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1. Introduction

Having a positive parameter L, we consider the problem

(
p(t)u′)′ = p(t)f(u), (1.1)

u′(0) = 0, u(∞) = L, (1.2)

under the following basic assumptions for f and p

f ∈ Liploc((−∞, L]), f(0) = f(L) = 0, (1.3)

f(x) < 0 for x ∈ (0, L), (1.4)

there exists B < 0 such that f(x) > 0 for x ∈
[
B, 0

)
, (1.5)

F
(
B
)
= F(L), where F(x) = −

∫x

0
f(z) dz, (1.6)

p ∈ C([0,∞)) ∩ C1((0,∞)), p(0) = 0, (1.7)

p′(t) > 0, t ∈ (0,∞), lim
t→∞

p′(t)
p(t)

= 0. (1.8)
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Then problem (1.1), (1.2) generalizes some models arising in hydrodynamics or in the
nonlinear field theory (see [1–5]). However (1.1) is singular at t = 0 because p(0) = 0.

Definition 1.1. If c > 0, then a solution of (1.1) on [0, c] is a function u ∈ C1([0, c]) ∩ C2((0, c])
satisfying (1.1) on (0, c]. If u is a solution of (1.1) on [0, c] for each c > 0, then u is a solution
of (1.1) on [0,∞).

Definition 1.2. Let u be a solution of (1.1) on [0,∞). If u moreover fulfils conditions (1.2), it is
called a solution of problem (1.1), (1.2).

Clearly, the constant function u(t) ≡ L is a solution of problem (1.1), (1.2). An
important question is the existence of a strictly increasing solution of (1.1), (1.2) because
if such a solution exists, many important physical properties of corresponding models can be
obtained. Note that if we extend the function p(t) in (1.1) from the half–line onto R (as an
even function), then any solution of (1.1), (1.2) has the same limit L as t → −∞ and t → ∞.
Therefore we will use the following definition.

Definition 1.3. A strictly increasing solution of problem (1.1), (1.2) is called a homoclinic
solution.

Numerical investigation of problem (1.1), (1.2), where p(t) = t2 and f(u) = 4λ2(u +
1)u(u − L), λ > 0, can be found in [1, 4–6]. Problem (1.1), (1.2) can be also transformed onto
a problem about the existence of a positive solution on the half-line. For p(t) = tk, k ∈ N and
for p(t) = tk, k ∈ (1,∞), such transformed problem was solved by variational methods in
[7, 8], respectively. Some additional assumptions imposed on f were needed there. Related
problems were solved, for example, in [9, 10].

Here, we deal directly with problem (1.1), (1.2) and continue our earlier considerations
of papers [11, 12], where we looked for additional conditions which together with (1.3)–(1.8)
would guarantee the existence of a homoclinic solution.

Let us characterize some results reached in [11, 12] in more details. Both these papers
assume (1.3)–(1.8). In [11] we study the case that f has at least three zeros L0 < 0 < L. More
precisely, the conditions,

f(L0) = 0, there exists δ > 0 such that f ∈ C1((−δ, 0)), lim
x→ 0−

f ′(x) < 0,

p ∈ C2((0,∞)), lim
t→∞

p′′(t)
p(t)

= 0,
(1.9)

are moreover assumed. Then there exist c > 0, B ∈ (L0, 0), and a solution u of (1.1) on [0, c]
such that

u(0) = B, u′(0) = 0, (1.10)

u′(t) > 0 for t ∈ (0, c], u(c) = L. (1.11)

We call such solution an escape solution. The main result of [11] is that (under (1.3)–(1.8),
(1.9)) the set of solutions of (1.1), (1.10) for B ∈ (L0, 0) consists of escape solutions and
of oscillatory solutions (having values in (L0, L)) and of at least one homoclinic solution.
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In [12]we omit assumptions (1.9) and prove that assumptions (1.3)–(1.8) are sufficient for the
existence of an escape solution and also for the existence of a homoclinic solution provided
the p fulfils

∫1

0

ds
p(s)

< ∞. (1.12)

If (1.12) is not valid, then the existence of both an escape solution and a homoclinic solution
is proved in [12], provided that f satisfies moreover

f(x) > 0 for x < 0, (1.13)

lim
x→−∞

|x|
f(x)

= ∞. (1.14)

Assumption (1.13) characterizes the case that f has just two zeros 0 and L in the interval
(−∞, L]. Further, we see that if (1.14) holds, then f is either bounded on (−∞, L] or f is
unbounded earlier and has a sublinear behaviour near −∞.

This paper also deals with the case that f satisfies (1.13) and is unbounded above on
(−∞, L]. In contrast to [12], here we prove the existence of a homoclinic solution for f having
a linear behaviour near −∞. The proof is based on a full description of the set of all solutions
of problem (1.1), (1.10) for B < 0 and on the existence of an escape solutions in this set.

Finally, we want to mention the paper [13], where the problem

1
p(t)

(
p(t)u′(t)

)′ = f
(
t, u(t), p(t)u′(t)

)
,

u(0) = ρ0 ∈ (−1, 0), lim
t→∞

u(t) = ξ ∈ (0, 1),

lim
t→∞

p(t)u′(t) = 0

(1.15)

is investigated under the assumptions that f is continuous, it has three distinct zeros and
satisfies the sign conditions similar to those in [11, (3.4)]. In [13], an approach quite different
from [11, 12] is used. In particular, by means of properties of the associated vector field
(u(t), p(t)u′(t)) together with the Kneser’s property of the cross sections of the solutions’
funnel, the authors provide conditions which guarantee the existence of a strictly increasing
solution of (1.15). The authors apply this general result to problem

1
tn−1

(
tn−1u′

)′
= 4λ2(u + 1)u(u − ξ),

lim
t→ 0+

tn−1u′(t) = 0, lim
t→∞

u(t) = ξ,

(1.16)

and get a strictly increasing solution of (1.16) for a sufficiently small ξ. This corresponds to
the results of [11], where ξ ∈ (0, 1) may be arbitrary.
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2. Initial Value Problem

In this section, under the assumptions (1.3)–(1.8) and (1.13) we prove some basic properties
of solutions of the initial value problem (1.1), (1.10), where B < 0.

