
Hindawi Publishing Corporation
Boundary Value Problems
Volume 2009, Article ID 808124, 14 pages
doi:10.1155/2009/808124

Research Article
On Some Generalizations Bellman-Bihari Result
for Integro-Functional Inequalities for
Discontinuous Functions and Their Applications

Angela Gallo1 and Anna Maria Piccirillo2

1 Department of Mathematics and Applications, “R.Caccioppoli” University of Naples “Federico II”,
Claudio street 21, 80125 Naples, Italy

2 Department of Civil Engineering, Second University of Naples, Roma, street 21, 81100 Caserta, Italy

Correspondence should be addressed to Angela Gallo, angallo@unina.it

Received 22 December 2008; Revised 21 April 2009; Accepted 28 May 2009

Recommended by Juan J. Nieto

We present some new nonlinear integral inequalities Bellman-Bihari type with delay for discontin-
uous functions (integro-sum inequalities; impulse integral inequalities). Some applications of the
results are included: conditions of boundedness (uniformly), stability by Lyapunov (uniformly),
practical stability by Chetaev (uniformly) for the solutions of impulsive differential and integro-
differential systems of ordinary differential equations.

Copyright q 2009 A. Gallo and A. M. Piccirillo. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The first generalizations of the Bihari result for discontinuous functions which satisfy
nonlinear impulse inequality (integro-sum inequality) are connected with such types of
inequalities:

(a)

v(t) ≤ c +
∫ t
t0

p(τ) vm(τ) dτ +
∑

t0<ti<t

βi v(ti − 0), m > 0, m/= 1, (1.1)

(b)

v(t) ≤ c +
∫ t
t0

p(τ)ϕ(v(τ))dτ +
∑

t0<ti<t

βi v(ti − 0), (1.2)
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Which are studied in the publications by Bainov, Borysenko, Iovane, Laksmikantham, Leela,
Martynyuk, Mitropolskiy, Samoilenko ([1–13]), and in many others. In these investigations
the method of integral inequalities for continuous functions is generalized to the case of
piecewise continuous (one-dimensional inequalities) and discontinuous (multidimensional
inequalities) functions.

For the generalization of the integral inequalities method for discontinuous functions
and for their applications to qualitative analysis of impulsive systems: existence, uniqueness,
boundedness, comparison, stability, and so forth. We refer to the results [2–5, 12, 14] and
for periodic boundary value problems we cite [15–17]. More recently, a novel variational
approach appeared in [18]. This approach to impulsive differential equations also used the
critical point theory for the existence of solutions of a nonlinear Dirichlet impulsive problem
and in [19] some new comparison principles and the monotone iterative technique to
establish a more general existence theorem for a periodic boundary value problem. Reference
[20] is very interesting in that it gives a complete overview of the state-of-the-art of the
impulsive differential, inclusions.

In this paper, in Section 2, we investigate new analogies Bihari results for piece-wise
continuous functions and, in Section 3, the conditions of boundedness, stability, pract-ical
stability of the solutions of nonlinear impulsive differential and integro-differential systems.

2. General Bihari Theorems for Integro-Functional Inequalities
for Discontinuous Functions

Let us consider the class ℘ of continuous functions p : R → R, p(t) ≤ t, lim
|t|→∞

p(t) = ∞ (p =

p(t) is the delaying argument). The following holds.

Theorem 2.1. (a) Let one suppose that for x ≥ x0 the following integro-sum functional inequality
holds:

u(x) ≤ ϕ(x) + q(x)
∫x
xi

f(τ) W
(
u
(
p(τ)
))
dτ +

∑
x0<xi<x

βi u
m(xi − 0), (2.1)

where q(x) ≥ 1, ϕ(x) is a positive nondecreasing function, βi = const ≥ 0, f : R+ → R+, m =
const > 0; function u(x) is a nonnegative piecewise-continuous,with I-st kind of discontinuities in
the points xi : x0 < x1 < · · · limn→∞xn = ∞, p(t) belongs to the class ℘.

(b) Function W(x) satisfies such conditions:

(i) W(γβ) ≤ W(γ)W(β);

(ii) W : R+ → R+, W(0) = 0;

(iii) W is nondecreasing.

