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1. Introduction

In this paper, we are concerned with the following singular three-point boundary value
problem (BVP for short) for delay higher-order dynamic equations on time scales:

(−1)nuΔ2n
(t) = w(t)f(t, u(t − c)), t ∈ [a, b],

u(t) = ψ(t), t ∈ [a − c, a),

uΔ2i
(a) − βi+1u

Δ2i+1
(a) = αi+1u

Δ2i
(�),

γi+1u
Δ2i

(�) = uΔ2i
(b), 0 ≤ i ≤ n − 1,

(1.1)

where c ∈ [0, (b − a)/2], � ∈ (a, b), βi ≥ 0, 1 < γi < (b − a + βi)/(� − a + βi), 0 ≤ αi <
(b − γi� + (γi − 1)(a − βi))/(b − �), i = 1, 2, . . . , n and ψ ∈ C([a − c, a]). The functional
w : (a, b) → [0,+∞) is continuous and f : [a, b] × (0,+∞) → [0,+∞) is continuous. Our
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nonlinearity w may have singularity at t = a and/or t = b, and f may have singularity at
u = 0.

To understand the notations used in (1.1), we recall the following definitions which
can be found in [1, 2].

(a) A time scaleT is a nonempty closed subset of the real numbersR.T has the topology
that it inherits from the real numbers with the standard topology. It follows that the
jump operators σ, ρ : T → T,

σ(t) = inf{τ ∈ T : τ > t}, ρ(t) = sup{τ ∈ T : τ < t} (1.2)

(supplemented by inf ∅ := supT and sup ∅ := infT) are well defined. The point
t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t,
σ(t) = t, σ(t) < t, respectively. If T has a left-scattered maximum t1 (right-scattered
minimum t2), define T

k = T − {t1} (Tk = T − {t2}); otherwise, set T
k = T (Tk = T).

By an interval [a, b]we always mean the intersection of the real interval [a, b]with
the given time scale, that is, [a, b]∩T. Other types of intervals are defined similarly.

(b) For a function f : T → R and t ∈ T
k, the Δ-derivative of f at t, denoted by fΔ(t),

is the number (provided it exists)with the property that, given any ε > 0, there is a
neighborhood U ⊂ T of t such that

∣
∣
∣f(σ(t)) − f(s) − fΔ(t)[σ(t) − s]

∣
∣
∣ ≤ ε|σ(t) − s|, ∀s ∈ U. (1.3)

(c) For a function f : T → R and t ∈ Tk, the ∇-derivative of f at t, denoted by f∇(t),
is the number (provided it exists)with the property that, given any ε > 0, there is a
neighborhood U ⊂ T of t such that

∣
∣
∣f
(

ρ(t)
) − f(s) − f∇(t)

[

ρ(t) − s
]
∣
∣
∣ ≤ ε

∣
∣ρ(t) − s

∣
∣, ∀s ∈ U. (1.4)

(d) If FΔ(t) = f(t)(Φ∇(t) = g(t)), then we define the integral

∫ t

a

f(�)Δ� = F(t) − F(a)

(∫ t

a

g(�)∇� = Φ(t) −Φ(a)

)

. (1.5)

Theoretically, dynamic equations on time scales can build bridges between continuous
and discrete mathematics. Practically, dynamic equations have been proposed as models in
the study of insect population models, neural networks, and many physical phenomena
which include gas diffusion through porous media, nonlinear diffusion generated by
nonlinear sources, chemically reacting systems as well as concentration in chemical of
biological problems [2]. Hence, two-point and multipoint boundary value problems for
dynamic equations on time scales have attracted many researchers’ attention (see, e.g., [1–19]
and references therein). Moreover, singular boundary value problems have also been treated
in many papers (see, e.g., [4, 5, 12–14, 18] and references therein).
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In 2004, J. J. DaCunha et al. [13] considered singular second-order three-point
boundary value problems on time scales

uΔΔ(t) + f(t, u(t)) = 0, (0, 1] ∩ T,

u(0) = 0, u
(

p
)

= u
(

σ2(1)
) (1.6)

and obtained the existence of positive solutions by using a fixed point theorem due to Gatica
et al. [14], where f : (0, 1] × (0,∞) → (0,∞) is decreasing in u for every t ∈ (0, 1] and may
have singularity at u = 0.

In 2006, Boey and Wong [11] were concerned with higher-order differential equation
on time scales of the form

(−1)n−1yΔn

(t) = (−1)p+1F
(

t, y
(

σn−1(t)
))

, t ∈ [a, b],

yΔi

(a) = 0, 0 ≤ i ≤ p − 1,

yΔi

(σ(b)) = 0, p ≤ i ≤ n − 1,

(1.7)

where p, n are fixed integers satisfying n ≥ 2, 1 ≤ p ≤ n − 1. They obtained some existence
theorems of positive solutions by using Krasnosel’skii fixed point theorem.

