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1. Introduction

In this paper we will study the time almost periodic viscosity solutions of nonlinear parabolic
equations of the form

∂tu +H
(
x, u,Du,D2u

)
= f(t), (x, t) ∈ Ω × R,

u(x, t) = 0, (x, t) ∈ ∂Ω × R,

(1.1)

where Ω ∈ R
N is a bounded open subset and ∂Ω is its boundary. Here H : RN × R × R

N ×
S(N) → R and S(N) denotes the set of symmetric N ×N matrices equipped with its usual
order (i.e., for X,Y ∈ S(N), we say that X ≤ Y if and only if ptXp ≤ ptYp, (∀p ∈ R

N));
Du and D2u denote the gradient and Hessian matrix, respectively, of the function u w.r.t
the argument x. f is almost periodic in t. Most notations and notions of this paper relevant
to viscosity solutions are borrowed from the celebrated paper of Crandall et al. [1]. Bostan
and Namah [2] have studied the time periodic and almost periodic viscosity solutions of
first-order Hamilton-Jacobi equations. Nunziante considered the existence and uniqueness
of viscosity solutions of parabolic equations with discontinuous time dependence in [3, 4],
but the time almost periodic viscosity solutions of parabolic equations have not been studied
yet as far as we know. We are going to use Perron’s Method to study the existence of time
almost periodic viscosity solutions of (1.1). Perron’s Method was introduced by Ishii [5] in
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the proof of existence of viscosity solutions of first-order Hamilton-Jacobi equations, Crandall
et al. had applications of Perron’s Method to second-order partial differential equations in [1]
except to parabolic case.

To study the existence and uniqueness of viscosity solutions of (1.1), we will use some
results on the Cauchy-Dirichlet problem of the form

∂tu +H
(
x, t, u,Du,D2u

)
= 0, in Ω × (0, T),

u(x, t) = 0, for x ∈ ∂Ω, 0 ≤ t < T,

u(x, 0) = u0(x), for x ∈ Ω,

(1.2)

where u0(x) ∈ C(Ω) is given. Crandall et al. studied the comparison result of the Cauchy-
Dirichlet problem in [1], and it follows the maximum principle of Crandall and Ishii [6].

This paper is structured as follows. In Section 2, we present the definition and some
properties of almost periodic functions. In Section 3, first we list some hypotheses and some
results that will be used for existence and uniqueness of viscosity solutions, here we give an
improvement of comparison result in paper [2] to fit for second-order parabolic equations;
then we prove the uniqueness and existence of time almost periodic viscosity solutions. In the
end, we concentrate on the asymptotic behavior of time almost periodic solutions for large
frequencies.

2. Almost Periodic Functions

In this section we recall the definition and some fundamental properties of almost periodic
functions. For more details on the theory of almost periodic functions and its application one
can refer to Corduneanu [7] or Fink [8].

Proposition 2.1. Let f : R → R be a continuous function. The following conditions are equivalent:

(i) ∀ε > 0, ∃l(ε) > 0 such that ∀a ∈ R, ∃τ ∈ [a, a + l(ε)) satisfying

∣∣f(t + τ) − f(t)
∣∣ < ε, ∀t ∈ R; (2.1)

(ii) ∀ε > 0, there is a trigonometric polynomial Tε(t) = Σn
k=1{ak · cos(λkt) + bk · sin(λkt)}

where ak, bk, λk ∈ R, 1 ≤ k ≤ n such that |f(t) − Tε(t)| < ε, ∀t ∈ R;

(iii) for all real sequence (hn)n there is a subsequence (hnk)k such that (f(· + hnk))k converges
uniformly on R.

Definition 2.2. One says that a continuous function f is almost periodicif and only if f satisfies
one of the three conditions of Proposition 2.1.

A number τ verifying (2.1) is called ε almost period. By using Proposition 2.1 we get
the following property of almost periodic functions.

Proposition 2.3. Assume that f : R → R is almost periodic. Then f is bounded uniformly
continuous function.



Boundary Value Problems 3

Proposition 2.4. Assume that f : R → R is almost periodic. Then (1/T)
∫a+T
a f(t)dt converges as

T → +∞ uniformly with respect to a ∈ R. Moreover the limit does not depend on a and it is called
the average of f :

∃〈f〉 := lim
T →+∞

1
T

∫a+T

a

f(t)dt, uniformly w.r.t. a ∈ R. (2.2)

Proposition 2.5. Assume that f : R → R is almost periodic and denote by F a primitive of f . Then
F is almost periodic if and only if F is bounded.

For the goal of applications to the differential equations, Yoshizawa [9] extended
almost periodic functions to so called uniformly almost periodic functions.