Then for arbitrary x ∈ ]x0 ,∞[ the next estimate holds:

u(x) ≤ ϕ(x)q(x)G−1
i

[∫x
xi

f(τ)
ϕ(τ)

W
[
ϕ
(
p(τ)
)
q
(
p(τ)
)]
dτ

]
for x ∈ ]xi, xi+1[

∫x
xi

f(τ)
ϕ(τ)

W
[
ϕ
(
p(τ)
)
q
(
p(τ)
)]
dτ ∈ Dom

(
G−1

i

)
,

(2.2)
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G0(u) =
∫u
1

dσ

W(σ)
, (2.3)

Gi(u) =
∫u
ci

dσ

W(σ)
, i = 1, 2, . . . , (2.4)

ci =
(
1 + βi ϕ

m−1(xi)qm(xi − 0)
)
G−1

i−1

(∫xi

xi−1

f(τ)
ϕ(τ)

W
[
ϕ
(
p(τ)
)
q
(
p(τ)
)]
dτ

)
,

i = 1, 2, . . . if m ∈ ]0, 1], ∀x ≥ x0,

ci =
(
1 + βi ϕ

m−1(xi)qm(xi − 0)
)[

G−1
i−1

(∫xi

xi−1

f(τ)
ϕ(τ)

W
[
ϕ
(
p(τ)
)
q
(
p(τ)
)]

dτ

)]
,

m

i = 1, 2, . . . if m ≥ 1, ∀x ≥ x0.

(2.5)

Proof. It follows from inequality (2.1)

u(x)
ϕ(x)

≤ 1 + q(x)
∫x
x0

f(τ) W
(
u
(
p(τ)
))

ϕ(τ)
dτ +

∑
x0<xi<x

βi
um(xi − 0)

ϕ(x)

≤ q(x)

{
1 +
∫x
x0

f(τ)
ϕ(τ)

W
(
u
(
p(τ)
))
dτ +

∑
x0<xi<x

βi ϕ
m−1(xi − 0)

[
u(xi − 0)
ϕ(xi − 0)

]m}
.

(2.6)

Denoting by

u∗(x) = 1 +
∫x
x0

f(τ)
ϕ(τ)

W
(
u
(
p(τ)
))
dτ +

∑
x0<xi<x

βi ϕ
m−1(xi − 0)

[
u(xi − 0)
ϕ(xi − 0)

]m
,

u∗(x) = 1 for x = x0,

(2.7)

then

u(xi − 0) ≤ ϕ(xi − 0) q(xi − 0)u∗(xi − 0),

u(x) ≤ ϕ(x) q(x)u∗(x),

u
(
p(τ)
) ≤ ϕ

(
p(τ)
)
q
(
p(τ)
)
u∗(p(τ)) ≤ ϕ

(
p(τ)
)
q
(
p(τ)
)
u∗(τ),

=⇒ u∗(x) ≤ 1 +
∫x
x0

f(τ)
ϕ(τ)

W
[
ϕ
(
p(τ)
)
q
(
p(τ)
)]
W(u∗(τ))dτ

+
∑

x0<xi<x

βiϕ
m−1(xi − 0)qm(xi − 0)u∗m(xi − 0).

(2.8)
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Let us consider the interval I1 = [x0, x1[. Then

u∗(x) ≤ G−1
0

(∫x
x0

f(τ)
ϕ(τ)

W
[
ϕ
(
p(τ)
)
q
(
p(τ)
)]
dτ

)
,

if only
∫x
x0

f(τ)
ϕ(τ)

W
[
ϕ
(
p(τ)
)
q
(
p(τ)
)]
dτ ∈ Dom

(
G−1

0

)
,

(2.9)

where G0(ξ) =
∫ ξ
1(dτ/W(τ)). So it results in

u(x) ≤ ϕ(x)q(x)G−1
0

[∫x
x0

f(τ)
ϕ(τ)

W
[
ϕ
(
p(τ)
)
q
(
p(τ)
)]
dτ

]
, (2.10)

and estimate (2.2) is valid in I1.
Let us suppose that for x ∈ Ik = 
xk−1, xk 
, k = 2, 3, . . . estimate (2.2) is fulfilled. Then

for every x ∈ Ik+1 we have

u∗(x) ≤ G−1
k

(∫x
xk

f(τ)
ϕ(τ)

W
[
ϕ
(
p(τ)
)
q
(
p(τ)
)]
dτ

)

with
∫x
xk

f(τ)
ϕ(τ)

W
[
ϕ
(
p(τ)
)
q
(
p(τ)
)]
dτ ∈ Dom

(
G−1

k

)
,

(2.11)

where Gk(ξ) is determined from (2.3)–(2.5).
Taking into account such inequality

u(x) ≤ ϕ(x)q(x)u∗(x), (2.12)

we obtain estimate (2.2) for every x ∈ [x0 ,∞[.
Let us consider the class I of functions f such that

(i) f(x)-positive, continuous, nondecreasing for x > 0;

(ii) ∀u ≥ 1, v > 0 ⇒ u−1 f(v) < f(u−1 v);

(iii) f(0) = 0.