Lemma 2.1. For each B < 0 there exists a maximal c∗ ∈ (0,∞] such that problem (1.1), (1.10) has a
unique solution u on [0, c∗) and

u(t) ≥ B for t ∈ [0, c∗). (2.1)

Further, for each b ∈ (0, c∗), there existsMb > 0 such that

|u(t)| + ∣
∣u′(t)

∣
∣ ≤ Mb, t ∈ [0, b],

∫b

0

p′(s)
p(s)

∣
∣u′(s)

∣
∣ds ≤ Mb. (2.2)

Proof. Let u be a solution of problem (1.1), (1.10) on [0, c) ⊂ [0,∞). By (1.1), we have

u′′(t) +
p′(t)
p(t)

u′(t) − f(u(t)) = 0 for t ∈ (0, c), (2.3)

and multiplying by u′ and integrating between 0 and t, we get

u′2(t)
2

+
∫ t

0

p′(s)
p(s)

u′2(s)ds + F(u(t)) = F(B), t ∈ (0, c). (2.4)

Let u(t1) < B for some t1 ∈ (0, c). Then (2.4) yields F(u(t1)) ≤ F(B), which is not possible,
because F is decreasing on (−∞, 0). Therefore u(t) ≥ B for t ∈ [0, c).

Let η > 0. Consider the Banach space C([0, η]) (with the maximum norm) and an
operator F : C([0, η]) → C([0, η]) defined by

(Fu)(t) = B +
∫ t

0

1
p(s)

∫ s

0
p(τ)f(u(τ))dτ ds. (2.5)

A function u is a solution of problem (1.1), (1.2) on [0, η] if and only if it is a fixed point of the
operator F. Using the Lipschitz property of f we can prove that the operator is contractive
for each sufficiently small η and from the Banach Fixed Point Theoremwe conclude that there
exists exactly one solution of problem (1.1), (1.2) on [0, η]. This solution u has the form

u(t) = B +
∫ t

0

1
p(s)

∫ s

0
p(τ)f(u(τ))dτ ds (2.6)

for t ∈ [0, η]. Hence, u can be extended onto each interval [0, b] where u is bounded. So, we
can put c∗ = sup{b > 0 : u is bounded on [0, b]}.
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Let b ∈ (0, c∗). Then there exists M̃ ∈ (0,∞) such that |f(u(t))| ≤ M̃ for t ∈ [0, b]. So,
(2.6) yields

∣
∣u′(t)

∣
∣ ≤ M̃

1
p(t)

∫ t

0
p(s)ds, t ∈ (0, b]. (2.7)

Put

ϕ(t) =
1

p(t)

∫ t

0
p(s)ds, ψ(t) =

∫b

t

p′(s)
p2(s)

∫s

0
p(τ)dτ ds, t ∈ (0, b]. (2.8)

Then

0 < ϕ(t) ≤ t for t ∈ (0, b], (2.9)

and, by “per partes” integration we derive limt→ 0+ψ(t) = b − ϕ(b). Multiplying (2.7) by
p′(t)/p(t) and integrating it over (0, b), we get

∫b

0

p′(t)
p(t)

∣∣u′(t)
∣∣dt ≤ M̃

∫b

0

p′(t)
p2(t)

∫ t

0
p(s)dsdt = M̃

(
b − ϕ(b)

)
. (2.10)

Estimates (2.2) follow from (2.7)–(2.10) for

Mb = M̃b + |B| + M̃b2. (2.11)

Remark 2.2. The proof of Lemma 2.1 yields that if c∗ < ∞, then limt→ c∗u(t) = ∞.
Let us put

f̃(x) =

⎧
⎨

⎩

0 for x > L,

f(x) for x ≤ L,
(2.12)

and consider an auxiliary equation

(
p(t)u′)′ = p(t)f̃(u). (2.13)

Similarly as in the proof of Lemma 2.1 we deduce that problem (2.13), (1.10) has a unique
solution on [0,∞). Moreover the following lemma is true.

Lemma 2.3 ([12]). For each B0 < 0, b > 0 and each ε > 0, there exists δ > 0 such that for any B1,
B2 ∈ [B0, 0)

|B1 − B2| < δ =⇒ |u1(t) − u2(t)| +
∣∣u′

1(t) − u′
2(t)

∣∣ < ε, t ∈ [0, b]. (2.14)

Here ui is a solution of problem (2.13), (1.10) with B = Bi, i = 1, 2.
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Proof. Choose B0 < 0, b > 0, ε > 0. LetK > 0 be the Lipschitz constant for f on [B0, L]. By (2.6)
for f = f̃ , B = Bi, u = ui, i = 1, 2,

|u1(t) − u2(t)| ≤ |B1 − B2| +
∫ t

0

1
p(s)

∫ s

0
p(τ)

∣
∣
∣f̃(u1(τ)) − f̃(u2(τ))

∣
∣
∣dτ ds

≤ |B1 − B2| +Kt

∫ t

0
|u1(τ) − u2(τ)|dτ

≤ |B1 − B2| +Kb

∫ t

0
|u1(τ) − u2(τ)|dτ, t ∈ [0, b].