Definition 2.6 ([9]). One says that u : Ω × R → R is almost periodic in t uniformly with
respect to x if u is continuous in t uniformly with respect to x and ∀ε > 0, ∃l(ε) > 0 such that
all interval of length l(ε) contain a number τ which is ε almost periodic for u(x, ·), ∀x ∈ Ω

|u(x, t + τ) − u(x, t)| < ε, ∀(x, t) ∈ Ω × R. (2.3)

3. Almost Periodic Viscosity Solutions

In this section we get some results for almost periodic viscosity solutions.
We consider the following two equations to get some results used for the existence and

uniqueness of almost periodic viscosity solutions. That is, the Dirichlet problems of the form

∂tu +H
(
x, t, u,Du,D2u

)
= 0, in Ω × (0, T),

u(x, t) = 0, for x ∈ ∂Ω, 0 ≤ t < T,

(3.1)

H
(
x, u,Du,D2u

)
= 0, in Ω,

u = 0, on ∂Ω,

(3.2)

in (3.2) Ω is an arbitrary open subset of RN .
In [1], Crandall et al. proved such a theorem.

Theorem 3.1 (see [1]). Let Oi be a locally compact subset of RNi for i = 1, . . . , k,

O = O1 × · · · × Ok, (3.3)

ui ∈ USC(Oi), and ϕ be twice continuously differentiable in a neighborhood of O. Set

w(x) = u1(x1) + · · · + uk(xk) for x = (x1, . . . , xk) ∈ O, (3.4)
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and suppose x̂ = (x̂1, . . . , x̂k) ∈ O is a local maximum of w − ϕ relative to O. Then for each ε > 0
there exists Xi ∈ S(Ni) such that

(
Dxiϕ(x̂), Xi

) ∈ J
2,+
Oi
ui(x̂i) for i = 1, . . . , k, (3.5)

and the block diagonal matrix with entries Xi satisfies

−
(
1
ε
+ ‖A‖

)
I ≤

⎛
⎜⎜⎜⎝

X1 · · · 0

...
. . .

...

0 · · · Xk

⎞
⎟⎟⎟⎠ ≤ A +A2, (3.6)

where A = D2ϕ(x̂) ∈ S(N), N = N1 + · · · +Nk.

Put k = 2, O1 = O2 = Ω, u1 = u, u2 = −v, ϕ(x, y) = (α/2)|x − y|2, where α > 0, recall

that J
2,−
Ω v = −J2,+Ω (−v), then, from Theorem 3.1, at a local maximum (x̂, ŷ) of u(x) − v(y) −

ϕ(x, y), we have

Dxϕ
(
x̂, ŷ

)
= −Dyϕ

(
x̂, ŷ

)
= α

(
x̂ − ŷ

)
,

A = α

(
I −I
−I I

)
, A2 = 2αA, ‖A‖ = 2α.

(3.7)

We conclude that for each ε > 0, there exists X,Y ∈ S(N) such that

(
α
(
x̂ − ŷ

)
, X

) ∈ J
2,+
Ω u(x̂),

(
α
(
x̂ − ŷ

)
, Y

) ∈ J
2,−
Ω v

(
ŷ
)
,

−
(
1
ε
+ 2α

)(
I 0

0 I

)
≤
(
X 0

0 −Y

)
≤ α(1 + 2εα)

(
I −I
−I I

)
.

(3.8)

Choosing ε = 1/α one can get

−3α
(
I 0

0 I

)
≤
(
X 0

0 −Y

)
≤ 3α

(
I −I
−I I

)
. (3.9)

To prove the existence and uniqueness of viscosity solutions, let us see the following
main hypotheses first.

As in Crandall et al. [1], we present a fundamental monotonicity condition of H, that
is,

H
(
x, r, p,X

) ≤ H
(
x, s, p, Y

)
whenever r ≤ s, Y ≤ X, (3.10)

where r, s ∈ R, x ∈ Ω, p ∈ R
N, X, Y ∈ S(N) . Then we will say that H is proper.
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Assume there exists γ > 0 such that

γ(r − s) ≤ H
(
x, r, p,X

) −H
(
x, s, p,X

)
, for r ≥ s,

(
x, p,X

) ∈ Ω × R
N × S(N), (3.11)

and there is a function ω : [0,∞] → [0,∞] that satisfies ω(0+) = 0 such that

H
(
y, r, α

(
x − y

)
, Y

) −H
(
x, r, α

(
x − y

)
, X

) ≤ ω
(
α
∣∣x − y

∣∣2 + ∣∣x − y
∣∣)

whenever x, y ∈ Ω, r ∈ R, X, Y ∈ S(N), and (3.9) holds.
(3.12)

Now we can easily prove the following result. There is a similar result for first-order
Hamilton-Jacobi equations in the book of Barles [10].

Lemma 3.2. Assume thatH ∈ C(Ω× (0, T]×R×R
N ×S(N)) and u ∈ C(Ω× (0, T]) is a viscosity

subsolution (resp., supersolution) of ∂tu + H(x, t, u,Du,D2u) = 0, (x, t) ∈ Ω × (0, T). Then u is a
viscosity subsolution (resp., supersolution) of ∂tu +H(x, t, u,Du,D2u) = 0, (x, t) ∈ Ω × (0, T].