Recently, Anderson and Karaca [8] studied higher-order three-point boundary value
problems on time scales and obtained criteria for the existence of positive solutions.

The purpose of this paper is to investigate further the singular BVP for delay higher-
order dynamic equation (1.1). By the use of the fixed point theorem of cone expansion
and compression type, results on the existence of positive solutions to the BVP (1.1) are
established.

The paper is organized as follows. In Section 2, we give some lemmas, which will be
required in the proof of our main theorem. In Section 3, we prove some theorems on the
existence of positive solutions for BVP (1.1). Moreover, we give an example to illustrate our
main result.

2. Lemmas

For 1 ≤ i ≤ n, let Gi(t, s) be Green’s function of the following three-point boundary value
problem:

−uΔΔ(t) = 0, t ∈ [a, b],

u(a) − βiu
Δ(a) = αiu(�), γiu(�) = u(b),

(2.1)

where � ∈ (a, b) and αi, βi, γi satisfy the following condition:

(C)

βi ≥ 0, 1 < γi <
b − a + βi
� − a + βi

, 0 ≤ αi <
b − γi� +

(

γi − 1
)(

a − βi
)

b −�
. (2.2)
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Throughout the paper, we assume that σ(b) = b.

From [8], we know that for any (t, s) ∈ [a, b] × [a, b] and 1 ≤ i ≤ n,

Gi(t, s) =

⎧

⎨

⎩

Gi1(t, s), s ∈ [a,�],

Gi2(t, s), s ∈ [�, b],
(2.3)

where

Gi1(t, s) =
1
di

⎧

⎨

⎩

[

γi(t −�) + b − t
](

σ(s) + βi − a
)

, σ(s) ≤ t,
[

γi(σ(s) −ω) + b − σ(s)
](

t + βi − a
)

+ αi(� − b)(t − σ(s)), t ≤ s,

Gi2(t, s) =
1
di

⎧

⎨

⎩

[

σ(s)(1 − αi) + αi� + βi − a
]

(b − t) + γi
(

� − a + βi
)

(t − σ(s)), σ(s) ≤ t,
[

t(1 − αi) + αi� + βi − a
]

(b − σ(s)), t ≤ s,

di =
(

γi − 1
)(

a − βi
)

+ (1 − αi)b +�
(

αi − γi
)

.

(2.4)

The following four lemmas can be found in [8].

Lemma 2.1. Suppose that the condition (C) holds. Then the Green function ofGi(t, s) in (2.3) satisfies

Gi(t, s) > 0, (t, s) ∈ (a, b) × (a, b). (2.5)

Lemma 2.2. Assume that the condition (C) holds. Then Green’s function Gi(t, s) in (2.3) satisfies

Gi(t, s) ≤ max{Gi(b, s), Gi(σ(s), s)}, (t, s) ∈ [a, b] × [a, b]. (2.6)

Remark 2.3. (1) If s ∈ ((γi(� − a + βi) − αi� − βi + a)/(1 − αi), b], s ≤ t,we know that Gi(t, s) is
nonincreasing in t and

Gi(b, s)
Gi(σ(s), s)

=
γi
(

� − a + βi
)

(b − σ(s))
(

σ(s)(1 − αi) + αi� + βi − a
)

(b − σ(s))

≥ γi
(

� − a + βi
)

b(1 − αi) + αi� + βi − a
> 0.

(2.7)

Therefore, we have

Gi(b, s) ≤ Gi(t, s) ≤ Gi(σ(s), s) ≤ δiGi(b, s), (2.8)

where

δi =
b(1 − αi) + αi� + βi − a

γi
(

� − a + βi
) > 1. (2.9)
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(2) If t and s satisfy the other cases, then we get that Gi(t, s) is nondecreasing in t and

Gi(t, s) ≤ Gi(b, s). (2.10)

Lemma 2.4. Assume that (C) holds. Then Green’s function Gi(t, s) in (2.3) verifies the following
inequality:

Gi(t, s) ≥ min
{
t − a

b − a
,

b − t

γi(b − a)

}

Gi(b, s)

≥ min
{

t − a

δi(b − a)
,

b − t

γi(b − a)

}

max{Gi(b, s), Gi(σ(s), s)}.
(2.11)

Remark 2.5. If s ∈ [�, (γi(� − a + βi) − αi� − βi + a)/(1 − αi)), s ≤ t, then we find

(

γi − 1
)(

a − βi
)

+ (1 − αi)σ(s) +�
(

αi − γi
)

< 0. (2.12)

So there exists a misprint on [8, Page 2431, line 23]. From (2.3), it follows that

Gi(t, s)
Gi(b, s)

=

[

σ(s)(1 − αi) + αi� + βi − a
]

(b − t) + γi
(

� − a + βi
)

(t − σ(s))

γi
(

� − a + βi
)

(b − σ(s))

≥
(

� + βi − a
)

(b − t) + γi
(

� − a + βi
)

(t − σ(s))

γi
(

� − a + βi
)

(b − a)
≥ b − t

γi(b − a)
.