The following result is proved.

Theorem 2.2. Suppose that the part (a) of Theorem 2.1 is valid and functionW : [0 ,∞[→ [0 ,∞[
belongs to the class I. Then for arbitrary x0 ≤ x ≤ x∗ such estimate holds:

u(x) ≤ ϕ(x)q(x)G∗
i
−1
[∫x

xi

f(τ) q
(
p(τ)
)
dτ

]
for Ii = [xi , xi+1 [, i = 0, 1, . . . , (2.13)
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where

G∗
0
(
η
)
=
∫η
1

dσ

W(σ)
, G∗

i

(
η
)
=
∫η
c∗i

dσ

W(σ)
i = 1, 2, . . . ,

c∗i =
(
1 + βi ϕ

m−1(xi)qm(xi)
)
G∗

i−1
−1
(∫xi

xi−1
f(τ)q

(
p(τ)
)
dτ

)
if m ∈ ]0, 1],

c∗i =
(
1 + βi ϕ

m−1(xi)qm(xi)
)[

G∗
i−1

−1
(∫xi

xi−1
f(τ)q

(
p(τ)
)
dτ

)]m
if m ≥ 1,

(2.14)

and x∗ = supx{
∫x
xi−1

f(τ)q(p(τ))dτ ∈ Dom(G∗
i−1

−1)}, i = 1, 2, . . . .

Proof. By using the previous theorem we have u(x) ≤ ϕ(x)g(x)u∗(x), u∗(x) = 1 x = x0. On
the interval I1

du∗(x)
dx

=
f(x)
ϕ(x)

W
(
u
(
p(x)
))
. (2.15)

Then

u
(
p(x)
) ≤ ϕ

(
p(x)
)
q
(
p(x)
)
u∗(p(x)) ≤ ϕ(x)q

(
p(x)
)
u∗(x),

du∗(x)
dx

≤ f(x)
ϕ(x)

W
(
q
(
p(x)
)
ϕ(x)u∗(x)

)

≤ f(x)q
(
p(x)
)

ϕ(x)q
(
p(x)
)W(q(p(x))ϕ(x)u∗(x)

)

≤ f(x)q
(
p(x)
)
W(u∗(x)).

(2.16)

Taking into account estimate (2.16), we obtain

∫x
x0

u∗′(σ)
W(u∗(σ))

dσ ≤
∫x
x0

f(τ)q
(
p(τ)
)
dτ,

∫x
x0

u∗′(σ)
W(u∗(σ))

dσ =
∫u∗(x)

u∗(x0)

du

W(u)
= G∗

0(u
∗(x)) −G∗

0(u
∗(x0)),

u∗(x0) = 1, u∗(x) ≥ 1, G∗
0(u

∗(x0)) = G∗
0(1) = 0,

G∗
0(u

∗(x)) ≤
∫x
x0

f(τ) q
(
p(τ)
)
dτ.

(2.17)
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Then in I1 we have

u(x) ≤ ϕ(x)q(x) G∗
0
−1
[∫x

x0

f(τ)q
(
p(τ)
)
dτ

]
if only

∫x
x0

f(τ)q
(
p(τ)
)
dτ ∈ Dom

(
G∗

0
−1).
(2.18)

As in the previously theorem, the proof is completed by using the inductive method.

The following result is easily to obtain

Theorem 2.3. Suppose that for x ≥ x0 the next inequality holds:

u(x) ≤ u0 + q(x)

[∫x
x0

f(s)u
(
p(s)
)
ds +
∫x
x0

f(s)

(∫x
x0

g(τ)u
(
p(τ)
)
dτ

)
ds

]

+
∫x
x0

h(s)W(u(σ(s)))ds +
∑

x0<xi<x

βi u
m(xi − 0),

(2.19)

where functions u(x), f(x), q(x), g(x), h(x), p(x), σ(x) are real nonnegative for x ≥ x0 >
0, p(x), σ(x) ∈ I, q(x) ≥ 1, βi ≥ 0, function W satisfies conditions (i),. . .,(iii) of Theorem 2.1.

