3.9)
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and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators Φ and Ψ on Br as

(Φx)(t) =
1

Γ(q)

∫ t

0
(t − s)q−1f(s, x(s), (χx)(s))ds,

(Ψx)(t) =
∫1

0

[
(β − αt)(1 − s)q−1

αΓ(q)
+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)

]
f(s, x(s), (χx)(s))ds

+
1
α2

[
(α(1 − t) + β)

∫1

0
q1(x(s))ds + (β + αt)

∫1

0
q2(x(s))ds

]
.

(3.10)

For x, y ∈ Br, we find that

‖Φx + Ψy‖ ≤ ‖μ‖L1

[
2α + β

αΓ(q + 1)
+
β2 + αβ

α2Γ(q)

]
+
α + β

α2
(M2 +M3) ≤ r. (3.11)

Thus,Φx+Ψy ∈ Br. It follows from the assumption (A1), (A2) thatΨ is a contractionmapping
for

(
L1 + γ0L1

)( α + β

αΓ(q + 1)
+
β2 + αβ

α2Γ(q)

)
+
α + β

α2
(L2 + L3) < 1. (3.12)

Continuity of f implies that the operator Φ is continuous. Also, Φ is uniformly bounded on
Br as

‖Φx‖ ≤ ‖μ‖L1

Γ(q + 1)
. (3.13)

Now we prove the compactness of the operator Φ. In view of (A1), we define
sup(t,x,χx)∈Ω‖f(s, x(s), (χx)(s))‖ = fmax,Ω = [0, 1] × Br × Br, and consequently we have

∥∥(Φx)(t1) − (Φx)(t2)
∥∥

=

∥∥∥∥∥
1

Γ(q)

∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
f(s, x(s), (χx)(s))ds

+
∫ t2

t1

(t2 − s)q−1f(s, x(s))ds

∥∥∥∥∥

≤ fmax

Γ(q + 1)
∣∣2(t2 − t1)

q + t
q

1 − t
q

2

∣∣,

(3.14)

which is independent of x. So Φ is relatively compact on Br. Hence, By Arzela Ascoli
Theorem, Φ is compact on Br. Thus all the assumptions of Theorem 2.5 are satisfied and
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the conclusion of Theorem 2.5 implies that the boundary value problem (1.1) has at least one
solution on [0, 1].

Example 3.3. Consider the following boundary value problem:

cDqx(t) =
1

(t + 7)2
|x|

1 + |x| +
∫ t

0

e−(s−t)

49
x(s)ds, t ∈ [0, 1], 1 < q ≤ 2,

x(0) + x′(0) =
∫1

0

|x(s)|
5 + |x(s)|ds, x(1) + x′(1) =

∫1

0

|x(s)|
7 + |x(s)|ds.

(3.15)

Here, f(t, x) = (1/(t + 7)2)(|x|/(1 + |x|)), γ(t, s) = e−(s−t)/49, q1(x) = |x|/(5 + |x|), q2(x) =
|x|/(7 + |x|), α = 1, β = 1. As ‖f(t, x, χx) − f(t, y, χy)‖ ≤ (1/49)‖x − y‖ + ‖χx − χy‖, ‖q1(x) −
q1(y)‖ ≤ (1/5)‖x − y‖, ‖q2(x) − q2(y)‖ ≤ (1/7)‖x − y‖, therefore, (A1) and (A2) are satisfied
with L1 = 1/49, L1 = 1, γ0 = ((e − 1)/49)L2 = 1/5, L3 = 1/7. Further,

(
L1 + γ0L1

)[ β + 2α
αΓ(q + 1)

+
β2 + αβ

α2Γ(q)

]
+
β + α

α2
(L2 + L3) < 1 ⇐⇒ e

49

(
3

Γ(q + 1)
+

2
Γ(q)

)
<

11
35

.

(3.16)

Thus, by Theorem 3.1, the boundary value problem (3.15) has a unique solution on [0, 1].
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