(2.13)

Consequently, we get

Gi(t, s) ≥ b − t

γi(b − a)
Gi(b, s). (2.14)

If s ∈ ((γi(� − a + βi) − αi� − βi + a)/(1 − αi), b], s ≤ t, then, from (2.8), we obtain

Gi(t, s) ≥ t − a

b − a
Gi(b, s) ≥ t − a

δi(b − a)
Gi(σ(s), s). (2.15)
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Remark 2.6. If we set hi(t) := min{(t − a)/δi(b − a), (b − t)/γi(b − a)}, then we have

Gi(t, s) ≥ hi(t) max{Gi(b, s), Gi(σ(s), s)}, (t, s) ∈ [a, b] × [a, b]. (2.16)

Denote

‖Gi(·, s)‖ = max
t∈[a,b]

|Gi(t, s)|, s ∈ [a, b]. (2.17)

Thus we have

Gi(t, s) ≥ hi(t)‖Gi(·, s)‖, (t, s) ∈ [a, b] × [a, b]. (2.18)

Lemma 2.7. Assume that condition (C) is satisfied. For Gi(t, s) as in (2.3), put H1(t, s) := G1(t, s)
and recursively define

Hj(t, s) =
∫b

a

Hj−1(t, r)Gj(r, s)Δr (2.19)

for 2 ≤ j ≤ n. Then Hn(t, s) is Green’s function for the homogeneous problem

(−1)nuΔ2n
(t) = 0, t ∈ [a, b],

uΔ2i
(a) − βi+1u

Δ2i+1
(a) = αi+1u

Δ2i
(�),

γi+1u
Δ2i

(�) = uΔ2i
(b), 0 ≤ i ≤ n − 1.

(2.20)

Lemma 2.8. Assume that (C) holds. Denote

K :=
n−1∏

j=1

kj , L :=
n−1∏

j=1

lj , (2.21)

then Green’s function Hn(t, s) in Lemma 2.7 satisfies

h1(t)L‖Gn(·, s)‖ ≤ Hn(t, s) ≤ K‖Gn(·, s)‖, (t, s) ∈ [a, b] × [a, b], (2.22)

where

kj =
∫b

a

∥
∥Gj(·, s)

∥
∥Δs > 0, lj =

∫b

a

∥
∥Gj(·, s)

∥
∥hj+1(s)Δs, 1 ≤ j ≤ n − 1. (2.23)
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Proof. We proceed by induction on n ≥ 2. We denote the statement by P(n). From Lemma 2.7,
it follows that

‖H2(t, s)‖ =

∥
∥
∥
∥
∥

∫b

a

H1(t, r)G2(r, s)Δr

∥
∥
∥
∥
∥

≤
∫b

a

‖G1(·, r)‖‖G2(·, s)‖Δr = k1‖G2(·, s)‖,
(2.24)

and from (2.18), we have

H2(t, s) =
∫b

a

H1(t, r)G2(r, s)Δr

≥
∫b

a

h1(t)‖G1(·, r)‖ × h2(r)‖G2(·, s)‖Δr

= h1(t)l1‖G2(·, s)‖.

(2.25)

So P(2) is true.

We now assume that P(m) is true for some positive integerm ≥ 2. From Lemma 2.7, it
follows that

‖Hm+1(t, s)‖ =

∥
∥
∥
∥
∥

∫b

a

Hm(t, r)Gm+1(r, s)Δr

∥
∥
∥
∥
∥

≤
∫b

a

Hm(t, r)‖Gm+1(r, s)‖Δr

≤
⎛

⎝

∫b

a

m−1∏

j=1

kj × ‖Gm(·, r)‖Δr

⎞

⎠‖Gm+1(·, s)‖

=
m∏

j=1

kj‖Gm+1(·, s)‖,

Hm+1(t, s) =
∫b

a

Hm(t, r)Gm+1(r, s)Δr

≥
∫b

a

h1(t) ×
m−1∏

j=1

ljGm(·, r)hm+1(r)‖Gm+1(·, s)‖Δr

= h1(t)
m∏

j=1

lj‖Gm+1(·, s)‖.