Proof. Since u ∈ C(Ω× (0, T]) is a viscosity subsolution of ∂tu+H(x, t, u,Du,D2u) = 0, (x, t) ∈
Ω × (0, T), if ∀ϕ ∈ C2(Ω × (0, T]) and local maximum (x̂, t̂) ∈ (Ω × (0, T)) of u − ϕ, we have

∂tϕ
(
x̂, t̂

)
+H

(
x̂, t̂, u

(
x̂, t̂

)
, Dϕ

(
x̂, t̂

)
, D2ϕ

(
x̂, t̂

))
≤ 0. (3.13)

Now we prove that if (x0, T) is a local maximum of u − ϕ in Ω × (0, T], then

∂tϕ(x0, T) +H
(
x0, T, u(x0, T), Dϕ(x0, T), D2ϕ(x0, T)

)
≤ 0. (3.14)

Suppose that (x0, T) is a strict local maximum of u − ϕ in Ω × (0, T],we consider the function

ψε(x, t) = u(x, t) − ϕ(x, t) − ε(T − t)−1 (3.15)

for small ε > 0. Then we know that the function ψε(x, t) has a local maximum point (xε, tε)
such that tε < T and (xε, tε) → (x0, T)when ε → 0. So at the point (xε, tε)we deduce that

∂tϕ(xε, tε) +
ε

(T − tε)2
+H

(
xε, tε, u(xε, tε), Dϕ(xε, tε), D2ϕ(xε, tε)

)
≤ 0. (3.16)

As the term ε/(T − tε)
2 is positive, so we obtain

∂tϕ(xε, tε) +H
(
xε, tε, u(xε, tε), Dϕ(xε, tε), D2ϕ(xε, tε)

)
≤ 0. (3.17)

The results following upon letting ε → 0. This process can be easily applied to the viscosity
supersolution case.

By time periodicity one gets the following.
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Proposition 3.3. Assume that H ∈ C(Ω × R × R × R
N × S(N)) and u ∈ C(Ω × R) are T periodic

such that u is a viscosity subsolution (resp., supersolution) of ∂tu +H(x, t, u,Du,D2u) = 0, (x, t) ∈
Ω × (0, T). Then u is a viscosity subsolution (resp., supersolution) of ∂tu + H(x, t, u,Du,D2u) =
0, (x, t) ∈ Ω × R.

Crandall et al. have proved the following two comparison results.

Theorem 3.4 (see [6]). Let Ω be a bounded open subset of RN , F ∈ C(Ω × R × R
N × S(N)) be

proper and satisfy (3.11), (3.12). Let u ∈ USC(Ω) (resp., v ∈ LSC(Ω)) be a subsolution (resp.,
supersolution) of F = 0 in Ω and u ≤ v on ∂Ω. Then u ≤ v in Ω.

Theorem 3.5 (see [1]). LetΩ ∈ R
N be open and bounded. LetH ∈ C(Ω× [0, T]×R×R

N ×S(N))
be continuous, proper, and satisfy (3.12) for each fixed t ∈ [0, T), with the same function ω. If u is a
subsolution of (1.2) and v is a supersolution of (1.2), then u ≤ v on [0, T) ×Ω.

We generalize the comparison result in article [2] for first-order Hamilton-Jacobi
equations, and get two theorems for second-order parabolic equations. Let us see a
proposition we will need in the proof of the comparison result (see [1]).

Proposition 3.6 (see [1]). Let O be a subset of RM, Φ ∈ USC(O),Ψ ∈ LSC(O),Ψ ≥ 0, and

Mα = sup
O

(Φ(x) − αΨ(x)) (3.18)

for α > 0. Let −∞ < limα→∞Mα < ∞ and xα ∈ O be chosen so that

lim
α→∞

(Mα − (Φ(xα) − αΨ(xα))) = 0. (3.19)

Then the following holds:

(i) lim
α→∞

αΨ(xα) = 0,

(ii) Ψ(x̂) = 0, lim
α→∞

Mα = Φ(x̂) = sup
{Ψ(x)=0}

Φ(x)

whenever x̂ ∈ O is a limit point of xα as α −→ ∞.

(3.20)

Remark 3.7. In Proposition 3.6, when M, O, x, Φ(x), Ψ(x) are replaced by 2N, O ×
O, (x, y), u(x) − v(y), (1/2)|x − y|2, respectively, we can get the following results:

(i) lim
α→∞

α
∣∣xα − yα

∣∣2 = 0,

(ii) Ψ(x̂) = 0, lim
α→∞

Mα = u(x̂) − v(x̂) = sup
O

(u(x) − v(x))

whenever x̂ ∈ O is a limit point of xα as α −→ ∞.

