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Copyright q 2010 Patrick Winkert. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Our aim is the study of a class of nonlinear elliptic problems under Neumann conditions involving
the p-Laplacian. We prove the existence of at least three nontrivial solutions, which means that
we get two extremal constant-sign solutions and one sign-changing solution by using truncation
techniques and comparison principles for nonlinear elliptic differential inequalities. We also apply
the properties of the Fuc̆ik spectrum of the p-Laplacian and, in particular, we make use of
variational and topological tools, for example, critical point theory, Mountain-Pass Theorem, and
the Second Deformation Lemma.

1. Introduction

Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω. We consider the following

nonlinear elliptic boundary value problem. Find u ∈ W1,p(Ω)\{0} and constants a ∈ R, b ∈ R

such that

−Δpu = f(x, u) − |u|p−2u in Ω,

|∇u|p−2 ∂u
∂ν

= a(u+)p−1 − b
(
u−)p−1 + g(x, u) on ∂Ω,

(1.1)

where −Δpu = −div(|∇u|p−2∇u), 1 < p < ∞, is the negative p-Laplacian, ∂u/∂ν denotes
the outer normal derivative of u, and u+ = max{u, 0} as well as u− = max{−u, 0} are the
positive and negative parts of u, respectively. The nonlinearities f : Ω × R → R and g :
∂Ω × R → R are some Carathéodory functions which are bounded on bounded sets. For
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reasons of simplification, we drop the notation for the trace operator γ : W1,p(Ω) → Lp(∂Ω)
which is used on the functions defined on the boundary ∂Ω.

The motivation of our study is a recent paper of the author in [1] in which problem
(1.1) was treated in case a = b. We extend this approach and prove the existence of
multiple solutions for the more general problem (1.1). To be precise, the existence of a
smallest positive solution, a greatest negative solution, as well as a sign-changing solution
of problem (1.1) is proved by using variational and topological tools, for example, critical
point theory, Mountain-Pass Theorem, and the Second Deformation Lemma. Additionally,
the Fuc̆ik spectrum for the p-Laplacian takes an important part in our treatments.

Neumann boundary value problems in the form of (1.1) arise in different areas of pure
and applied mathematics, for example, in the theory of quasiregular and quasiconformal
mappings in Riemannian manifolds with boundary (see [2, 3]), in the study of optimal
constants for the Sobolev trace embedding (see [4–7]), or at non-Newtonian fluids, flow
through porus media, nonlinear elasticity, reaction diffusion problems, glaciology, and so on
(see [8–11]).

The existence of multiple solutions for Neumann problems like those in the form of
(1.1) has been studied by a number of authors, such as, for example, the authors of [12–15],
and homogeneous Neumann boundary value problems were considered in [16, 17] and [15],
respectively. Analogous results for the Dirichlet problem have been recently obtained in [18–
21]. Further references can also be found in the bibliography of [1].

In our consideration, the nonlinearities f and g only need to be Carathéodory
functions which are bounded on bounded sets whereby their growth does not need to
be necessarily polynomial. The novelty of our paper is the fact that we do not need
differentiability, polynomial growth, or some integral conditions on the mappings f and g.

First, we have to make an analysis of the associated spectrum of (1.1). The Fuc̆ik
spectrum for the p-Laplacian with a nonlinear boundary condition is defined as the set Σ̃p

of (a, b) ∈ R × R such that

−Δpu = −|u|p−2u in Ω,

|∇u|p−2 ∂u
∂ν

= a(u+)p−1 − b
(
u−)p−1 on ∂Ω,

(1.2)

has a nontrivial solution. In view of the identity

|u|p−2u = |u|p−2(u+ − u−) = (u+)p−1 − (u−)p−1, (1.3)

we see at once that for a = b = λ problem (1.2) reduces to the Steklov eigenvalue problem

−Δpu = −|u|p−2u in Ω,

|∇u|p−2 ∂u
∂ν

= λ|u|p−2u on ∂Ω.
(1.4)

We say that λ is an eigenvalue if (1.4) has nontrivial solutions. The first eigenvalue λ1 > 0 is
isolated and simple and has a first eigenfunction ϕ1 which is strictly positive in Ω (see [22]).
Furthermore, one can show that ϕ1 belongs to L∞(Ω) (cf., [23, Lemma 5.6 and Theorem 4.3]
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or [24, Theorem 4.1]), and along with the results of Lieberman in [25, Theorem 2] it holds
that ϕ1 ∈ C1,α(Ω). This fact combined with ϕ1(x) > 0 in Ω yields ϕ1 ∈ int(C1(Ω)+), where
int(C1(Ω)+) denotes the interior of the positive cone C1(Ω)+ = {u ∈ C1(Ω) : u(x) ≥ 0, ∀x ∈
Ω} in the Banach space C1(Ω), given by

int
(
C1
(
Ω
)

+

)
=
{
u ∈ C1

(
Ω
)
: u(x) > 0, ∀x ∈ Ω

}
. (1.5)