(2.15)

From the Gronwall inequality, we get

|u1(t) − u2(t)| ≤ |B1 − B2|eKb2 , t ∈ [0, b]. (2.16)

Similarly, by (2.6), (2.9), and (2.16),

∣∣u′
1(t) − u′

2(t)
∣∣ ≤ 1

p(t)

∫ t

0
p(s)

∣∣∣f̃(u1(s)) − f̃(u2(s))
∣∣∣ds

≤ K
1

p(t)

∫ t

0
p(s)|u1(s) − u2(s)|ds

≤ Kb|B1 − B2|eKb2 , t ∈ [0, b].

(2.17)

If we choose δ > 0 such that

δ <
ε

(1 +Kb)eKb2
, (2.18)

we get (2.14).

Remark 2.4. Choose a ≥ 0 and C ≤ L, and consider the initial conditions

u(a) = C, u′(a) = 0. (2.19)

Arguing as in the proof of Lemma 2.1, we get that problem (2.13), (2.19) has a unique solution
on [a,∞). In particular, for C = 0 and C = L, the unique solution of problem (2.13), (2.19)
(and also of problem (1.1), (2.19)) is u ≡ 0 and u ≡ L, respectively.

Lemma 2.5. Let u be a solution of problem (1.1), (1.10). Assume that there exists a ≥ 0 such that

u(t) < 0 for t ≥ a, u′(a) = 0. (2.20)
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Then u′(t) > 0 for t > a and

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (2.21)

Proof. By (1.13) and (2.20), f(u(t)) > 0 on [a,∞) and thus p(t)u′(t) and u′(t) are positive on
(a,∞). Consequently, there exists limt→∞u(t) = B1 ∈ (u(a), 0]. Further, by (1.1),

u′′(t) +
p′(t)
p(t)

u′(t) = f(u(t)), t > 0, (2.22)

and, by multiplication and integration over [a, t],

u′2(t)
2

+
∫ t

a

p′(s)
p(s)

u′2(s)ds = F(u(a)) − F(u(t)), t > a. (2.23)

Therefore,

0 ≤ lim
t→∞

∫ t

a

p′(s)
p(s)

u′2(s)ds ≤ F(u(a)) − F(B1) < ∞, (2.24)

and hence limt→∞u′2(t) exists. Since u is bounded on [0,∞), we get

lim
t→∞

u′2(t) = lim
t→∞

u′(t) = 0. (2.25)

By (1.3), (1.8), and (2.22), limt→∞u′′(t) exists and, since u′ is bounded on [0,∞), we get
limt→∞u′′(t) = 0. Hence, letting t → ∞ in (2.22), we obtain f(B1) = 0. Therefore, B1 = 0
and (2.21) is proved.

Lemma 2.6. Let u be a solution of problem (1.1), (1.10). Assume that there exist a1 > 0 and A1 ∈
(0, L) such that

u(t) > 0 ∀t > a1, u(a1) = A1, u′(a1) = 0. (2.26)

Then u′(t) < 0 for all t > a1 and (2.21) holds.

Proof. Since u fulfils (2.26), we can find a maximal b > a1 such that 0 < u(t) < L for t ∈ [a1, b)
and consequently f(u(t)) = f̃(u(t)) for t ∈ [a1, b). By (4.23) and (2.26), f(u(t)) < 0 on [a1, b)
and thus p(t)u′(t) and u′(t) are negative on (a1, b). So, u is positive and decreasing on [a1, b)
which yields b = ∞ (otherwise, we get u(b) = 0, contrary to (2.26)). Consequently there exists
limt→∞u(t) = L1 ∈ [0, A1). By multiplication and integration (2.22) over [a1, t], we obtain

u′2(t)
2

+
∫ t

a1

p′(s)
p(s)

u′2(s)ds = F(A1) − F(u(t)), t > a1. (2.27)
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By similar argument as in the proof of Lemma 2.5 we get that limt→∞u′(t) = 0 and L1 = 0.
Therefore (2.21) is proved.

3. Damped Solutions

In this section, under assumptions (1.3)–(1.8) and (1.13) we describe a set of all damped
solutions which are defined in the following way.

Definition 3.1. A solution of problem (1.1), (1.10) (or of problem (2.13), (1.10)) on [0,∞) is
called damped if

sup{u(t) : t ∈ [0,∞)} < L. (3.1)

Remark 3.2. We see, by (2.12), that u is a damped solution of problem (1.1), (1.10) if and only
if u is a damped solution of problem (2.13), (1.10). Therefore, we can borrow the arguments
of [12] in the proofs of this section.

Theorem 3.3. If u is a damped solution of problem (1.1), (1.10), then u has a finite number of isolated
zeros and satisfies (2.21); or u is oscillatory (it has an unbounded set of isolated zeros).

Proof. Let u be a damped solution of problem (1.1), (1.10). By Remark 2.2, we have c∗ = ∞ in
Lemma 2.1 and hence

u(t) ≥ B for t ∈ [0,∞). (3.2)

Step 1. If u has no zero in (0,∞), then u(t) < 0 for t ≥ 0 and, by Lemma 2.5, u fulfils (2.21).