Then for x ≥ x0 it results in

u(x) ≤
∏

x0<xi<x

(
1 + βiq

m(xi)um−1
0

)
exp

(∫x
x0

q
(
p(τ)
)[
f(τ) + g(τ)

]
dτ

)

· ψ−1
0

⎛
⎝
∫x
x0

h(τ) W

⎡
⎣ ∏

x0<xi<σ(τ)

(
1 + βiq

m(xi)um−1
0

)⎤⎦W

×
[
q(σ(τ)) exp

(∫σ(τ)
x0

q
(
p(s)
)[
f(s) + g(s)

]
ds

)]
dτ

)
, if m ∈ ]0, 1]

∫x
x0

h(τ)W

⎡
⎣ ∏

x0<xi<σ(τ)

(
1 + βiq

m(xi)um−1
0

)⎤⎦W

×
[
q(σ(τ)) exp

(∫σ(τ)
x0

q
(
p(s)
)[
f(s) + g(s)

]
ds

)]
dτ ∈ Dom

(
ψ−1
0

)
,

(2.20)
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where ψ0(u) =
∫u
u0
(dv/W(v));

u(x) ≤
∏

x0<xi<x

(
1 + βiq

m(xi)um−1
0

)
exp

(
m

∫x
x0

q
(
p(τ)
)[
f(τ) + g(τ)

])

· ψ−1
0

⎛
⎝
∫x
x0

h(τ)

⎡
⎣ ∏

x0<xi<σ(τ)

(
1 + βiq

m(xi)um−1
0

)⎤⎦

·W
[
q(σ(τ)) exp

(
m

∫σ(τ)
x0

q
(
p(s)
)[
f(s) + g(s)

]
ds

)]
dτ

)
, if m ≥ 1,

∫x
x0

h(τ)W

⎡
⎣ ∏

x0<xi<σ(τ)

(
1 + βiq

m(xi)um−1
0

)⎤⎦W

×
[
q(σ(τ)) exp

(
m

∫σ(τ)
x0

q
(
p(s)
)[
f(s) + g(s)

]
ds

)]
dτ ∈ Dom

(
ψ−1
0

)
.

(2.21)

The proof the same procedure as that of (Iovane [21, Theorems 2.1 and 3.1]).

Corollary 2.4. Suppose that

(a) m = 1, then the result of Theorem 2.1 coincides with the result [22, Theorem 3.7.1, page
232];

(b) m = 1, ϕ(x) = c, q(x) = 1, p(t) = t, then the result of Theorem 2.1 coincides with result
[12, Proposition 2.3, page 2143];

(c) q(x) = 1, W(u) = u, p(t) = t, then one obtains the analogy of Gronwall- Bellman result
for discontinuous functions [23, Lemma 1] and estimate (2.2) reduces in the following form:

u(x) ≤ ϕ(x)
∏

x0<xi<x

(
1 + βi ϕ

m−1(xi)
)
exp

(∫x
x0

f(τ) dτ

)
if m ∈ ]0, 1], ∀x ≥ x0,

u(x) ≤ ϕ(x)
∏

x0<xi<x

(
1 + βi ϕ

m−1(xi)
)
exp

(
m

∫x
x0

f(τ) dτ

)
if m ≥ 1, ∀x ≥ x0.

(2.22)

(d) q(x) = 1, W(u) = u, then one obtains the result [21, Theorem 2.1] and estimate (2.2) are
as follows:

u(x) ≤ ϕ(x)
∏

x0<xi<x

(
1 + βi ϕ

m−1(xi)
)
exp

(∫x
x0

f(τ)
ϕ
(
p(τ)
)

ϕ(τ)
dτ

)
, if m ∈ ]0, 1], ∀x ≥ x0;

u(x) ≤ ϕ(x)
∏

x0<xi<x

(
1 + βi ϕ

m−1(xi)
)
exp

(
m

∫x
x0

f(τ)
ϕ
(
p(τ)
)

ϕ(τ)
dτ

)
if m ≥ 1, ∀x ≥ x0.