Let us recall some properties of the Fuc̆ik spectrum. If λ is an eigenvalue of (1.4), then the
point (λ, λ) belongs to Σ̃p. Since the first eigenfunction of (1.4) is positive, Σ̃p clearly contains
the two lines R × {λ1} and {λ1} × R. A first nontrivial curve C in Σ̃p through (λ2, λ2) was
constructed and variationally characterized by a mountain-pass procedure by Martı́nez and
Rossi [26]. This yields the existence of a continuous path in {u ∈ W1,p(Ω) : I(a,b)(u) <
0, ‖u‖Lp(∂Ω) = 1} joining −ϕ1 and ϕ1 provided that (a, b) is above the curve C. The functional
I(a,b) on W1,p(Ω) is given by

I(a,b)(u) =
∫

Ω

(|∇u|p + |u|p)dx −
∫

∂Ω

(
a(u+)p + b

(
u−)p)dσ. (1.6)

Due to the fact that λ2 belongs to C, there exists a variational characterization of the second
eigenvalue of (1.4)meaning that λ2 can be represented as

λ2 = inf
g∈Π

max
u∈g([−1,1])

∫

Ω

(|∇u|p + |u|p)dx, (1.7)

where

Π =
{
g ∈ C([−1, 1], S) | g(−1) = −ϕ1, g(1) = ϕ1

}
,

S =
{
u ∈ W1,p(Ω) :

∫

∂Ω
|u|pdσ = 1

}
.

(1.8)

The proof of this result is given in [26].
An important part in our considerations takes the followingNeumann boundary value

problem defined by

−Δpu = −ς|u|p−2u + 1 in Ω,

|∇u|p−2 ∂u
∂ν

= 1 on ∂Ω,
(1.9)

where ς > 1 is a constant. As pointed out in [1], there exists a unique solution e ∈ int(C1(Ω)+)
of problem (1.9) which is required for the construction of sub- and supersolutions of
problem (1.1).
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2. Notations and Hypotheses

Now, we impose the following conditions on the nonlinearities f and g in problem (1.1). The
maps f : Ω × R → R and g : ∂Ω × R → R are Carathéodory functions, which means that
they are measurable in the first argument and continuous in the second one. Furthermore, we
suppose the following assumptions.

(H1) (f1)

lim
s→ 0

(
f(x, s)

|s|p−2s

)

= 0, uniformly with respect to a.a. x ∈ Ω. (2.1)

(f2)

lim
|s|→∞

(
f(x, s)

|s|p−2s

)

= −∞, uniformly with respect to a.a. x ∈ Ω. (2.2)

(f3) f is bounded on bounded sets.

(f4) There exists δf > 0 such that

f(x, s)

|s|p−2s
≥ 0, for all 0 < |s| ≤ δf for a.a. x ∈ Ω. (2.3)

(H2) (g1)

lim
s→ 0

(
g(x, s)

|s|p−2s

)

= 0, uniformly with respect to a.a. x ∈ ∂Ω. (2.4)

(g2)

lim
|s|→∞

(
g(x, s)

|s|p−2s

)

= −∞, uniformly with respect to a.a. x ∈ ∂Ω. (2.5)

(g3) g is bounded on bounded sets.

(g4) g satisfies the condition

∣∣g(x1, s1) − g(x2, s2)
∣∣ ≤ L

[|x1 − x2|α + |s1 − s2|α
]
, (2.6)

for all pairs (x1, s1), (x2, s2) in ∂Ω× [−M0,M0], whereM0 is a positive constant and
α ∈ (0, 1].

(H3) Let (a, b) ∈ R
2
+ be above the first nontrivial curve C of the Fuc̆ik spectrum

constructed in [26] (see Figure 1).
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Note that (H2)(g4) implies that the function (x, s) �→ a|s|p−1 − b|s|p−1 + g(x, s) fulfills a
condition as in (H2)(g4), too. Moreover, we see at once that u = 0 is a trivial solution
of problem (1.1) because of the conditions (H1)(f1) and (H2)(g1), which guarantees that
f(x, 0) = g(x, 0) = 0. It should be noted that hypothesis (H3) includes that a, b > λ1 (see [26]
or Figure 1).

Example 2.1. Let the functions f : Ω × R → R and g : ∂Ω × R → R be given by

f(x, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|s|p−2s(1 + (s + 1)e−s) if s ≤ −1,

sgn(s)
|s|p
2

(|(s − 1) cos(s + 1)| + s + 1) if − 1 ≤ s ≤ 1,

sp−1e1−s − |x|(s − 1)sp−1es if s ≥ 1,

g(x, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|s|p−2s(s + 1 + es+1
)

if s ≤ −1,
|s|p−1se(s2−1)

√
|x| if − 1 ≤ s ≤ 1,

sp−1(cos(1 − s) + (1 − s)es) if s ≥ 1.

(2.7)

Then all conditions in (H1)(f1)–(f4) and (H2)(g1)–(g4) are fulfilled.

Definition 2.2. A function u ∈ W1,p(Ω) is called a weak solution of (1.1) if the following holds:

∫

Ω
|∇u|p−2∇u∇ϕdx =

∫

Ω

(
f(x, u) − |u|p−2u

)
ϕdx

+
∫

∂Ω

(
a(u+)p−1 − b

(
u−)p−1 + g(x, u)

)
ϕdσ, ∀ϕ ∈ W1,p(Ω).