(2.26)

So P(m + 1) holds. Thus P(n) is true by induction.
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Lemma 2.9 (see [20]). Let (E, ‖ · ‖) be a real Banach space and P ⊂ E a cone. Assume that T :
Pζ,η → P is completely continuous operator such that

(i) Tu � u for u ∈ ∂Pζ and Tu � u for u ∈ ∂Pη,

(ii) Tu � u for u ∈ ∂Pζ and Tu � u for u ∈ ∂Pη.

Then T has a fixed point u∗ ∈ P with ζ ≤ ‖u∗‖ ≤ η.

3. Main Results

We assume that {am}m≥1 and {bm}m≥1 are strictly decreasing and strictly increasing sequences,
respectively, with limm→∞am = a, limm→∞bm = b and a1 < b1. A Banach space E = C([a, b]) is
the set of real-valued continuous (in the topology of T) functions u(t) defined on [a, b] with
the norm

‖u‖ = max
t∈[a,b]

|u(t)|. (3.1)

Define a cone by

P =
{

u ∈ E : u(t) ≥ h1(t)L
K

‖u‖, t ∈ [a, b]
}

. (3.2)

Set

Pξ = {u ∈ P : ‖u‖ < ξ}, ∂Pξ = {u ∈ P : ‖u‖ = ξ}, ξ > 0,

Pζ,η =
{

u ∈ P : ζ < ‖u‖ < η
}

, 0 < ζ < η,

Y1 = {t ∈ [a, b] : t − c < a}, Y2 = {t ∈ [a, b] : t − c ≥ a},
Ym = {t ∈ Y2 : t − c ∈ [a, am] ∪ [bm, b]}.

(3.3)

Assume that

(C1) ψ : [a − c, a] → (0,∞) is continuous;

(C2) we have

0 < K

∫q

p

‖Gn(·, s)‖w(s)Δs, K

∫b

a

‖Gn(·, s)‖w(s)Δs < +∞, (3.4)

for constants p and q with a + c < p < q < b;

(C3) the function f : [a, b] × (0,+∞) → R
+ is continuous and w : (a, b) → R

+ is
continuous satisfying

lim
m→∞

sup
u∈Pζ,η

K

∫

Ym

‖Gn(·, s)‖w(s)f(s, u(s − c))Δs = 0, ∀0 < ζ < η. (3.5)
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We seek positive solutions u : [a, b] → R
+, satisfying (1.1). For this end, we transform

(1.1) into an integral equation involving the appropriate Green function and seek fixed points
of the following integral operator.

Define an operator T : C+[a, b] → C[a, b] by

(Tu)(t) =
∫b

a

Hn(t, s)w(s)f(s, u(s − c))Δs, ∀u ∈ C+([a, b]), (3.6)

where C+[a, b] = {u ∈ C[a, b] | u(t) ≥ 0, t ∈ [a, b]}.

Proposition 3.1. Let (C1), (C2), and (C3) hold, and let ζ, η be fixed constants with 0 < ζ < η. Then
T : Pζ,η → P is completely continuous.

Proof. We separate the proof into four steps.

Step 1. For each u ∈ Pζ,η, Tu is bounded.
By condition (C3), there exists some positive integer m0 satisfying

sup
u∈Pζ,η

K

∫

Ym0

‖Gn(·, s)‖w(s)f(s, u(s − c))Δs ≤ 1, (3.7)

where

Ym0 = {t ∈ Y2 : t − c ∈ [a, am0] ∪ [bm0 , b]}; (3.8)

here, we used the fact that for each u ∈ Pζ,η and t ∈ [am0 + c, bm0 + c] ∩ [a, b],

η ≥ u(t − c) ≥ h1(t − c)L
K

‖u‖ ≥ ζmin
{
h1(am0)L

K
,
h1(bm0)L

K
,
h1(b − c)L

K

}

= ζh > 0, (3.9)

where

h = min
{
h1(am0)L

K
,
h1(bm0)L

K
,
h1(b − c)L

K

}

. (3.10)

Set

D := max
{

f
(

t, ψ(t − c)
)

: t ∈ Y1
}

,

Q := max
{

f(t, u(t − c)) : t ∈ Y2, ζh ≤ u(t − c) ≤ η
}

.
(3.11)
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Then we obtain

Tu(t) ≤ sup
t∈[a,b]

sup
u∈Pζ,η

∫b

a

Hn(t, s)w(s)f(s, u(s − c))Δs

≤ K sup
u∈Pζ,η

∫

Y1

‖Gn(·, s)‖w(s)f(s, u(s − c))Δs

+ sup
u∈Pζ,η

K

∫

Ym0

‖Gn(·, s)‖w(s)f(s, u(s − c))Δs

+ sup
u∈Pζ,η

K

∫

Y2\Ym0

‖Gn(·, s)‖w(s)f(s, u(s − c))Δs

≤ 1 +max{D,Q}K
∫b

a

‖Gn(·, s)‖w(s)Δs < +∞.