(3.21)

Now we have the following.
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Theorem 3.8. Let Ω ∈ R
N be open and bounded. Assume H ∈ C(Ω × [0, T] × R × R

N × S(N))
be continuous, proper, and satisfy (3.11), (3.12) for each fixed t ∈ [0, T). Let u, v be bounded u.s.c.
subsolution of ∂tu +H(x, t, u,Du,D2u) = f(x, t) in Ω × (0, T), u(x, t) = 0 for x ∈ ∂Ω and 0 ≤
t < T, respectively, l.s.c. supersolution of ∂tv +H(x, t, v,Dv,D2v) = g(x, t) inΩ× (0, T), v(x, t) =
0 for x ∈ ∂Ω and 0 ≤ t < T where f, g ∈ BUC(Ω × [0, T]).

lim
t↘0

(u(x, t) − u(x, 0))+ = lim
t↘0

(v(x, t) − v(x, 0))− = 0, uniformly for x ∈ Ω,

u(·, 0) ∈ BUC
(
Ω
)

or v(·, 0) ∈ BUC
(
Ω
)
.

(3.22)

Then one has for all t ∈ [0, T]

eγt‖(u(·, t) − v(·, t))‖L∞(Ω) ≤ ‖(u(·, 0) − v(·, 0))+‖L∞(Ω)

+
∫ t

0
eγs

∥∥(f(·, s) − g(·, s))∥∥L∞(Ω)ds,
(3.23)

where γ = γR0 , R0 = max(‖u‖L∞(Ω×(0,T)), ‖v‖L∞(Ω×(0,T))).

Proof. Let us consider the function given by

wα

(
x, y, t

)
= u(x, t) − v

(
y, t

) − ϕ
(
x, y, t

)
, (3.24)

where ϕ(x, y, t) = (α/2)(|x − y|2 + φ(t)), and φ(t) ∈ C1([0, T]). As we know that u and
v are bounded semicontinuous in Ω × [0, T] and Ω ∈ R

N is open and bounded, we can
find (x̂(tα), ŷ(tα)) ∈ Ω × Ω, for tα ∈ [0, T] such that Mα(tα) := supΩ×Ω(u(x, tα) − v(y, tα) −
ϕ(x, y, tα)) = u(x̂(tα), tα) − v(ŷ(tα), tα) − ϕ(x̂(tα), ŷ(tα), tα), here without loss of generality, we
can assume that Mα(tα) = 0. Since Ω × Ω × [0, T] is compact, these maxima (x̂(tα), ŷ(tα), tα)
converge to a point of the form (z(t), z(t), t) from Remark 3.7. From Theorem 3.1 and its
following discussion, there exists Xα, Yα ∈ S(N) such that

(
α
(
x̂(tα) − ŷ(tα)

)
, Xα

) ∈ J
2,+
Ω u(x̂(tα), tα),

(
α
(
x̂(tα) − ŷ(tα)

)
, Yα

) ∈ J
2,−
Ω v

(
ŷ(tα), tα

)
,

−3α
(
I 0

0 I

)
≤
(
Xα 0

0 −Yα

)
≤ 3α

(
I −I
−I I

)
,

(3.25)

which implies Xα ≤ Yα. At the maximum point, from the definition of u being a subsolution
and v being a supersolution we arrive at the following:

∂tαϕ
(
x̂(tα), ŷ(tα), tα

)
+H

(
x̂(tα), tα, u(x̂(tα), tα), α

(
x̂(tα) − ŷ(tα)

)
, Xα

)

−H
(
ŷ(tα), tα, v

(
ŷ(tα), tα

)
, α
(
x̂(tα) − ŷ(tα)

)
, Yα

) ≤ f(x̂(tα), tα) − g
(
ŷ(tα), tα

)
,

(3.26)
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by the proper condition of H, we have

H
(
ŷ(tα), tα, v

(
ŷ(tα), tα

)
, α
(
x̂(tα) − ŷ(tα)

)
, Yα

)

≤ H
(
ŷ(tα), tα, v

(
ŷ(tα), tα

)
, α
(
x̂(tα) − ŷ(tα)

)
, Xα

)
,

(3.27)

as we know that H satisfying (3.12) then we deduce that

H
(
x̂(tα), tα, u(x̂(tα), tα), α

(
x̂(tα) − ŷ(tα)

)
, Xα

)

−H
(
ŷ(tα), tα, v

(
ŷ(tα), tα

)
, α
(
x̂(tα) − ŷ(tα)

)
, Xα

)

= H
(
x̂(tα), tα, u(x̂(tα), tα), α

(
x̂(tα) − ŷ(tα)

)
, Xα

)

−H
(
ŷ(tα), tα, u(x̂(tα), tα), α

(
x̂(tα) − ŷ(tα)

)
, Xα

)

+H
(
ŷ(tα), tα, u(x̂(tα), tα), α

(
x̂(tα) − ŷ(tα)

)
, Xα

)

−H
(
ŷ(tα), tα, v

(
ŷ(tα), tα

)
, α
(
x̂(tα) − ŷ(tα)

)
, Xα

)

≥ H
(
ŷ(tα), tα, u(x̂(tα), tα), α

(
x̂(tα) − ŷ(tα)

)
, Xα

)

−H
(
ŷ(tα), tα, v

(
ŷ(tα), tα

)
, α
(
x̂(tα) − ŷ(tα)

)
, Xα

)

−ω
(
α
∣∣x̂(tα) − ŷ(tα)