(2.8)

Definition 2.3. A function u ∈ W1,p(Ω) is called a subsolution of (1.1) if the following holds:

∫

Ω

∣∣∇u
∣∣p−2∇u∇ϕdx ≤

∫

Ω

(
f
(
x, u

) − ∣∣u∣∣p−2u
)
ϕdx

+
∫

∂Ω

(
a
(
u+)p−1 − b

(
u−)p−1 + g

(
x, u

))
ϕdσ, ∀ϕ ∈ W1,p(Ω)+.

(2.9)

Definition 2.4. A function u ∈ W1,p(Ω) is called a supersolution of (1.1) if the following holds:

∫

Ω
|∇u|p−2∇u∇ϕdx ≥

∫

Ω

(
f(x, u) − |u|p−2u

)
ϕdx

+
∫

∂Ω

(
a
(
u+)p−1 − b

(
u−)p−1 + g(x, u)

)
ϕdσ, ∀ϕ ∈ W1,p(Ω)+.

(2.10)
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Figure 1: Fuc̆ik spectrum

We recall that W1,p(Ω)+ := {ϕ ∈ W1,p(Ω) : ϕ ≥ 0} denotes all nonnegative functions of
W1,p(Ω). Furthermore, for functions u, v,w ∈ W1,p(Ω) satisfying v ≤ u ≤ w, we have the
relation γ(v) ≤ γ(u) ≤ γ(w), where γ : W1,p(Ω) → Lp(∂Ω) stands for the well-known trace
operator.

3. Extremal Constant-Sign Solutions

For the rest of the paper we denote by ϕ1 ∈ int(C1(Ω)+) the first eigenfunction of the Steklov
eigenvalue problem (1.4) corresponding to its first eigenvalue λ1. Furthermore, the function
e ∈ int(C1(Ω)+) stands for the unique solution of the auxiliary Neumann boundary value
problem defined in (1.9). Our first lemma reads as follows.

Lemma 3.1. Let conditions (H1)-(H2) be satisfied and let a, b > λ1. Then there exist constants
ϑa, ϑb > 0 such that ϑae and −ϑbe are a positive supersolution and a negative subsolution,
respectively, of problem (1.1).

Proof. Setting u = ϑaewith a positive constant ϑa to be specified and considering the auxiliary
problem (1.9), we obtain

∫

Ω
|∇(ϑae)|p−2∇(ϑae)∇ϕdx = −ς

∫

Ω
(ϑae)

p−1ϕdx +
∫

Ω
ϑ
p−1
a ϕ dx

+
∫

∂Ω
ϑ
p−1
a ϕ dσ, ∀ϕ ∈ W1,p(Ω).

(3.1)
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In order to satisfy Definition 2.4 for u = ϑae, we have to show that the following inequality
holds true meaning:

∫

Ω

(
ϑ
p−1
a − c̃(ϑae)

p−1 − f(x, ϑae)
)
ϕdx +

∫

∂Ω

(
ϑ
p−1
a − a(ϑae)

p−1 − g(x, ϑae)
)
ϕdσ ≥ 0, (3.2)

where c̃ = ς − 1 with c̃ > 0. Condition (H1)(f2) implies the existence of sς > 0 such that

f(x, s)
sp−1

< −c̃, for a.a. x ∈ Ω and all s > sς, (3.3)

and due to (H1)(f3), we have

∣∣∣−f(x, s) − c̃sp−1
∣∣∣ ≤

∣∣f(x, s)
∣∣ + c̃sp−1 ≤ cς, for a.a. x ∈ Ω and all s ∈ [

0, sς
]
. (3.4)

Hence, we get

f(x, s) ≤ −c̃sp−1 + cς, for a.a. x ∈ Ω and all s ≥ 0. (3.5)

Because of hypothesis (H2)(g2), there exists sa > 0 such that

g(x, s)
sp−1

< −a, for a.a. x ∈ ∂Ω and all s > sa, (3.6)

and thanks to condition (H2)(g3), we find a constant ca > 0 such that

∣∣∣−g(x, s) − asp−1
∣∣∣ ≤

∣∣g(x, s)
∣∣ + asp−1 ≤ ca, for a.a. x ∈ ∂Ω and all s ∈ [0, sa]. (3.7)

Finally, we have

g(x, s) ≤ −asp−1 + ca, for a.a. x ∈ ∂Ω and all s ≥ 0. (3.8)

Using the inequality in (3.5) to the first integral in (3.2) yields

∫

Ω

(
ϑ
p−1
a − c̃(ϑae)

p−1 − f(x, ϑae)
)
ϕdx ≥

∫

Ω

(
ϑ
p−1
a − c̃(ϑae)

p−1 + c̃(ϑae)
p−1 − cς

)
ϕdx

=
∫

Ω

(
ϑ
p−1
a − cς

)
ϕdx,

(3.9)



8 Boundary Value Problems

which proves its nonnegativity if ϑa ≥ c
1/(p−1)
ς . Applying (3.8) to the second integral in (3.2)

ensures that

∫

∂Ω

(
ϑ
p−1
a −a(ϑae)

p−1−g(x, ϑae)
)
ϕdx ≥

∫

∂Ω

(
ϑ
p−1
a −a(ϑae)

p−1+a(ϑae)
p−1 − ca

)
ϕdx

≥
∫

∂Ω

(
ϑ
p−1
a − ca

)
ϕdx.