(3.12)

Consequently, Tu is bounded and well defined.

Step 2. T : Pζ,η → P . For every u ∈ Pζ,η, we get from (2.22)

‖Tu‖ = sup
t∈[a,b]

∫b

a

Hn(t, s)w(s)f(s, u(s − c))Δs

≤ K

∫b

a

‖Gn(·, s)‖w(s)f(s, u(s − c))Δs.

(3.13)

Then by the above inequality

(Tu)(t) =
∫b

a

Hn(t, s)w(s)f(s, u(s − c))Δs

≥
∫b

a

h1(t)L‖Gn(·, s)‖w(s)f(s, u(s − c))Δs

≥ h1(t)L
K

‖Tu‖.

(3.14)

This leads to Tu ∈ P .
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Step 3. We will show that T : Pζ,η → P is continuous. Let {um}m≥1 be any sequence in Pζ,η

such that limm→∞um = u ∈ Pζ,η. Notice also that as m → ∞,

φm(s) =
∣
∣f(s, um(s − c)) − f(s, u(s − c))

∣
∣w(s) −→ 0, for s ∈ (a + c, b),

∣
∣f(s, um(s − c)) − f(s, u(s − c))

∣
∣w(s)

=
∣
∣f
(

s, ψ(s − c)
) − f

(

s, ψ(s − c)
)∣
∣w(s) = 0, for s ∈ (a, a + c),

∫

Y2

Hn(t, s)φm(s)Δs ≤ sup
x∈Pζ,η

2K
∫

Y2

‖Gn(·, s)‖w(s)f(s, x(s))Δs < +∞.

(3.15)

Now these together with (C2) and the Lebesgue dominated convergence theorem [10] yield
that as m → ∞,

‖Tum − Tu‖ = sup
t∈[a,b]

∫b

a

Hn(t, s)w(s)
∣
∣f(s, um(s − c)) − f(s, u(s − c))

∣
∣Δs −→ 0. (3.16)

Step 4. T : Pζ,η → P is compact.
Define

wm(t) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

min{w(t), w(am)}, a ≤ t ≤ am,

w(t), am ≤ t ≤ bm,

min{w(t), w(bm)}, bm ≤ t ≤ b,

fm(t, u(t − c)) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(

t, ψ(t − c)
)

, a ≤ t < a + c,

min
{

f(t, u(t − c)), f(t, u(am))
}

, a + c ≤ t ≤ am + c,

f(t, u(t − c)), t ∈ [am + c, bm + c] ∩ [a, b],

min
{

f(t, u(t − c)), f(t, u(bm))
}

, t ∈ [bm + c, b] ∩ [a, b],

(3.17)

and an operator sequence {Tm} for a fixed m by

(Tmu)(t) =
∫b

a

Hn(t, s)wm(s)fm(s, u(s − c))Δs, ∀t ∈ [a, b]. (3.18)

Clearly, the operator sequence {Tm} is compact by using the Arzela-Ascoli theorem
[3], for each m ∈ N. We will prove that Tm converges uniformly to T on Pζ,η. For any u ∈ Pζ,η,
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we obtain

‖Tmu − Tu‖ = sup
t∈[a,b]

∣
∣
∣
∣
∣

∫b

a

Hn(t, s)
(

wm(s)fm(s, u(s − c)) −w(s)f(s, u(s − c))
)

Δs

∣
∣
∣
∣
∣

≤ K

∫b

a

‖Gn(·, s)‖
∣
∣wm(s)fm(s, u(s − c)) −w(s)f(s, u(s − c))

∣
∣Δs

≤ K

∫

Y1

‖Gn(·, s)‖|wm(s) −w(s)|f(s, ψ(s − c)
)

Δs

+K

∫

Y2

‖Gn(·, s)‖
∣
∣wm(s)fm(s, u(s − c)) −w(s)f(s, u(s − c))

∣
∣Δs.

(3.19)

From (C1), (C2), and the Lebesgue dominated convergence theorem [10], we see that the
right-hand side (3.19) can be sufficiently small for mbeing big enough. Hence the sequence
{Tm} of compact operators converges uniformly to T on Pζ,η so that operator T is compact.
Consequently, T : Pζ,η → P is completely continuous by using the Arzela-Ascoli theorem
[3].