∣∣2 + ∣∣x̂(tα) − ŷ(tα)
∣∣),

(3.28)

hence we get

∂tαϕ
(
x̂(tα), ŷ(tα), tα

)
+H

(
ŷ(tα), tα, u(x̂(tα), tα), α

(
x̂(tα) − ŷ(tα)

)
, Xα

)

−H
(
ŷ(tα), tα, v

(
ŷ(tα), tα

)
, α
(
x̂(tα) − ŷ(tα)

)
, Xα

)

−ω
(
α
∣∣x̂(tα) − ŷ(tα)

∣∣2 + ∣∣x̂(tα) − ŷ(tα)
∣∣)

≤ h(tα),

(3.29)

where h(tα) = f(x̂(tα), tα) − g(ŷ(tα), tα), ∀tα ∈ [0, T]. For any tα ∈ [0, T] consider

r(tα) =
1

u(x̂(tα), tα) − v
(
ŷ(tα), tα

)(H(
ŷ(tα), tα, u(x̂(tα), tα), α

(
x̂(tα) − ŷ(tα)

)
, Xα

)

− γu(x̂(tα), tα) −H
(
ŷ(tα), tα, v

(
ŷ(tα), tα

)
, α
(
x̂(tα) − ŷ(tα)

)
, Xα

)

+γv
(
ŷ(tα), tα

))
,

(3.30)
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if u(x̂(tα), tα)/=v(ŷ(tα), tα), and r(tα) = 0 otherwise. From hypothesis (3.11) we deduce that
H(x, t, z, p,X) − γ · z is nondecreasing with respect to z, then we have r(tα) ≥ 0 for all tα ∈
[0, T]. Hence we have

H
(
ŷ(tα), tα, u(x̂(tα), tα), α

(
x̂(tα) − ŷ(tα)

)
, Xα

)

−H
(
ŷ(tα), tα, v

(
ŷ(tα), tα

)
, α
(
x̂(tα) − ŷ(tα)

)
, Xα

)

=
(
γ + r(tα)

)(
u(x̂(tα), tα) − v

(
ŷ(tα), tα

))
, ∀tα ∈ [0, T].

(3.31)

Notice that u(x̂(tα), tα) − v(ŷ(tα), tα) = ϕ(x̂(tα), ŷ(tα), tα),we get

∂tαϕ
(
x̂(tα), ŷ(tα), tα

)
+
(
γ + r(tα)

)
ϕ
(
x̂(tα), ŷ(tα), tα

)

−ω
(
α
∣∣x̂(tα) − ŷ(tα)

∣∣2 + ∣∣x̂(tα) − ŷ(tα)
∣∣)

≤ h(tα).

(3.32)

Replacing u(x̂(tα), tα) − v(ŷ(tα), tα) by ϕ(x̂(tα), ŷ(tα), tα) in the expression of r(tα) we
know that r(·) is integrable and denote by A(tα) the function A(tα) =

∫ tα
0 {γ + r(σ)}dσ, tα ∈

[0, T]. After integration one gets

ϕ(tα) ≤ e−A(tα)

(
ϕ(0) +

∫ tα

0
eA(sα) ·

(
h(sα) +ω

(
α
∣∣x̂(sα) − ŷ(sα)

∣∣2 + ∣∣x̂(sα) − ŷ(sα)
∣∣))dsα

)
,

(3.33)

tα ∈ [0, T].Now taking u(x̂(tα), tα)−v(ŷ(tα), tα) instead of ϕ(x̂(tα), ŷ(tα), tα) for any tα ∈ [0, T]
and letting α → ∞we can get

u(z(t), t) − v(z(t), t) ≤ e−A(t)

(
u(z(0), 0) − v(z(0), 0) +

∫ t

0
eA(s) · h(s)ds

)
, t ∈ [0, T]. (3.34)

Finally we deduce that for all t ∈ [0, T]

eγt‖(u(·, t) − v(·, t))‖L∞(Ω) ≤ ‖(u(·, 0) − v(·, 0))+‖L∞(Ω)

+
∫ t

0
eγs

∥∥(f(·, s) − g(·, s))∥∥L∞(Ω)ds.
(3.35)

Theorem 3.9. Let Ω ∈ R
N be open and bounded. Assume H ∈ C(Ω × R × R × R

N × S(N)) be
continuous, proper, T periodic, and satisfy (3.11), (3.12). Let u be a bounded time periodic viscosity
u.s.c. subsolution of ∂tu +H(x, t, u,Du,D2u) = f(x, t) in Ω × R, u(x, t) = 0 for (x, t) ∈ ∂Ω × R
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and v a bounded time periodic viscosity l.s.c. supersolution of ∂tv +H(x, t, v,Dv,D2v) = g(x, t) in
Ω × R, v(x, t) = 0 for (x, t) ∈ ∂Ω × R, where f, g ∈ BUC(Ω × R). Then one has

sup
x∈Ω

(u(x, t) − v(x, t)) ≤ sup
s≤t

∫ t

s

sup
x∈Ω

(
f(x, σ) − g(x, σ)