(3.10)

We take ϑa := max{c1/(p−1)ς , c
1/(p−1)
a } to verify that both integrals in (3.2) are nonnegative.

Hence, the function u = ϑae is in fact a positive supersolution of problem (1.1). In a similar
way one proves that u = −ϑbe is a negative subsolution, where we apply the following
estimates:

f(x, s) ≥ −c̃sp−1 − cς, for a.a. x ∈ Ω and all s ≤ 0,

g(x, s) ≥ −bsp−1 − cb, for a.a. x ∈ ∂Ω and all s ≤ 0.
(3.11)

This completes the proof.

The next two lemmas show that constant multipliers of ϕ1 may be sub- and
supersolution of (1.1). More precisely, we have the following result.

Lemma 3.2. Assume that (H1)-(H2) are satisfied. If a > λ1, then for ε > 0 sufficiently small and any
b ∈ R the function εϕ1 is a positive subsolution of problem (1.1).

Proof. The Steklov eigenvalue problem (1.4) implies for all ϕ ∈ W1,p(Ω),

∫

Ω

∣∣∇(εϕ1
)∣∣p−2∇(εϕ1

)∇ϕdx = −
∫

Ω

(
εϕ1

)p−1
ϕdx +

∫

∂Ω
λ1
(
εϕ1

)p−1
ϕdσ. (3.12)

Definition 2.3 is satisfied for u = εϕ1 provided that the inequality

∫

Ω
−f(x, εϕ1

)
ϕdx +

∫

∂Ω

(
(λ1 − a)

(
εϕ1

)p−1 − g
(
x, εϕ1

))
ϕdσ ≤ 0 (3.13)

is valid for all ϕ ∈ W1,p(Ω)+. With regard to hypothesis (H1)(f4), we obtain, for ε ∈
(0, δf/‖ϕ1‖∞],

∫

Ω
−f(x, εϕ1

)
ϕdx =

∫

Ω
−f

(
x, εϕ1

)

(
εϕ1

)p−1
(
εϕ1

)p−1
ϕdx ≤ 0, (3.14)

where ‖ · ‖∞ denotes the usual supremum norm. Thanks to condition (H2)(g1), there exists
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a number δa > 0 such that

∣
∣g(x, s)

∣
∣

|s|p−1
< a − λ1, for a.a. x ∈ ∂Ω and all 0 < |s| ≤ δa. (3.15)

In case ε ∈ (0, δa/‖ϕ1‖∞],we get

∫

∂Ω

(
(λ1 − a)

(
εϕ1

)p−1 − g
(
x, εϕ1

))
ϕdσ ≤

∫

∂Ω

(

λ1 − a +

∣
∣g
(
x, εϕ

)∣∣
(
εϕ1

)p−1

)
(
εϕ1

)p−1
ϕdσ

<

∫

∂Ω
(λ1 − a + a − λ1)

(
εϕ1

)p−1
ϕdσ

= 0.

(3.16)

Selecting 0 < ε ≤ min{δf/‖ϕ1‖∞, δλ/‖ϕ1‖∞} guarantees that u = εϕ1 is a positive subsolution.

The following lemma on the existence of a negative supersolution can be proved in a
similar way.

Lemma 3.3. Assume that (H1)-(H2) are satisfied. If b > λ1, then for ε > 0 sufficiently small and any
a ∈ R the function −εϕ1 is a negative supersolution of problem (1.1).

Concerning Lemmas 3.1–3.3, we obtain a positive pair [εϕ1, ϑae] and a negative pair
[−ϑbe,−εϕ1] of sub- and supersolutions of problem (1.1) provided that ε > 0 is sufficiently
small.

In the next step we are going to prove the regularity of solutions of problem (1.1)
belonging to the order intervals [0, ϑae] and [−ϑbe, 0], respectively. We also point out that
u = u = 0 is both a subsolution and a supersolution because of the hypotheses (H1)(f1) and
(H2)(g1).

Lemma 3.4. Assume (H1)-(H2) and let a, b > λ1. If u ∈ [0, ϑae] (resp., u ∈ [−ϑbe, 0]) is a solution
of problem (1.1) satisfying u/≡ 0 inΩ, then it holds that u ∈ int(C1(Ω)+) (resp., u ∈ − int(C1(Ω)+)).

Proof. We just show the first case; the other case acts in the same way. Let u be a solution
of (1.1) satisfying 0 ≤ u ≤ ϑae. We directly obtain the L∞-boundedness, and, hence, the
regularity results of Lieberman in [25, Theorem 2] imply that u ∈ C1,α(Ω) with α ∈ (0, 1).
Due to assumptions (H1)(f1), (H1)(f3), (H2)(g1), and (H2)(g3), we obtain the existence of
constants cf , cg > 0 satisfying

∣∣f(x, s)
∣∣ ≤ cfs

p−1, for a.a. x ∈ Ω and all 0 ≤ s ≤ ϑa‖e‖∞,
∣∣g(x, s)

∣∣ ≤ cgs
p−1, for a.a. x ∈ ∂Ω and all 0 ≤ s ≤ ϑa‖e‖∞.