(2.23)
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(e) q(x) = 1,W(u) = um,m > 0, p(t) = t, then one obtains the analogy of Bihari result for
discontinuous functions [23, Lemma 2] and estimate (2.2) reduces as follows are reduced:

u(x) ≤ ϕ(x)
∏

x0<xi<x

(
1 + βi ϕ

m−1(xi)
)[

1 + (1 −m)
∫x
x0

ϕm−1(τ)f(τ)dτ

]1/(1−m)

,

if 0 < m < 1, ∀x ≥ x0,

u(x) ≤ ϕ(x)
∏

x0<xi<x

(
1 + βimϕm−1(xi)

) ⎡⎣1 − (m − 1)

[ ∏
x0<xi<x

(
1 + βi mϕm−1(xi)

)]m−1

×
∫x
x0

ϕm−1(τ) f(τ) dτ

]− 1/(m−1)
∀x ≥ x0,

(2.24)

such that

∫x
x0

ϕm−1(τ)f(τ) dτ ≤ 1
m
, m > 1,

∏
x0<xi<x

(
1 + βi ϕ

m−1(xi)
)
<

(
1 +

1
m − 1

)1/(m−1)
.

(2.25)

(f) W(u) = um,, m> 0, then estimate (2.2) reduces as follows (see [21, Theorem 2.2]):

u(x) ≤ ϕ(x) q(x)
∏

x0<xi<x

(
1 + βi ϕ

m−1(xi) qm(xi)
)

×
[
1 + (1 −m)

∫x
x0

ϕm−1(τ)f(τ)qm
(
p(τ)
)[ϕ(p(τ))

ϕ(τ)

]m
dτ

]1/(1−m)

if 0 < m < 1, ∀x ≥ x0,

u(x) ≤ ϕ(x) q(x)
∏

x0<xi<x

(
1 + βimϕm−1(xi) qm(xi)

)

×
⎧⎨
⎩1 − (m − 1)

[ ∏
x0<xi<x

(
1 + βi mϕm−1(xi)qm(xi)

)]m−1

×
∫x
x0

ϕm−1(τ) f(τ)qm
(
p(τ)
)[ϕ(p(τ))

ϕ(τ)

]m
dτ

}− 1/(m−1)
∀x ≥ x0
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such that

∫x
x0

ϕm−1(τ) f(τ)qm
(
p(τ)
)[ϕ(p(τ))

ϕ(τ)

]m
dτ ≤ 1

m
, m > 1,

∏
x0<xi<x

(
1 + βimϕm−1(xi)qm(xi)

)
<

(
1 +

1
m − 1

)−1/(m−1)
.

(2.26)

(g) Suppose that in Theorem 2.3 q(x) = 1,W(u) = u, σ(s) = p(s) = s, then estimates (2.20),
(2.21) reduce as shown:

u(x) ≤ u0

∏
x0<xi<x

(
1 + βi u

m−1
0 (xi)

)
exp

[∫x
x0

[
f(ξ) + g(ξ) + h(ξ)

]
dξ

]
if m ∈ ]0, 1], ∀x ≥ x0;

u(x) ≤ u0

∏
x0<xi<x

(
1 + βi u

m−1
0 (xi)

)
exp

[
m

∫x
x0

[
f(ξ) + g(ξ) + h(ξ)

]
dξ

]
if m ≥ 1, ∀x ≥ x0,

(2.27)

which coincide with result of [21, Theorem 3.1] for h(t) = u0.

3. Applications

Let us consider the following system of differential equations

dx

dt
= F(t, x), t /= ti,

Δx|t=ti = Ii(x)
(3.1)

where x ∈ Rn, F ∈ Rn, Ii(x) ∈ Rn (i = 1, 2, . . .), t ≥ t0 ≥ 0, limi→∞ ti = ∞, ti−1 < ti for all i =
1, 2, . . ..

Let us assume that F(t, x) and Ii(x) are defined in the domain D = {(t, x) : t ∈ I =
[t0, T], T ≤ ∞, ‖x‖ ≤ h } and satisfy such conditions:

(a) ‖F(t, x)‖ ≤ f(t)W(‖x‖), f : R+ → R+,

W satisfies conditions (i)–(iii) of Theorem 2.1;

(b) ‖Ii(x) ‖ ≤ βi‖x‖m, βi = const > 0, m > 0.