Step 2. Assume that θ > 0 is the first zero of u on (0,∞). Then, due to Remark 2.4, u′(θ) > 0.
Let u(t) > 0 for t ∈ (θ,∞). By virtue of (1.4), f(u(t)) < 0 for t ∈ (θ,∞) and thus p(t)u′(t)
is decreasing. Let u′ be positive on (θ,∞). Then u′ is also decreasing, u is increasing and
limt→∞u(t) = L ∈ (0, L), due to (3.1). Consequently, limt→∞u′(t) = 0. Letting t → ∞ in (2.22),
we get limt→∞u′′(t) = f(L) < 0, which is impossible because u′ is bounded below. Therefore
there are a1 > θ and A1 ∈ (0, L) satisfying (2.26) and, by Lemma 2.6, either u fulfils (2.21) or
u has the second zero θ1 > a1 with u′(θ1) < 0. So u is positive on (θ, θ1) and has just one local
maximum A1 = u(a1) in (θ, θ1). Moreover, putting a = 0 and t = a1 in (2.23), we have

0 <

∫a1

0

p′(s)
p(s)

u′2(s)ds = F(B) − F(A1), (3.3)

and hence

F(A1) < F(B). (3.4)
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Step 3. Let u have no other zeros. Then u(t) < 0 for t ∈ (θ1,∞). Assume that u′ is negative
on [θ1,∞). Then, due to (2.1), limt→∞u(t) = L ∈ [B, 0). Putting a = a1 in (2.23) and letting
t → ∞, we obtain

0 < lim
t→∞

[
u′2(t)
2

+
∫ t

a1

p′(s)
p(s)

u′2(s)ds

]

= F(A1) − F
(
L
)
. (3.5)

Therefore, limt→∞u′2(t) exists and, since u is bounded, we deduce that

lim
t→∞

u′(t) = 0. (3.6)

Letting t → ∞ in (2.22), we get limt→∞u′′(t) = f(L) > 0, which contradicts the fact that u′

is bounded above. Therefore, u′ cannot be negative on the whole interval [θ1,∞) and there
exists b1 > θ1 such that u′(b1) = 0. Moreover, according to (3.2), u(b1) ∈ [B, 0).

Then, Lemma 2.5 yields that u fulfils (2.21). Since u′ is positive on (b1,∞), u has just
one minimum B1 = u(b1) on (θ1,∞). Moreover, putting a = a1 and t = b1 in (2.23), we have

0 <

∫b1

a1

p′(s)
p(s)

u′2(s)ds = F(A1) − F(B1), (3.7)

which together with (3.4) yields

F(B1) < F(A1) < F(B). (3.8)

Step 4. Assume that u has its third zero θ2 > θ1. Then we prove as in Step 2 that u has just one
negative minimum B1 = u(b1) in (θ1, θ2) and (3.8) is valid. Further, as in Step 2, we deduce
that either u fulfils (2.21) or u has the fourth zero θ3 > θ2, u is positive on (θ2, θ3) with just
one local maximum A2 = u(a2) < L on (θ2, θ3), and F(A2) < F(B1). This together with (3.8)
yields

F(A2) < F(B1) < F(A1) < F(B). (3.9)

If u has no other zeros, we deduce as in Step 3 that u has just one negative minimum B2 =
u(b2) in (θ3,∞), F(B2) < F(A2) and u fulfils (2.21).

Step 5. If u has other zeros, we use the previous arguments and get that either u has a finite
number of zeros and then fulfils (2.21) or u is oscillatory.

Remark 3.4. According to the proof of Theorem 3.3, we see that if u is oscillatory, it has just
one positive local maximum between the first and the second zero, then just one negative
local minimum between the second and the third zero, and so on. By (3.8), (3.9), (1.4)–(1.6)
and (1.13), these maxima are decreasing (minima are increasing) for t increasing.
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Lemma 3.5. A solution u of problem (1.1), (1.10) fulfils the condition

sup{u(t) : t ∈ [0,∞)} = L (3.10)

if and only if u fulfils the condition

lim
t→∞

u(t) = L, u′(t) > 0 for t ∈ (0,∞). (3.11)

Proof. Assume that u fulfils (3.10). Then there exists θ ∈ (0,∞) such that u(θ) = 0, u′(t) > 0
for t ∈ (0, θ]. Otherwise sup{u(t) : t ∈ [0,∞)} = 0, due to Lemma 2.5. Let a1 ∈ (θ,∞) be such
that u′(t) > 0 on (θ, a1), u′(a1) = 0. By Remark 2.4 and (3.10), u(a1) ∈ (0, L). Integrating (1.1)
over (a1, t), we get

u′(t) =
1

p(t)

∫ t

a1

p(s)f(u(s))ds, ∀t > a1. (3.12)

Due to (1.4), we see that u is strictly decreasing for t > a1 as long as u(t) ∈ (0, L). Thus,
there are two possibilities. If u(t) > 0 for all t > a1, then from Lemma 2.6 we get (2.21),
which contradicts (3.10). If there exists θ1 > a1 such that u(θ1) = 0, then in view Remark 2.4
we have u′(θ1) < 0. Using the arguments of Steps 3–5 of the proof of Theorem 3.3, we get
that u is damped, contrary to (3.10). Therefore, such a1 cannot exist and u′ > 0 on (0,∞).
Consequently, limt→∞u(t) = L. So, u fulfils (3.11). The inverse implication is evident.

Remark 3.6. According to Definition 1.3 and Lemma 3.5, u is a homoclinic solution of problem
(1.1), (1.10) if and only if u is a homoclinic solution of problem (2.13), (1.10).

Theorem 3.7 (on damped solutions). Let B satisfy (1.5) and (1.6). Assume that u is a solution of
problem (1.1), (1.10) with B ∈ [B, 0). Then u is damped.