)
dσ. (3.36)

Proof. As the proof of Theorem 3.8, we get equation (3.34)

u(z(t), t) − v(z(t), t) ≤ e−A(t)

(
u(z(0), 0) − v(z(0), 0) +

∫ t

0
eA(s) · h(s)ds

)
, t ∈ [0, T]. (3.37)

We introduce that F(s) = −∫ tsh(σ)dσ, s, t ∈ [0, T]. By integration by parts we have

∫ t

0
eA(s)h(s)ds =

∫ t

0
eA(s)F ′(s)ds

=
∫ t

0
h(σ)dσ +

∫ t

0
eA(s)A′(s)

∫ t

s

h(σ)dσ ds

≤
∫ t

0
h(σ)dσ +

(
eA(t) − 1

)
sup
0≤s≤t

∫ t

s

h(σ)dσ.

(3.38)

We deduce that for all t ∈ [0, T]we have

sup
x∈Ω

(u(x, t) − v(x, t)) ≤ e−γtsup
x∈Ω

(u(x, 0) − v(x, 0))+

+ sup
0≤s≤t

∫ t

s

sup
x∈Ω

(
f(x, σ) − g(x, σ)

)
dσ.

(3.39)

Similar to the proof of Corollary 2.2 in paper [2], we can reach the conclusion.

In order to prove the existence of viscosity solution, we recall the the Perron’s method
as follows (see [1, 5]). To discuss the method, we assume if u : O → [−∞,∞]where O ⊂ R

N,
then

u∗(x) = lim sup
r↓0

{
u
(
y
)
: y ∈ O and

∣∣y − x
∣∣ ≤ r

}
,

u∗(x) = lim inf
r↓0

{
u
(
y
)
: y ∈ O and

∣∣y − x
∣∣ ≤ r

}
.

(3.40)

Theorem 3.10 (Perron’s method). Let comparison hold for (3.2); that is, if w is a subsolution of
(3.2) and v is a supersolution of (3.2), then w ≤ v. Suppose also that there is a subsolution u and
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a supersolution u of (3.2) that satisfies the boundary condition u∗(x) = u∗(x) = 0 for x ∈ ∂Ω. Then

W(x) = sup
{
w(x) : u ≤ w ≤ u and w is a subsolution of (3.2)

}
(3.41)

is a solution of (3.2).

From paper [1], we have the following remarks as a supplement to Theorem 3.10.

Remarks 3.11. Notice that the subset Ω in (3.2) in some part of the proof in Theorem 3.10 was
just open inR

N . In order to generalize this and formulate the version of Theorem 3.10 we will
need later, we now make some remarks. Suppose O is locally compact, G+, G− are defined
on O × R × R

N × S(N) and have the following properties: G+ is upper semicontinuous, G− is
lower semicontinuous, and classical solutions (twice continuously differentiable solutions in
the pointwise sense) ofG+ ≤ 0 on relatively open subset ofO are solutions ofG− ≤ 0. Suppose,
moreover, that whenever u is a solution of G− ≤ 0 on O and v is a solution of G+ ≥ 0 on O we
have u ≤ v onO. Thenwe conclude that the existence of such a subsolution and supersolution
guarantees that there is a unique function u, obtained by the Perron’s construction, that is a
solution of both G+ ≥ 0 and G− ≤ 0 on O.

Now we will prove the uniqueness and existence of almost periodic viscosity
solutions. For the uniqueness we have the following result.

Theorem 3.12. Let Ω ∈ R
N be open and bounded. Assume H ∈ C(Ω × R × R × R

N × S(N)) be
continuous, proper, and satisfy (3.11), (3.12) for t ∈ R. Let u be a bounded u.s.c. viscosity subsolution
of ∂tu +H(x, t, u,Du,D2u) = f(x, t) in Ω × R, u(x, t) = 0 for (x, t) ∈ ∂Ω × R, and v a bounded
l.s.c. viscosity supersolution of ∂tv +H(x, t, v,Dv,D2v) = g(x, t), in Ω×R, v(x, t) = 0 for (x, t) ∈
∂Ω × R where f, g ∈ BUC (Ω × R). Then one has for all t ∈ R

sup
x∈Ω

(u(x, t) − v(x, t))+ ≤ e−γt
∫ t

−∞
eγσsup

x∈Ω

(
f(x, σ) − g(x, σ)

)
+dσ. (3.42)

Proof. Take t0, t ∈ R, t0 ≤ t and by using Theorem 3.8 write for all x ∈ Ω

u(x, t) − v(x, t) ≤ e−γ(t−t0) · (‖u‖∞ + ‖v‖∞) + e−γt
∫ t

t0

eγσsup
y∈Ω

(
f
(
y, σ

) − g
(
y, σ

))
+dσ, (3.43)

where γ = γR0 , R0 = max(‖u‖∞, ‖v‖∞). Then the conclusion follows by passing t0 → −∞.

Now we concentrate on the existence part.