Consider x(t) = x( t, t0, x0) the solution of Cauchy problem for system (3.1). Then

x(t, t0, x0 ) = x0 +
∫ t
t0

F(τ, x(τ, t0, x0))dτ +
∑

t0<ti<t

Ii(x(ti − 0, t0, x0)), (3.2)
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from which it follows

‖x(t, t0, x0 )‖ ≤ ‖x0‖ +
∫ t
t0

f(τ) W(‖x(τ, t0, x0)‖)dτ +
∑

t0<ti<t

βi‖x(ti − 0, t0, x0)‖m. (3.3)

By using the result of Theorem 2.1 and estimate (2.2) we obtain

‖x(t, t0, x0)‖ ≤ ‖x0‖G−1
i

[∫x
xi

f(τ)
W(‖x0‖)
‖x0‖ dτ

]
for x ∈ ]xi, xi+1[ ,

∫x
xi

f(τ)
W(‖x0‖)
‖x0‖ dτ ∈ Dom

(
G−1

i

)
,

(3.4)

where

G0(u) =
∫u
1

dσ

W(σ)
, Gi(u) =

∫u
ci

dσ

W(σ)
, i = 1, 2, ...,

ci =
(
1 + βi‖x0‖m−1

)
G−1

i−1

(∫xi

xi−1
f(τ)

W(‖x0‖)
‖x0‖ dτ

)
,

i = 1, 2, . . . if m ∈ ]0, 1], ∀x ≥ x0,

ci =
(
1 + βi‖x0‖m−1

)[
G−1

i−1

(∫xi

xi−1
f(τ)

W(‖x0‖)
‖x0‖ dτ

)]m
,

i = 1, 2, . . . if m ≥ 1, ∀x ≥ x0.

(3.5)

Let us consider some particular cases of W .
IfW(u) = u, m = 1, estimate (3.4) is reduced in such form

‖x(t, t0, x0)‖ ≤ ‖x0‖
∏
t0<ti<t

(
1 + βi

)
exp

[∫ t
t0

f(τ)dτ

]
. (3.6)

Then such result holds.

Proposition 3.1. Let the following conditions be fulfilled for system (3.1) :

(i) ‖F(t, x)‖ ≤ f(t)‖x‖;
(ii) ‖Ii(x)‖ ≤ βi‖x‖;
(iii) ∃m1(t0) = const. > 0 :

∏
t0<ti<t

(1 + βi) ≤ m1(t0) < ∞;

(iv) ∃m2(t0) = const. > 0 :
∫ t
t0
f(τ) dτ ≤ m2(t0) < ∞, ∀t ≥ t0 .
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Then one has:

(a) All solutions of system (3.1) are bounded (uniformly, if mi(t0) are independent of t0) and
such estimate is valid:

‖x(t, t0, x0)‖ ≤ m1(t0) exp[m2(t0)]‖x0‖. (3.7)

(b) The trivial solution of system (3.1) is stable by Lyapunov (uniformly stable relative t0, if
mi(t0) = mi, i = 1, 2).

Remark 3.2. If conditions I–IV of Proposition 3.1 are valid and λ/Λ < (m1(t0) exp[m2(t0)])
−1,

then the trivial solution is (λ,Λ, I)-stable by Chetaev (uniformly (λ,Λ, I)-stable, if mi(t0),
i = 1, 2 is independent of t0).

IfW(u) = ul, l /= 1, m = 1 the estimate (3.4) is reduced in such form

‖x(t, t0, x0)‖ ≤
∏
t0<ti<t

(
1 + βi

)[‖x0‖1−l + (1 − l)
∫ t
t0

f(τ)dτ

]1/(1−l)
∀t ≥ t0, if 0 < l < 1, (3.8)

‖x(t, t0, x0)‖ ≤ ‖x0‖
∏
t0<ti<t

(
1 + βi

)

×
⎡
⎣1 − (l − 1) ‖x0‖l−1 ·

[∏
t0<ti<t

(
1 + βi

)]l−1∫ t
t0

f(τ)dτ

⎤
⎦

− 1/(l−1)

∀t ≥ t0,

(3.9)

∫ t
t0

f(τ)dτ <

⎛
⎝(l − 1)

[
‖x0‖

∏
t0<ti<t

(
1 + βi

) ]l−1
⎞
⎠

−1

, if l > 1. (3.10)

From estimate (3.8) the next propositions follow.