(3.17)
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Applying (3.17) to (1.1) provides

Δpu ≤ c̃up−1, a.e. in Ω, (3.18)

where c̃ is a positive constant. We set β(s) = c̃sp−1 for all s > 0 and use Vázquez’s
strong maximum principle (cf., [27]) which is possible because

∫
0+(1/(sβ(s))

1/p)ds = +∞.
Hence, it holds that u > 0 in Ω. Finally, we suppose the existence of x0 ∈ ∂Ω satisfying
u(x0) = 0. Applying again the maximum principle yields (∂u/∂ν)(x0) < 0. However, because
of g(x0, u(x0)) = g(x0, 0) = 0 in combination with the Neumann condition in (1.1), we
get (∂u/∂ν)(x0) = 0. This is a contradiction and, hence, u > 0 in Ω, which proves that
u ∈ int(C1(Ω)+).

The main result in this section about the existence of extremal constant-sign solutions
is given in the following theorem.

Theorem 3.5. Assume (H1)-(H2). For every a > λ1 and b ∈ R, there exists a smallest positive
solution u+ = u+(a) ∈ int(C1(Ω)+) of (1.1) in the order interval [0, ϑae] with the constant ϑa as in
Lemma 3.1. For every b > λ1 and a ∈ R, there exists a greatest solution u− = u−(b) ∈ − int(C1(Ω)+)
in the order interval [−ϑbe, 0] with the constant ϑb as in Lemma 3.1.

Proof. Let a > λ1. Lemmas 3.1 and 3.2 guarantee that u = εϕ1 ∈ int(C1(Ω)+) is a subsolution
of problem (1.1) and u = ϑae ∈ int(C1(Ω)+) is a supersolution of problem (1.1). Moreover,
we choose ε > 0 sufficiently small such that εϕ1 ≤ ϑae. Applying the method of sub- and
supersolution (see [28]) corresponding to the order interval [εϕ1, ϑae] provides the existence
of a smallest positive solution uε = uε(λ) of problem (1.1) fulfilling εϕ1 ≤ uε ≤ ϑae. In view
of Lemma 3.4, we have uε ∈ int(C1(Ω)+). Hence, for every positive integer n sufficiently
large, there exists a smallest solution un ∈ int(C1(Ω)+) of problem (1.1) in the order interval
[(1/n)ϕ1, ϑae]. We obtain

un ↓ u+ pointwise, (3.19)

with some function u+ : Ω → R satisfying 0 ≤ u+ ≤ ϑae.

Claim 1. u+ is a solution of problem (1.1).

As un ∈ [(1/n)ϕ1, ϑae] and γ(un) ∈ [γ((1/n)ϕ1), γ(ϑae)], we obtain the boundedness
of un in Lp(Ω) and Lp(∂Ω), respectively. Definition 2.2 holds, in particular, for u = un and
ϕ = un, which results in

‖∇un‖pLp(Ω) ≤
∫

Ω

∣∣f(x, un)
∣∣undx + ‖un‖pLp(Ω) + a‖un‖pLp(∂Ω) +

∫

Ω

∣∣g(x, un)
∣∣undσ

≤ a1‖un‖Lp(Ω) + ‖un‖pLp(Ω) + a‖un‖pLp(∂Ω) + a2‖un‖Lp(∂Ω)

≤ a3,

(3.20)

with some positive constants ai, i = 1, . . . , 3 independent of n. Consequently, un is bounded in
W1,p(Ω), and due to the reflexivity ofW1,p(Ω), 1 < p < ∞,we obtain the existence of a weakly
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convergent subsequence of un. Because of the compact embedding W1,p(Ω) ↪→ Lp(Ω), the
monotony of un, and the compactness of the trace operator γ , we get for the entire sequence
un

un ⇀ u+ in W1,p(Ω),

un −→ u+ in Lp(Ω) and for a.a. x ∈ Ω,

un −→ u+ in Lp(∂Ω) and for a.a. x ∈ ∂Ω.

(3.21)

Since un solves problem (1.1), one obtains, for all ϕ ∈ W1,p(Ω),

∫

Ω
|∇un|p−2∇un∇ϕdx =

∫

Ω

(
f(x, un) − u

p−1
n

)
ϕdx +

∫

∂Ω

(
au

p−1
n + g(x, un)

)
ϕdσ. (3.22)

Setting ϕ = un − u+ ∈ W1,p(Ω) in (3.22) results in

∫

Ω
|∇un|p−2∇un∇(un − u+)dx

=
∫

Ω

(
f(x, un) − u

p−1
n

)
(un − u+)dx +

∫

∂Ω

(
au

p−1
n + g(x, un)

)
(un − u+)dσ.

(3.23)

Using (3.21) and the hypotheses (H1)(f3) as well as (H2)(g3) yields

lim sup
n→∞

∫

Ω
|∇un|p−2∇un∇(un − u+)dx ≤ 0, (3.24)

which provides, by the (S+)-property of −Δp on W1,p(Ω) along with (3.21),

un −→ u+ in W1,p(Ω). (3.25)

The uniform boundedness of the sequence (un) in conjunction with the strong convergence
in (3.25) and conditions (H1)(f3) as well as (H2)(g3) admit us to pass to the limit in (3.22).
This shows that u+ is a solution of problem (1.1).

Claim 2. One has u+ ∈ int(C1(Ω)+).