Proof. Let u be a solution of (1.1), (1.10) with B ∈ [B, 0). Then, by (1.4)–(1.6),

F(B) ≤ F(L). (3.13)

Assume on the contrary that u is not damped. Then u is defined on the interval [0,∞) and
sup{u(t) : t ∈ [0,∞)} = L or there exists b ∈ (0,∞) such that u(b) = L, u′(b) > 0, and u(t) < L
for t ∈ [0, b). If the latter possibility occurs, (2.22) and (3.13) give by integration

0 <
u′2(b)
2

+
∫b

0

p′(s)
p(s)

u′2(s)ds = F(B) − F(L) ≤ 0, (3.14)

a contradiction. If sup{u(t) : t ∈ [0,∞)} = L, then, by Lemma 3.5, u fulfils (3.11). So u has a
unique zero θ > 0. Integrating (2.22) over [0, θ], we get

u′2(θ)
2

+
∫θ

0

p′(s)
p(s)

u′2(s)ds = F(B), (3.15)
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and so

u′2(θ) < 2F(B). (3.16)

Integrating (2.22) over [θ, t], we obtain for t > θ

u′2(t)
2

− u′2(θ)
2

+
∫ t

θ

p′(s)
p(s)

u′2(s)ds = F(u(θ)) − F(u(t)) = −F(u(t)). (3.17)

Therefore, u′2(θ) > 2F(u(t)) on (θ,∞), and letting t → ∞, we get u′2(θ) ≥ 2F(L). This together
with (3.16) contradicts (3.13). We have proved that u is damped.

Theorem 3.8. Let Md be the set of all B < 0 such that corresponding solutions of problem (1.1),
(1.10) are damped. Then Md is open in (−∞, 0).

Proof. Let B0 ∈ Md and u0 be a solution of (1.1), (1.10) with B = B0. So, u0 is damped and u0

is also a solution of (2.13).
(a) Let u0 be oscillatory. Then its first local maximum belongs to (0, L). Lemma 2.3

guarantees that if B is sufficiently close to B0, the corresponding solution u of (2.13), (1.10)
has also its first local maximum in (0, L). This means that there exist a1 > 0 and A1 ∈ (0, L)
such that u satisfies (2.26). Now, we can continue as in the proof of Theorem 3.3 using the
arguments of Steps 2–5 and Remark 3.2 to get that u is damped.

(b) Let u0 have at most a finite number of zeros. Then, by Theorem 3.3, u0 fulfils (2.21).
Choose c0 ∈ (0, F(L)/3). Since u0 fulfils (2.22), we get by integration over [0, t]

u′2
0 (t)
2

+
∫ t

0

p′(s)
p(s)

u′2
0 (s)ds = F(B0) − F(u0(t)), t > 0. (3.18)

For t → ∞,we get, by (2.21),

∫∞

0

p′(s)
p(s)

u′2
0 (s)ds = F(B0). (3.19)

Therefore, we can find b > 0 such that

∫∞

b

p′(s)
p(s)

u′2
0 (s)ds < c0. (3.20)

Let Mb be the constant of Lemma 2.1. Choose ε ∈ (0, c0/2Mb). Assume that B < 0 and u
is a corresponding solution of problem (2.13), (1.10). Using Lemma 2.1, Lemma 2.3 and the
continuity of F, we can find δ > 0 such that if |B − B0| < δ, then

|F(B) − F(B0)| < c0, (3.21)
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moreover |u′
0(t) − u′(t)| < ε for t ∈ [0, b] and

∫b

0

p′(s)
p(s)

∣
∣
∣u′2

0 (s) − u′2(s)
∣
∣
∣ds ≤ max

t∈[0,b]

∣
∣u′

0(t) − u′(t)
∣
∣
∫b

0

p′(s)
p(s)

(∣∣u′
0(s)

∣
∣ +

∣
∣u′(s)

∣
∣)ds

≤ ε · 2Mb <
c0

2Mb
2Mb = c0.

(3.22)

Therefore, we have

∫b

0

p′(s)
p(s)

∣
∣
∣u′2

0 (s) − u′2(s)
∣
∣
∣ds < c0. (3.23)

Consequently, integrating (2.13) over [0, t] and using (3.19)–(3.23), we get for t ≥ b

F(B) − F̃(u(t)) =
∫ t

0

p′(s)
p(s)

u′2(s)ds +
u′2(t)
2

≥
∫ t

0

p′(s)
p(s)

u′2(s)ds

≥
∫b

0

p′(s)
p(s)

u′2(s)ds =
∫b

0

p′(s)
p(s)

(
u′2(s) − u′2

0 (s)
)
ds

+
∫b

0

p′(s)
p(s)

u′2
0 (s)ds > −c0 +

∫b

0

p′(s)
p(s)

u′2
0 (s)ds

= −c0 +
∫∞

0

p′(s)
p(s)

u′2
0 (s)ds −

∫∞

b

p′(s)
p(s)

u′2
0 (s)ds

> −c0 + F(B0) − c0 = −2c0 + F(B0) − F(B) + F(B)

> −3c0 + F(B).

(3.24)

We get F̃(u(t)) < 3c0 < F(L) for t ≥ b. Therefore, F̃(u(t)) = F(u(t)) for t ≥ b and, due to
(1.4)–(1.6),

sup{u(t) : t ∈ [b,∞)} < L. (3.25)

Assume that there is b0 ∈ (0, b) such that u(b0) = L, u′(b0) > 0. Then, since (p(t)u′(t))′ = 0 if
t > b0 and u(t) > L, we get u′(t) > 0 and u(t) > L for t > b0, contrary to (3.25). Hence we get
that u fulfils (3.1).

4. Escape Solutions

During the whole section, we assume (1.3)–(1.8) and (1.13). We prove that problem (1.1),
(1.10) has at least one escape solution. According to Section 1 and Remark 2.2, we work with
the following definitions.