Proposition 3.2. It holds that v ∈ Pζ,η is a solution of (1.1) if and only if Tv = v.

Proof. If v ∈ Pζ,η and Tv = v, then we have

(−1)nvΔ2n
(t) = (−1)nTvΔ2n

(t) = w(t)f(t, v(t − c)), (3.20)

and for any 0 ≤ i ≤ n − 1,

vΔ2i
(a) − βi+1v

Δ2i+1
(a) = αi+1v

Δ2i
(�), γi+1v

Δ2i
(�) = vΔ2i

(b). (3.21)

From [8, Lemma 3.1], we know that v(t) ≥ 0 on [a, b]. So we conclude that v is the solution
of BVP (1.1).

For convenience, we list the following notations and assumptions:

R =

(

μK

∫q

p

‖Gn(·, s)‖w(s)Δs

)−1
, μ = min

{

h1
(

p
)

L

K
,
h1
(

q
)

L

K

}

;

κ =

[

K

∫b

a

‖Gn(·, s)‖w(s)Δs

]−1
;

(3.22)
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f
ξ
μξ :=

f(t, u(t − c))
u(t)

, t ∈ [p, q], u ∈ [μξ, ξ]; (3.23)

f
ζ
ρ :=

f(t, u(t − c))
u(t)

, t ∈ Y2, u ∈ [ρ, ζ]; (3.24)

S
(

ρ
)

= sup
u∈∂Pρ

K

∫

Y2

‖Gn(·, s)‖w(s)f(s, u(s − c))Δs, ρ > 0. (3.25)

From condition (C2) and (3.12), we have S(ρ) < +∞.

Theorem 3.3. Assume that there exist positive constants ρ, ζ, ξ, r with ζ < μξ, r < κ and ζ ≥
κS(ρ)/(κ − r) such that

(i) fξ
μξ

> R and f
ζ
ρ < r;

(ii) f(t, ψ(t − c))/u(t) < r, for all t ∈ Y1 and u ∈ [ρ, ζ].

If (C1), (C2), and (C3) hold, then the boundary value problem (1.1) has at least one positive solution
ũ such that

ũ(t) =

⎧

⎨

⎩

ψ(t), if t ∈ [a − c, a),

u∗(t), if t ∈ [a, b],

ζ ≤ ‖u∗‖ ≤ ξ.

(3.26)

Proof. Define the operator T : Pζ,ξ → P by (3.6). From (i) and (3.23), it follows that there
exists ε1 > 0 such that

f(t, u(t − c)) ≥ (R + ε1)u(t), for t ∈ [p, q], u ∈ [μξ, ξ]. (3.27)

We claim that

Tu � u, ∀u ∈ ∂Pξ. (3.28)

If it is false, then there exists some u1 ∈ ∂Pξ with Tu1 ≤ u1, that is, u1 − Tu1 ∈ P which implies
that u1(t) ≥ Tu1(t) for t ∈ [a, b].

Set

λ = min
{

u1(t) : t ∈
[

p, q
]} ≥ min

{

h1
(

p
)

L

K
,
h1
(

q
)

L

K

}

‖u1‖ = μξ. (3.29)
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We know from (2.22) and (3.27) that for t ∈ [p, q],

u1(t) ≥ Tu1(t)

=
∫b

a

Hn(t, s)w(s)f(s, u1(s − c))Δs

=
∫

Y1

Hn(t, s)w(s)f(s, u1(s − c))Δs +
∫

Y2

Hn(t, s)w(s)f(s, u1(s − c))Δs

≥
∫q

p

Hn(t, s)w(s)f(s, u1(s − c))Δs

≥ min
{

h1
(

p
)

, h1
(

q
)}

L

∫q

p

‖Gn(·, s)‖w(s)f(s, u1(s − c))Δs

≥ (R + ε1)min
t∈[p,q]

u1(t)μK
∫q

p

‖Gn(·, s)‖w(s)Δs

≥ λR

[

μK

∫q

p

‖Gn(·, s)‖w(s)Δs

]

+ λε1μK

∫q

p

‖Gn(·, s)‖w(s)Δs

= λ + λε1μK

∫q

p

‖Gn(·, s)‖w(s)Δs,

(3.30)

the first inequality of (C2) implies that

u1(t) > λ, ∀t ∈ [p, q]. (3.31)

Clearly, (3.31) contradicts (3.29). This means that (3.28) holds.
Next we will show that

Tu � u, ∀u ∈ Pζ. (3.32)