In order to apply Lemma 3.4, we have to prove that u+ /≡ 0. Let us assume that this
assertion is not valid meaning that u+ ≡ 0. From (3.19) it follows that

un(x) ↓ 0 ∀x ∈ Ω. (3.26)

We set

ũn =
un

‖un‖W1,p(Ω)
∀n. (3.27)
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It is clear that the sequence (ũn) is bounded in W1,p(Ω), which ensures the existence of a
weakly convergent subsequence of ũn, denoted again by ũn, such that

ũn ⇀ ũ in W1,p(Ω),

ũn −→ ũ in Lp(Ω) and for a.a. x ∈ Ω,

ũn −→ ũ in Lp(∂Ω) and for a.a. x ∈ ∂Ω,

(3.28)

with some function ũ : Ω → R belonging toW1,p(Ω). In addition, we may suppose that there
are functions z1 ∈ Lp(Ω)+, z2 ∈ Lp(∂Ω)+ such that

|ũn(x)| ≤ z1(x) for a.a. x ∈ Ω,

|ũn(x)| ≤ z2(x) for a.a. x ∈ ∂Ω.
(3.29)

With the aid of (3.22), we obtain for ũn the following variational equation:

∫

Ω
|∇ũn|p−2∇ũn∇ϕdx =

∫

Ω

(
f(x, un)

u
p−1
n

ũ
p−1
n − ũ

p−1
n

)

ϕdx +
∫

∂Ω
aũ

p−1
n ϕdσ

+
∫

∂Ω

g(x, un)

u
p−1
n

ũ
p−1
n ϕdσ, ∀ϕ ∈ W1,p(Ω).

(3.30)

We select ϕ = ũn − ũ ∈ W1,p(Ω) in the last equality to get

∫

Ω
|∇ũn|p−2∇ũn∇(ũn − ũ)dx

=
∫

Ω

(
f(x, un)

u
p−1
n

ũ
p−1
n − ũ

p−1
n

)

(ũn − ũ)dx +
∫

∂Ω
aũ

p−1
n (ũn − ũ)dσ

+
∫

∂Ω

g(x, un)

u
p−1
n

ũ
p−1
n (ũn − ũ)dσ.

(3.31)

Making use of (3.17) in combination with (3.29) results in

∣∣f(x, un(x))
∣∣

u
p−1
n (x)

ũ
p−1
n (x)|ũn(x) − ũ(x)| ≤ cfz1(x)p−1(z1(x) + |ũ(x)|), (3.32)

and, respectively,

∣∣g(x, un(x))
∣∣

u
p−1
n (x)

ũ
p−1
n (x)|ũn(x) − ũ(x)| ≤ cgz2(x)p−1(z2(x) + |ũ(x)|). (3.33)
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We see at once that the right-hand sides of (3.32) and (3.33) belong to L1(Ω) and L1(∂Ω),
respectively, which allows us to apply Lebesgue’s dominated convergence theorem. This fact
and the convergence properties in (3.28) show that

lim
n→∞

∫

Ω

f(x, un)

u
p−1
n

ũ
p−1
n (ũn − ũ)dx = 0,

lim
n→∞

∫

∂Ω

g(x, un)

u
p−1
n

ũ
p−1
n (ũn − ũ)dσ = 0.

(3.34)

From (3.28), (3.31), and (3.34) we infer that

lim sup
n→∞

∫

Ω
|∇ũn|p−2∇ũn∇(ũn − ũ)dx = 0, (3.35)

and the (S+)-property of −Δp corresponding toW1,p(Ω) implies that

ũn −→ ũ in W1,p(Ω). (3.36)

Remark that ‖ũ‖W1,p(Ω) = 1, which means that ũ /≡ 0. Applying (3.26) and (3.36) along with
conditions (H1)(f1), (H2)(g1) to (3.30) provides

∫

Ω
|∇ũ|p−2∇ũ∇ϕdx = −

∫

Ω
ũp−1ϕdx +

∫

∂Ω
aũp−1ϕdσ, ∀ϕ ∈ W1,p(Ω). (3.37)

The equation above is the weak formulation of the Steklov eigenvalue problem in (1.4)where
ũ ≥ 0 is the eigenfunction with respect to the eigenvalue a > λ1. As ũ ≥ 0 is nonnegative in
Ω, we get a contradiction to the results of Martı́nez and Rossi in [22, Lemma 2.4] because ũ

must change sign on ∂Ω. Hence, u+ /≡ 0. Applying Lemma 3.4 yields u+ ∈ int(C1(Ω)+).

Claim 3. u+ ∈ int(C1(Ω)+) is the smallest positive solution of (1.1) in [0, ϑae].

Let u ∈ W1,p(Ω) be a positive solution of (1.1) satisfying 0 ≤ u ≤ ϑae. Lemma 3.4
immediately implies that u ∈ int(C1(Ω)+). Then there exists an integer n sufficiently large
such that u ∈ [(1/n)ϕ1, ϑae]. However, we already know that un is the smallest solution of
(1.1) in [(1/n)ϕ1, ϑae]which yields un ≤ u. Passing to the limit proves that u+ ≤ u. Hence, u+

must be the smallest positive solution of (1.1). The existence of the greatest negative solution
of (1.1)within [−ϑbe, 0] can be proved similarly. This completes the proof of the theorem.