Boundary Value Problems 13

Definition 4.1. Let c > 0. A solution of problem (1.1), (1.10) on [0, c] is called an escape solution
if

u(c) = L, u′(t) > 0 for t ∈ (0, c]. (4.1)

Definition 4.2. A solution u of problem (2.13), (1.10) is called an escape solution, if there exists
c > 0 such that

u(c) = L, u′(t) > 0 for t ∈ (0,∞). (4.2)

Remark 4.3. If u is an escape solution of problem (2.13), (1.10), then u is an escape solution of
problem (1.1), (1.10) on some interval [0, c].

Theorem 4.4 (on three types of solutions.). Let u be a solution of problem (1.1), (1.10). Then u is
just one of the following three types

(I) u is damped;

(II) u is homoclinic;

(III) u is escape.

Proof. By Definition 3.1, u is damped if and only if (3.1) holds. By Lemma 3.5 and
Definition 1.3, u is homoclinic if and only if (3.10) holds. Let u be neither damped nor
homoclinic. Then there exists c > 0 such that u is bounded on [0, c], u(c) = L, u′(c) > 0. So, u
has its first zero θ ∈ (0, c) and u′(t) > 0 on (0, θ]. Assume that there exist a1 ∈ (θ, c) such that
u(a1) ∈ (0, L) and u′(a1) = 0. Then, by Lemma 2.6, either u fulfils (2.21) or u has its second
zero and, arguing as in Steps 2–5 of the proof of Theorem 3.3, we deduce that u is a damped
solution. This contradiction implies that u′(t) > 0 on (0, c]. Therefore, by Definition 4.1, u is
an escape solution.

Theorem 4.5. Let Me ⊂ (−∞, 0) be the set of all B such that the corresponding solutions of (1.1),
(1.10) are escape solutions. The setMe is open in (−∞, 0).

Proof. Let B0 ∈ Me and u0 be a solution of problem (1.1), (1.10)with B = B0. So, u0 fulfils (4.1)
for some c > 0. Let ũ0 be a solution of problem (2.13), (1.10) with B = B0. Then u0 = ũ0 on
[0, c] and ũ0 is increasing on [c,∞). There exists ε > 0 and c0 > c such that ũ0(c0) = L + ε. Let
u1 be a solution of problem (2.13), (1.10) for some B1 < 0. Lemma 2.3 yields δ > 0 such that
if |B1 − B0| < δ, then u1(c0) > ũ0(c0) − ε = L. Therefore, u1 is an escape solution of problem
(2.13), (1.10). By Remark 4.3, u1 is also an escape solution of problem (1.1), (1.10) on some
interval [0, c1] ⊂ [0, c0].

To prove that the set Me of Theorem 4.5 is nonempty we will need the following two
lemmas.

Lemma 4.6. Let B < 0. Assume that u is a solution of problem (1.1), (1.10) on [0, b) and [0, b) is a
maximal interval where u is increasing and u(t) ∈ [B, L] for t ∈ [0, b). Then

∫ t

0
2F(u(s))p(s)p′(s)ds = F(u(t))p2(t) +

1
2
p2(t)u′2(t), t ∈ (0, b). (4.3)
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Proof.

Step 1. We show that the interval (0, b) is nonempty. Since u(0) = B < 0 and f satisfies (1.3),
(1.13), we can find θ > 0 such that

u(t) < 0, f(u(t)) > 0 for t ∈ (0, θ). (4.4)

Integrating (1.1) over (0, t), we obtain

u′(t) =
1

p(t)

∫ t

0
p(s)f(u(s))ds > 0 for t ∈ (0, θ]. (4.5)

So, u is an increasing solution of problem (1.1), (1.10) on [0, θ] and u(t) ∈ [B, 0] for t ∈ [0, θ].
Therefore the nonempty interval [0, b) exists.

Step 2. By multiplication of (1.1) by pu′ and integration over (0, t),we obtain

1
2
p2(t)u′2(t) =

∫ t

0
f(u(s))u′(s)p2(s)ds, t ∈ (0, b). (4.6)

Using the “per partes” integration, we get for t ∈ (0, b)

∫ t

0
f(u(s))u′(s)p2(s)ds = −F(u(t))p2(t) +

∫ t

0
2F(u(s))p(s)p′(s)ds. (4.7)

This relation together with (4.6) implies (4.3).

Remark 4.7. Consider a solution u of Lemma 4.6. If u is an escape solution, then b < ∞.
Assume that u is not an escape solution. Then both possibilities b < ∞ and b = ∞ can occur.
Let b < ∞. By Theorem 4.4 and Lemma 2.5, u(b) ∈ (0, L), u′(b) = 0. Let b = ∞. We write
u(b) = limt→∞u(t), u′(b) = limt→∞u′(t). Using Lemmas 3.5 and 2.5 and Theorem 4.4, we
obtain u′(b) = 0 and either u(b) = 0 or u(b) = L.

Lemma 4.8. Let C < B and let {Bn}∞n=1 ⊂ (−∞, C). Then for each n ∈ N :

(i) there exists a solution un of problem (1.1), (1.10) with B = Bn,

(ii) there exists bn > 0 such that [0, bn) is the maximal interval on which the solution un is
increasing and its values in this interval are contained in [Bn, L],

(iii) there exists γn ∈ (0, bn) satisfying un(γn) = C.