Suppose on the contrary that there exists some u2 ∈ ∂Pζ with u2 ≤ Tu2 for all t ∈ [a, b].
For (t, u) ∈ Y2 × [ρ, ζ], from (i) and (3.24), there exists ε2 > 0 such that

f(t, u(t − c)) ≤ (r − ε2)u(t). (3.33)

and for (t, u) ∈ Y1 × [ρ, ζ], there exists ε2 > 0, from (ii), such that

f
(

t, ψ(t − c)
) ≤ (r − ε2)u(t). (3.34)

Put

Y3 :=
{

t ∈ Y2 : u2(t) > ρ
}

, ũ2(t) =

⎧

⎨

⎩

min
{

u2(t), ρ
}

, t ∈ Y2,

ρ, t ∈ Y1.
(3.35)
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If Y3 = ∅, then we take ũ2(t) = ρ. It is easy to see that (h1(t − c)Lζ)/K ≤ u2(t − c) ≤ ‖u2‖ = ζ
for t ∈ Y2 and ũ2(t) ∈ C+[a, b], ‖ũ2‖ = ρ, that is, ũ2 ∈ ∂Pρ. From (3.33) and (3.34), we find that

‖Tu2‖ = sup
t∈[a,b]

∫b

a

Hn(t, s)w(s)f(s, u2(s − c))Δs

≤ K

∫b

a

‖Gn(·, s)‖w(s)f(s, u2(s − c))Δs

= K

∫

Y1

‖Gn(·, s)‖w(s)f
(

s, ψ(s − c)
)

Δs +K

∫

Y3

‖Gn(·, s)‖w(s)f(s, u2(s − c))Δs

+K

∫

Y2\Y3

‖Gn(·, s)‖w(s)f(s, u2(s − c))Δs

≤ (r − ε2)max
t∈Y1

u2(t)
∫

Y1

‖Gn(·, s)‖w(s)Δs

+ sup
(t,u2)∈Y3×[ρ,ζ]

f(t, u2(t − c))K
∫

Y3

‖Gn(·, s)‖w(s)Δs

+ sup
ũ2∈∂Pρ

K

∫

Y2

‖Gn(·, s)‖w(s)f(s, ũ2(s − c))Δs

≤ ζrK

∫b

a

‖Gn(·, s)‖w(s)Δs + S
(

ρ
) − ζε2K

∫b

a

‖Gn(·, s)‖w(s)Δs

= ζrκ−1 − ζε2κ
−1 + S

(

ρ
)

< ζ = ‖u2‖

(3.36)

yielding a contradiction with u2 ≤ Tu2 for all t ∈ [a, b]. This means that (3.32) holds.
Therefore, from (3.28), (3.32) and Lemma 2.9, we conclude that the operator T has at least
one fixed point u∗ ∈ Pζ,ξ. From the definition of the cone P and (2.18), we see that u∗(t) > 0
for all t ∈ (a, b). Thus, Proposition 3.2 implies that u∗ is a solution of BVP (1.1). So we obtain
the desired result.

Adopting the same argument as in Theorem 3.3 , we obtain the following results.

Corollary 3.4. Let ρ, ζ, r, f
ζ
ρ be as in Theorem 3.3. Suppose that (ii) of Theorem 3.3 holds and

limξ→∞f
ξ
μξ

= +∞. If (C1), (C2), and (C3) holds , then boundary value problem (1.1) has at least
one positive solution û ∈ Pζ,η such that

û(t) =

⎧

⎨

⎩

ψ(t), if t ∈ [a − c, a),

u∗∗(t), if t ∈ [a, b],

ζ ≤ ‖u∗∗‖ ≤ η, ζ < μη.

(3.37)
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Theorem 3.5. Assume that there exist positive constants ρi, ζi, ξi, r with ζi < μξi, r < κ and ζi ≥
κS(ρi)/(κ − r), i = 1, 2, . . . , m such that

(iii) fξi
μξi

> R and f
ζi
ρi < r;

(iv) f(t, ψ(t − c))/u(t) < r, for all t ∈ Y1 and u ∈ [ρi, ζi].

If (C1), (C2), and (C3) hold, then boundary value problem (1.1) has at least m positive solutions
ũi ∈ Pζi,ξi such that for i = 1, 2, . . . , m

ũi(t) =

⎧

⎨

⎩

ψ(t), if t ∈ [a − c, a),

u∗
i (t), if t ∈ [a, b]

ζ ≤ ∥∥u∗
i

∥
∥ ≤ ξ.