4. Variational Characterization of Extremal Solutions

Theorem 3.5 ensures the existence of extremal positive and negative solutions of (1.1) for
all a > λ1 and b > λ1 denoted by u+ = u+(a) ∈ int(C1(Ω)+) and u− = u−(b) ∈
− int(C1(Ω)+), respectively. Now, we introduce truncation functions T+, T−, T0 : Ω × R → R
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and T∂Ω
+ , T∂Ω

− , T∂Ω
0 : ∂Ω × R → R as follows:

T+(x, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if s ≤ 0

s if 0 < s < u+(x)

u+(x) if s ≥ u+(x)

, T∂Ω
+ (x, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if s ≤ 0

s if 0 < s < u+(x)

u+(x) if s ≥ u+(x)

T−(x, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u−(x) if s ≤ u−(x)

s if u−(x) < s < 0

0 if s ≥ 0

, T∂Ω
− (x, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u−(x) if s ≤ u−(x)

s if u−(x) < s < 0

0 if s ≥ 0

T0(x, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u−(x) if s ≤ u−(x)

s if u−(x) < s < u+(x)

u+(x) if s ≥ u+(x)

, T∂Ω
0 (x, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u−(x) if s ≤ u−(x)

s if u−(x) < s < u+(x)

u+(x) if s ≥ u+(x)
(4.1)

For u ∈ W1,p(Ω) the truncation operators on ∂Ω apply to the corresponding traces γ(u).
We just write for simplification T∂Ω

+ (x, u), T∂Ω
+ (x, u), T∂Ω

+ (x, u) without γ . Furthermore, the
truncation operators are continuous, uniformly bounded, and Lipschitz continuous with
respect to the second argument. By means of these truncations, we define the following
associated functionals given by

E+(u) =
1
p

[
‖∇u‖pLp(Ω) + ‖u‖pLp(Ω)

]
−
∫

Ω

∫u(x)

0
f(x, T+(x, s))dsdx

−
∫

∂Ω

∫u(x)

0

[
aT∂Ω

+ (x, s)p−1 + g
(
x, T∂Ω

+ (x, s)
)]

dsdσ,

E−(u) =
1
p

[
‖∇u‖pLp(Ω) + ‖u‖pLp(Ω)

]
−
∫

Ω

∫u(x)

0
f(x, T−(x, s))dsdx

+
∫

∂Ω

∫u(x)

0

[
b
∣∣∣T∂Ω

− (x, s)
∣∣∣
p−1 − g

(
x, T∂Ω

− (x, s)
)]

dsdσ,

E0(u) =
1
p

[
‖∇u‖pLp(Ω) + ‖u‖pLp(Ω)

]
−
∫

Ω

∫u(x)

0
f(x, T0(x, s))dsdx

−
∫

∂Ω

∫u(x)

0

[
aT∂Ω

+ (x, s)p−1 − b
∣∣∣T∂Ω

− (x, s)
∣∣∣
p−1

+ g
(
x, T∂Ω

0 (x, s)
)]

dsdσ,

(4.2)

which are well defined and belong to C1(W1,p(Ω)). Due to the truncations, one can easily
show that these functionals are coercive and weakly lower semicontinuous, which implies
that their global minimizers exist. Moreover, they also satisfy the Palais-Smale condition.
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Lemma 4.1. Let u+ and u− be the extremal constant-sign solutions of (1.1). Then the following hold.

(i) A critical point v ∈ W1,p(Ω) of E+ is a nonnegative solution of (1.1) satisfying 0 ≤ v ≤ u+.

(ii) A critical point v ∈ W1,p(Ω) of E− is a nonpositive solution of (1.1) satisfying u− ≤ v ≤ 0.

(iii) A critical point v ∈ W1,p(Ω) of E0 is a solution of (1.1) satisfying u− ≤ v ≤ u+.

Proof. Let v be a critical point of E0 meaning E′
0(v) = 0. We have for all ϕ ∈ W1,p(Ω)

∫

Ω
|∇v|p−2∇v∇ϕdx =

∫

Ω

[
f(x, T0(x, v)) − |v|p−2v

]
ϕdx +

∫

∂Ω
aT∂Ω

+ (x, v)p−1ϕdσ

+
∫

∂Ω

[
−b
∣
∣
∣T∂Ω

− (x, v)
∣
∣
∣
p−1

+ g
(
x, T∂Ω

0 (x, v)
)]

ϕdσ.

(4.3)

As u+ is a positive solution of (1.1), it satisfies

∫

Ω
|∇u+|p−2∇u+∇ϕdx =

∫

Ω

[
f(x, u+) − u

p−1
+

]
ϕdx

+
∫

∂Ω

[
au

p−1
+ + g(x, u+)

]
ϕdσ, ∀ϕ ∈ W1,p(Ω).

(4.4)

Subtracting (4.4) from (4.3) and setting ϕ = (v − u+)
+ ∈ W1,p(Ω) provide

∫

Ω

[
|∇v|p−2∇v − |∇u+|p−2∇u+

]
∇(v − u+)+dx +

∫

Ω

[
|v|p−2v − u

p−1
+

]
(v − u+)+dx

=
∫

Ω

[
f(x, T0(x, v)) − f(x, u+)

]
(v − u+)+dx

+
∫

∂Ω

[
aT∂Ω

+ (x, v)p−1 − b
∣∣∣T∂Ω

− (x, v)
∣∣∣
p−1 − au

p−1
+

]
(v − u+)+dσ

+
∫

∂Ω

[
g
(
x, T∂Ω

0 (x, v)
)
− g(x, u+)

]
(v − u+)+dσ.