If the sequence {γn}∞n=1 is unbounded, then there exists � ∈ N such that u� is an escape solution.
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Proof. Similar arugmets can be found in [12]. By Lemma 2.1, the assertion (i) holds. The
arguments in Step 1 of the proof of Lemma 4.6 imply (ii). The strict monotonicity of un and
Remark 4.7 yields a unique γn. Assume that {γn}∞n=1 is unbounded. Then

lim
n→∞

γn = ∞, γn < bn, n ∈ N (4.8)

(otherwise, we take a subsequence). Assume on the contrary that for any n ∈ N, un is not an
escape solution. Choose n ∈ N. Then, by Remark 4.7,

un(bn) ∈ [0, L], u′
n(bn) = 0. (4.9)

Due to (4.9), (1.2) and (ii) there exists γn ∈ [γn, bn) satisfying

u′
n

(
γn
)
= max

{
u′
n(t) : t ∈

[
γn, bn

)}
. (4.10)

By (i) and (ii), un satisfies

u′′
n(t) +

p′(t)
p(t)

u′
n(t) = f(un(t)), t ∈ (0, bn). (4.11)

Integrating it over [0, t],we get

u′2
n (t)
2

+ F(un(t)) = F(Bn) −
∫ t

0

p′(s)
p(s)

u′2
n (s)ds, t ∈ (0, bn). (4.12)

Put

En(t) =
u′2
n (t)
2

+ F(un(t)), t ∈ (0, bn). (4.13)

Then, by (4.12),

dEn(t)
dt

= −p
′(t)
p(t)

u′2
n (t) < 0, t ∈ (0, bn). (4.14)

We see that En is decreasing. From (1.4) and (1.6) we get that F is increasing on [0, L] and
consequently by (4.9) and (4.13), we have

En

(
γn
)
> F

(
un

(
γn
))

= F(C), En(bn) = F(un(bn)) ≤ F(L). (4.15)

Integrating (4.14) over (γn, bn) and using (4.10), we obtain

En

(
γn
) − En(bn) =

∫bn

γn

p′(t)
p(t)

u′2
n (t)dt ≤ u′

n

(
γn

)
(L − C)Kn, (4.16)
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where

Kn = sup
{
p′(t)
p(t)

: t ∈ [
γn, bn

)
}

∈ (0,∞). (4.17)

Further, by (4.15),

F(C) < En

(
γn
) ≤ F(L) + u′

n

(
γn
)
(L − C)Kn, (4.18)

F(C) − F(L)
L − C

· 1
Kn

< u′
n

(
γn
)
. (4.19)

Conditions (1.8) and (4.8) yield limn→∞Kn = 0, which implies

lim
n→∞

u′
n

(
γn
)
= ∞. (4.20)

By (4.13) and (4.18),

u′2
n

(
γn
)

2
≤ En

(
γn
) ≤ En

(
γn
) ≤ F(L) + u′

n

(
γn

)
(L − C)Kn, (4.21)

and consequently

u′
n

(
γn
)
(
1
2
u′
n

(
γn
) − (L − C)Kn

)
≤ F(L) < ∞, n ∈ N, (4.22)

which contradicts (4.20). Therefore, at least one escape solution of (1.1), (1.10) with B < B
must exist.

Theorem 4.9 (on escape solution.). Assume that (1.3)–(1.8) and (1.13) hold and let

0 < lim inf
x→−∞

|x|
f(x)

< ∞. (4.23)

Then there exists B < B such that the corresponding solution of problem (1.1), (1.10) is an escape
solution.

Proof. Let C < B and let {Bn}∞n=1, {un}∞n=1, {bn}∞n=1, and {γn}∞n=1 be sequences from Lemma 4.8.
Moreover, let

lim
n→∞

Bn = −∞. (4.24)

By (4.24) we can find n0 ∈ N such that Bn < 2C for n ≥ n0. We assume that for any n ∈ N, un

is not an escape solution and we construct a contradiction.
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Step 1. We derive some inequality for u′
n. By Remark 4.7, we have

un(bn) ∈ [0, L], u′
n(bn) = 0, n ∈ N, (4.25)

and, by Lemma 4.8, the sequence {γn}∞n=1 is bounded. Therefore there exists Γ ∈ (0,∞) such
that

γn ≤ Γ, n ∈ N. (4.26)

Choose an arbitrary n ≥ n0. According to Lemma 4.6, un satisfies equality (4.3), that is

∫ t

0
2F(un(s))p(s)p′(s)ds = F(un(t))p2(t) +

1
2
p2(t)u′2

n (t), t ∈ (0, bn). (4.27)

Since un(0) = Bn < 2C < 0 and un is increasing on [0, bn), there exists a unique γn ∈ (0, γn)
such that

un

(
γn
)
=

1
2
Bn < C = un

(
γn
)
. (4.28)

Having in mind, due to (1.4)–(1.8), that the inequality

F(un(t))p(t)p′(t) ≥ 0 for t ∈ [0, bn) (4.29)

holds, we get

∫ t

0
2F(un(s))p(s)p′(s)ds >

∫ γn

0
2F(un(s))p(s)p′(s)ds, t ∈ [

γn, bn
)
. (4.30)

By virtue of (1.6) and (1.13), we see that F is decreasing on (−∞, 0), which yields

min
{
F(un(t)) : t ∈

[
0, γn

]}
= F

(
un

(
γn
))

= F

(
Bn

2

)
. (4.31)

Hence,

∫ t

0
2F(un(s))p(s)p′(s)ds > F

(
Bn

2

)
p2
(
γn
)
, t ∈ [

γn, bn
)
. (4.32)

Since un(γn) = C and un(bn) ∈ [0, L], the monotonicity of un yields un(t) ∈ [C, L] for t ∈
[γn, bn], and consequently

max
{
F(un(t)) : t ∈

[
γn, bn

)}
= F(C). (4.33)
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Therefore (4.27) and (4.32) give