(3.38)

Example 3.6. LetT = R. Consider the following singular three-point boundary value problems
for delay four-order dynamic equations:

u(4)(t) + f(t, u(t − 1)) = 0, t ∈ [0, 4],

u(0) =
1
2
u(1), 2u(1) = u(4),

u′′(0) =
1
2
u′′(1), 2u′′(1) = u′′(4),

u(t) = et, t ∈ [−1, 0),

(3.39)

where, for any t ∈ [0, 4], ρ = 1, ζ = 1480, μ = 0.112, ξ = 13500, M1 = 1 andM2 = 1/502,

f(t, u(t − 1)) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

2M1u(t), (t, u) ∈ (1, 4]×[ξ,+∞),

M1u(t)

(

1+sin
π
(

u(t) − ϑφ
)

2
(

ϑ − ϑφ
) +cos

π
(

u(t) − ϑφ
)

2
(

ϑ − ϑφ
)

)

, (t, u) ∈ (1, 4]×[μξ, ξ],

1
2
M2u(t) cos

π
(

u(t) − μ
)

2
(

ϑφ − μ
) +2M1ϑφ sin

π
(

u(t) − μ
)

2
(

ϑφ − μ
) , (t, u) ∈ (1, 4]×[ζ, μξ],

1
2
M2u(t)

[

2 − sin
π
(

u(t) − �
)

2
(

μ − �
) − cos

π
(

u(t) − �
)

2
(

μ − �
)

]

, (t, u) ∈ (1, 4] × [ρ, ζ],

ρu(t)−1/2 − u(t)1/2 +
1
2
M2ρ, (t, u) ∈ (1, 4] × (0, ρ],

1
2
M2u(t), (t, u) ∈ [0, 1) × R.

(3.40)



Boundary Value Problems 17

Clearly, we know that

α =
1
2
, β = 0, γ = 2, η = 1, δ =

5
4
, d =

1
2
,

p =
3
2
, q =

7
2
, hi(t) = min

{
t

5
,
4 − t

8

}

, i = 1, 2,

G(4, s) = 12s (s ∈ [0, 1]), G(4, s) = 4(4 − s) (s ∈ [1, 3]),

G(s, s) = (4 − s)(1 + s) (s ∈ [3, 4]).

(3.41)

Simple computations yield

K =
∫4

0
‖G1(·, s)‖ds =

∫1

0
12sds +

∫3

1
4(4 − s)ds +

∫4

3
(1 + s)(4 − s)ds = 24.17,

L =
∫4

0
‖G1(·, s)h2(s)ds

=
∫1

0
12s

s

5
ds +

∫20/13

1
4(4 − s)

s

5
ds +

∫3

20/13
4(4 − s)

4 − s

8
ds +

∫4

3

(4 − s)2(1 + s)
8

ds

= 4.695,

μ = min

{

h1
(

p
)

L

K
,
h1
(

q
)

L

K

}

= 0.112,

R =

(

μK

∫7/2

3/2
‖G2(·, s)‖ds

)−1
= 0.282,

κ =

[

K

∫4

0
‖G2(·, s)‖ds

]−1
=

1
24.172

.

(3.42)

Obviously,

lim
m→∞

sup
u∈Pζ,η

K

∫

Ym

‖G2(·, s)‖ f(s, u(s − c))ds = 0, ∀ 0 < ζ < η. (3.43)

If (t, u) ∈ (1, 4] × (0, 1], then we have

h(t) = h(t)ρ ≤ u(t) ≤ ρ = 1. (3.44)

Therefore, we get

f(t, u(t − 1)) ≤ h(t)−1/2 − h(t)1/2 +
1
2
M2, for (t, u) ∈ (1, 4] × (0, 1]. (3.45)



18 Boundary Value Problems

From (3.25), it follows that

S(1) = sup
u∈∂P1

K

∫4

1
‖G2(·, s)‖f(s, u(s − 1))ds

≤ K

∫20/13

1
12s

((
5
s

)1/2

−
(
s

5

)1/2

+
1
2
M2

)

ds

+K

∫3

20/13
4(4 − s)

((
8

4 − s

)1/2

−
(
4 − s

8

)1/2

+
1
2
M2

)

ds

+K

∫4

3
(1 + s)(4 − s)

((
8

4 − s

)1/2

−
(
4 − s

8

)1/2

+
1
2
M2

)

ds

≤ 1120.

(3.46)

Thus,

ζ = 1480 ≥ κS(1)
κ − r

≈ 1461.37, ξ = 13500, ζ < μξ. (3.47)

Therefore, by Theorem 3.3 , the BVP (3.39) has at least one positive solution ũ such that

ũ(t) =

⎧

⎨

⎩

et, if t ∈ [−1, 0),
u∗(t), if t ∈ [0, 4],

1480 ≤ ‖u∗‖ ≤ 13500.

(3.48)
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