Theorem 3.13. Let Ω be a bounded open subset in R
N . Assume H ∈ C(Ω × R × R

N × S(N))
be continuous, proper, and satisfy (3.11), (3.12). Assume that f : R → R is almost periodic and
H(x,−M, 0, 0) ≤ f(t) ≤ H(x,M, 0, 0), ∀(x, t) ∈ Ω × R. Then there is a time almost periodic
viscosity solution in BUC(Ω × R) of (1.1), where M > 0 is a constant.
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Proof. Here we consider the problem

∂tun +H
(
x, un,Dun,D

2un

)
= f(t), (x, t) ∈ Ω × (−n,+∞),

un(x, t) = 0, (x, t) ∈ ∂Ω × [−n,+∞),

un(x,−n) = 0, x ∈ Ω

(3.44)

for all n ≥ 1. As we know that H(x,−M, 0, 0) ≤ f(t) ≤ H(x,M, 0, 0), ∀(x, t) ∈ Ω × R, there
exists a viscosity solution un(x, t) of (3.44) from Theorem 3.5 and Remark 3.11. Then we will
prove that for all t ∈ R, (un(t))n≥−t converges to a almost periodic viscosity solution of (1.1).
As we already know that H(x,−M, 0, 0) ≤ f(t) ≤ H(x,M, 0, 0), ∀(x, t) ∈ Ω × R, we can
deduce by Theorem 3.5 that −M ≤ un(x, t) ≤ M, ∀(x, t) ∈ Ω × [−n,+∞). Similar to the proof
of Proposition 6.6 in paper [2], using Theorem 3.8, we get for t = t̃ and n large enough

∣∣∣un

(
x, t̃

)
− un

(
x, t̃ + τ

)∣∣∣ ≤ 2M · e−γ(t̃−tn) + e−γ t̃
∫ t̃

tn

eγσγ ε dσ ≤ 2M · e−γ(t̃−tn) + ε. (3.45)

By passing n → +∞we have tn → −∞ and therefore

∣∣∣u
(
x, t̃

)
− u

(
x, t̃ + τ

)∣∣∣ ≤ ε,
(
x, t̃

)
∈ Ω × R. (3.46)

Since we already know that u ∈ BUC(Ω × [a, b]), ∀a, b ∈ R, a ≤ b, by time almost
periodicity we deduce also that u ∈ BUC(Ω × R).

When H does not satisfy the hypothesis (3.11), we study the time almost periodic
viscosity solutions of

∂tu +H
(
x, u,Du,D2u

)
= f(t), (x, t) ∈ Ω × R,

u(x, t) = 0, (x, t) ∈ ∂Ω × R.

(3.47)

We introduce also the stationary equation

H
(
x, u,Du,D2u

)
= 〈f〉, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

(3.48)

Then we can prove our main theorem as follows.

Theorem 3.14. Let Ω ∈ R
N be open and bounded. Assume H ∈ C(Ω × R × R

N × S(N)) be
continuous, proper, and satisfy (3.12) for t ∈ R. Assume that f : R → R is almost periodic function
such that F(t) =

∫ t
0{f(σ) − 〈f〉}dσ is bounded on R. Then there is a bounded time almost periodic

viscosity solution of (3.47) and if only if there is a bounded viscosity solution of (3.48).
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Proof. Let sup{|H(x, 0, 0, 0)| : x ∈ Ω} = C, then C < +∞. Assume that (3.48) has a bounded
viscosity solution V , we takeMα = ‖V ‖L∞(Ω) + (1/α)(C+ ‖f‖L∞(Ω)) for α > 0, and observe that

α(−Mα − V (x)) +H(x,−Mα, 0, 0) ≤ f(t) ≤ α(Mα − V (x)) +H(x,Mα, 0, 0), ∀(x, t) ∈ Ω × R.
(3.49)

Then by using Perron’s Method from Theorem 3.10 and Remark 3.11 we can construct the
family of solutions Vα for

α(Vα − V (x)) +H
(
x, Vα,DVα,D

2Vα

)
= 〈f〉, x ∈ Ω,

Vα(x) = 0, x ∈ ∂Ω,

(3.50)

and the family of time almost periodic solutions vα for

α(vα − V (x)) + ∂tvα +H
(
x, vα,Dvα,D

2vα

)
= f(t), (x, t) ∈ Ω × R,

vα(x, t) = 0, (x, t) ∈ ∂Ω × R.