F

(
Bn

2

)
p2
(
γn
)

p2(t)
< F(C) +

1
2
u′2
n (t), t ∈ [

γn, bn
)
. (4.34)

Step 2. We prove that the sequence {γn}∞n=1 is bounded below by some positive number. Since
un is a solution of (1.1) on [0, bn), we have

(
p(t)u′

n(t)
)′ = p(t)f(un(t)), t ∈ (

0, γn
)
. (4.35)

Integrating it, we get

u′
n(t) =

1
p(t)

∫ t

0
p(s)f(un(s))ds ≤ f(σnBn)

P(t)
p(t)

, t ∈ (
0, γn

)
, (4.36)

where σn ∈ [1/2, 1] satisfies f(σnBn) = max{f(x) : x ∈ [Bn, (1/2)Bn]} and P(t) =
∫ t
0p(s) ds.

Having in mind (1.8), we see that p is increasing and 0 < P(t)/p(t) ≤ t for t ∈ (0,∞).
Consequently

lim
t→ 0+

∫ t

0

P(s)
p(s)

ds = 0. (4.37)

Integrating (4.36) over (0, γn), we obtain

1
2
Bn − Bn ≤ f(σnBn)

∫ γn

0

P(s)
p(s)

ds, (4.38)

and hence

∫ γn

0

P(s)
p(s)

ds ≥ 1
2

|Bn|
f(σnBn)

. (4.39)

By (4.23) we get

lim inf
n→∞

1
2

|Bn|
f(σnBn)

= lim inf
n→∞

1
2σn

|σnBn|
f(σnBn)

> 0, (4.40)

which, due to (4.39), yields

lim inf
n→∞

∫ γn

0

P(s)
p(s)

ds > 0. (4.41)

So, by virtue of (4.37), there exists γ0 > 0 such that γn ≥ γ0 for n ≥ n0.
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Step 3. We construct a contradiction. Putting γ0 in (4.34), we have

F

(
Bn

2

)
p2
(
γ0
)

p2(t)
− F(C) <

1
2
u′2
n (t), t ∈ [

γn, bn
)
. (4.42)

Due to (4.23), limx→−∞f(x) = ∞. Therefore, limx→−∞F(x) = ∞, and consequently, by (4.24),

lim
n→∞

F

(
Bn

2

)
= ∞. (4.43)

In order to get a contradiction, we distinguish two cases.

Case 1. Let lim supn→∞bn < ∞, that is, we can find b0 > 0, n1 ∈ N, n1 ≥ n0, such that

bn ≤ b0 for n ∈ N, n ≥ n1. (4.44)

Then, by (4.43), for each sufficiently large n ∈ N, we get

F

(
Bn

2

)
>

p2(b0)
p2
(
γ0
)
(
F(C) +

1
2

)
. (4.45)

Putting it to (4.42), we have

1
2
< F

(
Bn

2

)
p2
(
γ0
)

p2(b0)
− F(C) <

1
2
u′2
n (t), t ∈ [

γn, bn
)
. (4.46)

Therefore 1 ≤ u′
n(bn), contrary to (4.25).

Case 2. Let lim supn→∞bn = ∞. We may assume limn→∞bn = ∞ (otherwise we take a
subsequence). Then there exists n2 ∈ N, n2 ≥ n0, such that

Γ + 1 ≤ bn for n ∈ N, n ≥ n2. (4.47)

Due to (4.43), for each sufficiently large n ∈ N, we get

F

(
Bn

2

)
>

p2(Γ + 1)
p2
(
γ0
)

(
F(C) +

1
2
(L − C)2

)
. (4.48)

Putting it to (4.42), we have

1
2
(L − C)2 < F

(
Bn

2

)
p2
(
γ0
)

p2(Γ + 1)
− F(C) <

1
2
u′2
n (t), t ∈ [

γn,Γ + 1
]
. (4.49)
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Therefore, L − C < u′
n(t) for t ∈ [γn,Γ + 1]. Integrating it over [γn,Γ + 1], we obtain

(L − C)
(
Γ + 1 − γn

)
< un(Γ + 1) − un

(
γn
)
= un(Γ + 1) − C, (4.50)

which yields, by (4.26), L < un(Γ + 1) and also L < un(bn), contrary to (4.25). These
contradictions obtained in both cases imply that there exists � ∈ N such that u� is an escape
solution.

5. Homoclinic Solution

The following theorem provides the existence of a homoclinic solution under the assumption
that the function f in (1.1) has a linear behaviour near −∞. According to Definition 1.2, a
homoclinic solution is a strictly increasing solution of problem (1.1), (1.2).

Theorem 5.1 (on homoclinic solution). Let the assumptions of Theorem 4.9 be satisfied. Then there
exists B < B such that the corresponding solution of problem (1.1), (1.10) is a homoclinic solution.

Proof. For B < 0 denote by uB the corresponding solution of problem (1.1), (1.10). Let Md

and Me be the set of all B < 0 such that uB is a damped solution and an escape solution,
respectively. By Theorems 3.7, 3.8, 4.5, and 4.9, the sets Md and Me are nonempty and open
in (−∞, 0). Therefore, the setMh = (−∞, 0) \ (Md ∪Me) is nonempty. Choose B∗ ∈ Mh. Then,
by Theorem 4.4, uB∗ is a homoclinic solution. Moreover, due to Theorem 3.7, B∗ < B.

Example 5.2. The function

f(x) =

⎧
⎨

⎩

c0x for x < 0,

x(x − L) for x ∈ [0, L],
(5.1)

where c0 is a negative constant, satisfies the conditions (1.3)–(1.6), (1.13), and (4.23).
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