Proposition 3.3. Suppose that such conditions occur:

(a) ‖F(t, x) − F(t, y)‖ ≤ f(t) ‖x − y‖l, 0 < l < 1 for allx, y ∈ D

(b) estimates ii–iv of Proposition 3.1 be fulfilled.

Then all the solutions of system (3.1) are bounded (uniformly if mi(t0) = mi, i = 1, 2).

Remark 3.4. Suppose that conditions (a), (b) of Proposition 3.3 are valid and

λ1−l + (1 − l) m2(t0) <
[

Λ
m1(t0)

]1−l
. (3.11)
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Then trivial solution of system (3.1) is (λ,Λ, I)-stable by Chetaev (uniformly if mi(t0) is
independent of t0).

Proposition 3.5. Let conditions ii–iv of Proposition 3.1 be fulfilled for system (3.1), inequality (3.10)
holds and

‖F(t, x)‖ ≤ f(t)‖x ‖l, l > 1. (3.12)

Then trivial solution of system (3.1) is stable by Lyapunov (uniformly ifmi(t0) = mi, i = 1, 2).

Remark 3.6. If W(u) = u1, 1 > 0, and m/= 1 the conditions of boundedness, stability, (λ,Λ, I)-
stability is investigated in [14, see Theorems 3.4–3.6]; the estimates of the solutions of system
(3.1) with non-Lipschitz type of discontinuities are investigated in [23, see Proposition 1,
Proposition 2].

Let us consider the following impulsive system of integro-differential equations:

dx

dt
= F(t, x,K[x(t)]), t /= ti,

Δx|t=ti = Ii(x),
(3.13)

where x ∈ Rn, F ∈ Rn, Ii(x) ∈ Rn (i = 1, 2, . . .) and defined in the domain D, K[x(t)] =∫ t
t0
k(t, τ, x(τ)) dτ .

We suppose that such conditions are valid:

(i) ‖F(t, x, y)‖ ≤ f(t)[‖x‖ + ‖y‖] for allx, y ∈ D, f : R+ → R+;

(ii) ‖k(t, s, x)‖ ≤ g(t)‖x‖ for all s ∈ [t0, t], g : R+ → R+;

(iii) ‖Ii(x)‖ ≤ βi‖x‖m for allx, y ∈ D, βi = const > 0, m > 0 m/= 1.

It is easy to see that

‖x(t, t0, x0 )‖ ≤ ‖x0‖ +
∫ t
t0

f(τ)‖x(τ, t0, x0)‖dτ

+
∫ t
t0

f(τ)

(∫ τ
t0

g(ξ)‖x(ξ, t0, x0)‖dξ
)
dτ +

∑
t0<ti<t

βi‖x(ti − 0, t0, x0)‖m

=⇒ ‖x(t, t0, x0)‖ ≤ ‖x0‖
∏
t0<ti<t

(
1 + βi‖x0‖m−1

)
exp
∫ t
t0

[
f(ξ) + g(ξ)

]
dξ,

if 0 < m ≤ 1, t ≥ t0

(3.14)

‖x(t)‖ ≤ ‖ x0‖
∏
t0<ti<t

(
1 + βi‖x0‖m−1

)
exp

(
m

∫ t
t0

[
f(ξ) + g(ξ)

]
dξ

)
,

if 0m ≥ 1, t ≥ t0.

(3.15)

From estimate (3.15) such result follows.
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Proposition 3.7. Let one suppose that for system (3.13) conditions (i)–(iii) take place for m > 1 and
the following estimates are fulfilled:

(a) ∃ m3(t0) = const. > 0 :
∏

t0<ti<t
(1 + βi‖x0‖m−1) ≤ m3(t0) < ∞;

(b) ∃ m4(t0) = const. > 0 :
∫ t
t0
[f(ξ) + g(ξ)] dξ ≤ m4(t0) < ∞ for all t ≥ t0.

Then we have:

(i) All solutions of system (3.13) are bounded and satisfy the estimate:

‖x(t)‖ ≤ m3(t0) exp[m4(t0)]‖x0‖. (3.16)

(ii) The trivial solution of system (3.13) is stable by Lyapunov (uniformly, if mi(t0) = mi, i =
3, 4).

(iii) The trivial solution of system (3.13) is (λ,Λ, I)-stable by Chetaev (uniformly if mi(t0) is
independent of t0) and m3(t0) exp[m4(t0)] < Λ/λ.
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