(3.51)

In fact we have Vα = V for any α > 0 and by using Theorem 3.9 we have

vα(x, t) − V (x) = vα(x, t) − Vα(x) ≤ sup
s≤t

∫ t

s

{
f(σ) − 〈f〉}dσ = sup

s≤t
{F(t) − F(s)} ≤ 2‖F‖∞,

(3.52)

similarly we can get V (x)−vα(x, t) = Vα(x)−vα(x, t) ≤ 2‖F‖∞. From the above two inequalities
we know that the family (vα)α is bounded, thus we know vα ∈ BUC(Ω×[a, b]), ∀a, b ∈ R, a ≤
b. Therefore we can extract a subsequence which converges uniformly on compact sets of
Ω × R to a bounded uniformly continuous function v of (3.47). Next we will check that v is
almost periodic. By the hypotheses and Proposition 2.5 we deduce that F is almost periodic
and thus, for all ε > 0 there is l(ε/2) such that any interval of length l(ε/2) contains an ε/2
almost period of F. Take an interval of length l(ε/2) and τ an ε/2 almost period of F in this
interval. We have for all α > 0, (x, t) ∈ Ω × R

|vα(x, t + τ) − vα(x, t)| ≤
∣∣∣∣∣sups≤t

∫ t

s

{
f(σ + τ) − f(σ)

}
dσ

∣∣∣∣∣

=

∣∣∣∣∣sups≤t

{∫ t+τ

s+τ

(
f(σ) − 〈f〉)dσ −

∫ t

s

(
f(σ) − 〈f〉)dσ

}∣∣∣∣∣

=

∣∣∣∣∣sups≤t
{(F(t + τ) − F(t)) − (F(s + τ) − F(s))}

∣∣∣∣∣

≤ ε.

(3.53)



14 Boundary Value Problems

After passing to the limit for α ↘ 0 one gets |v(x, t + τ) − v(x, t)| ≤ ε, ∀(x, t) ∈ Ω × R. Hence
we prove the almost periodic of v.

The converse is similar to Theorem 4.1 in paper [2], it can be easily proved from
Theorems 3.8, 3.9, and Remark 3.11.

Now we discuss asymptotic behavior of time almost periodic viscosity solutions for
large frequencies, and there is a similar description for Hamilton-Jacobi equations in paper
[2]. Let us see the following equation:

∂tun +H
(
x, un,Dun,D

2un

)
= fn(t), (x, t) ∈ Ω × R,

un(x, t) = 0, (x, t) ∈ ∂Ω × R,

(3.54)

where f : R → R is almost a periodic function. For all n ≥ 1 notice that fn(t) = f(nt), ∀t ∈ R

is almost periodic and has the same average as f . Now suppose that such a hypothesis exists

∃M > 0 such that H(x,−M, 0, 0) ≤ f(t), ∀(x, t) ∈ Ω × R. (3.55)

Theorem 3.15. Let Ω ∈ R
N be open and bounded. Assume H ∈ C(Ω × R × R

N × S(N)) be
continuous, proper, and satisfy (3.12) for t ∈ R and (3.55) where f is almost periodic function.
Suppose also that there is a bounded l.s.c viscosity supersolution Ṽ ≥ −M of (3.48), that t → F(t) =∫ t
0{f(s) − 〈f〉}ds is bounded and denote by V, vn the minimal stationary, respectively, time almost
periodic l.s.c. viscosity supersolution of (3.48), respectively, (3.54). Then the sequence (vn)n converges
uniformly on Ω × R towards V and ‖vn − V ‖L∞(Ω×R) ≤ (2/n)‖F‖L∞(R), ∀n ≥ 1.

Proof. As vn = supα>0vn,α is almost periodic, we introduce wn,α(x, t) = vn,α(x, t/n), (x, t) ∈
Ω × R, which is also almost periodic. As vn,α satisfies in the viscosity sense α(vn,α + M) +
∂tvn,α + H(x, vn,α,Dvn,α,D

2vn,α) = fn(t), (x, t) ∈ Ω × R, we deduce that wn,α satisfies in the
viscosity sense

α(wn,α +M) + n∂twn,α +H
(
x,wn,α,Dwn,α,D

2wn,α

)
= f(t), (x, t) ∈ Ω × R, (3.56)

which can be rewrote as

∂twn,α +
1
n

(
αwn,α +H

(
x,wn,α,Dwn,α,D

2wn,α

))
=

1
n

(
f(t) − αM

)
, (x, t) ∈ Ω × R. (3.57)

Recall also that we have in the viscosity sense

1
n

(
αVα +H

(
x, Vα,DVα,D

2Vα

))
=

1
n

(〈f〉 − αM
)
, x ∈ Ω. (3.58)

By using Theorem 3.9 we deduce that

wn,α(x, t) − Vα(x) ≤ sup
s≤t

1
n

∫ t

s

(
f(σ) − 〈f〉)dσ ≤ 1

n
‖F‖L∞(R), (3.59)
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and similarly Vα(x) −wn,α(x, t) ≤ (2/n)‖F‖L∞(R), ∀n ≥ 1. We have for all n ≤ 1

∣∣∣∣vn,α

(
x,

t

n

)
− Vα(x)

∣∣∣∣ ≤
2
n
‖F‖L∞(R), (3.60)

and after passing to the limit for α ↘ 0 one gets for all (x, t) ∈ Ω × R

∣∣∣∣vn,α

(
x,

t

n

)
− V (x)

∣∣∣∣ ≤
2
n
‖F‖L∞(R). (3.61)

Finally we deduce that ‖vn − V ‖L∞(Ω×R) ≤ (2/n)‖F‖L∞(R) for all n ≥ 1.
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