(4.5)

Based on the definition of the truncation operators, we see that the right-hand side of the
equality above is equal to zero. On the other hand, the integrals on the left-hand side are
strictly positive in case v > z+,which is a contradiction. Thus, we get (v−u+)

+ = 0 and, hence,
v ≤ u+. The proof for v ≥ u− acts in a similar way which shows that T0(x, v) = v, T∂Ω

+ (x, v) =
v+, and T∂Ω

− (x, v) = v−, and therefore, v is a solution of (1.1) satisfying u− ≤ v ≤ u+. The
statements in (i) and (ii) can be shown in the same way.

An important tool in our considerations is the relation between local C1(Ω)-
minimizers and local W1,p(Ω)-minimizers for C1-functionals. The fact is that every local C1-
minimizer of E0 is a local W1,p(Ω)-minimizer of E0 which was proved in similar form in [1,
Proposition 5.3]. This result reads as follows.
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Proposition 4.2. If z0 ∈ W1,p(Ω) is a local C1(Ω)-minimizer of E0 meaning that there exists r1 > 0
such that

E0(z0) ≤ E0(z0 + h) ∀h ∈ C1
(
Ω
)
with ‖h‖C1(Ω) ≤ r1, (4.6)

then z0 is a local minimizer of E0 inW1,p(Ω) meaning that there exists r2 > 0 such that

E0(z0) ≤ E0(z0 + h) ∀h ∈ W1,p(Ω) with ‖h‖W1,p(Ω) ≤ r2. (4.7)

We also refer to a recent paper (see [29]) in which the proposition above was extended
to the more general case of nonsmooth functionals. With the aid of Proposition 4.2, we can
formulate the next lemma about the existence of local and global minimizers with respect to
the functionals E+, E−, and E0.

Lemma 4.3. Let a > λ1 and b > λ1. Then the extremal positive solution u+ of (1.1) is the unique
global minimizer of the functional E+, and the extremal negative solution u− of (1.1) is the unique
global minimizer of the functionalE−. In addition, both u+ and u− are local minimizers of the functional
E0.

Proof. As E+ : W1,p(Ω) → R is coercive and weakly sequentially lower semicontinuous, its
global minimizer v+ ∈ W1,p(Ω) exists meaning that v+ is a critical point of E+. Concerning
Lemma 4.1, we know that v+ is a nonnegative solution of (1.1) satisfying 0 ≤ v+ ≤ u+. Due to
condition (H2)(g1), there exists a number δa > 0 such that

∣∣g(x, s)
∣∣ ≤ (a − λ1)sp−1, ∀s : 0 < s ≤ δa. (4.8)

Choosing ε < min{δf/‖ϕ1‖∞, δa/‖ϕ1‖∞} and applying assumption (H1)(f4), inequality (4.8)
along with the Steklov eigenvalue problem in (1.4) implies that

E+
(
εϕ1

)
= −

∫

Ω

∫ εϕ1(x)

0
f(x, s)dsdx +

λ1 − a

p
εp
∥∥ϕ1

∥∥p

Lp(∂Ω) −
∫

∂Ω

∫ εϕ1(x)

0
g(x, s)dsdσ

<
λ1 − a

p
εp
∥∥ϕ1

∥∥
Lp(∂Ω) +

∫

∂Ω

∫ εϕ1(x)

0
(a − λ1)sp−1dsdσ

= 0.

(4.9)

From the calculations above, we see at once that E+(v+) < 0, which means that v+ /= 0. This
allows us to apply Lemma 3.4 getting v+ ∈ int(C1(Ω)+). Since u+ is the smallest positive
solution of (1.1) in [0, ϑae] fulfilling 0 ≤ v+ ≤ u+, it must hold that v+ = u+, which proves that
u+ is the unique global minimizer of E+. The same considerations show that u− is the unique
global minimizer of E−. In order to complete the proof, we are going to show that u+ and u−
are local minimizers of the functional E0 as well. The extremal positive solution u+ belongs to
int(C1(Ω)+), which means that there is a neighborhood Vu+ of u+ in the spaceC1(Ω) satisfying
Vu+ ⊂ C1(Ω)+. Therefore, E+ = E0 on Vu+ proves that u+ is a local minimizer of E0 on C1(Ω).
Applying Proposition 4.2 yields that u+ is also a localW1,p(Ω)-minimizer of E0. Similarly, we
see that u− is a local minimizer of E0, which completes the proof.



Boundary Value Problems 17

Lemma 4.4. The functional E0 : W1,p(Ω) → R has a global minimizer v0 which is a nontrivial
solution of (1.1) satisfying u− ≤ v0 ≤ u+.

Proof. As we know, the functional E0 : W1,p(Ω) → R is coercive and weakly sequentially
lower semicontinuous. Hence, it has a global minimizer v0. More precisely, v0 is a critical
point of E0 which is a solution of (1.1) satisfying u− ≤ v0 ≤ u+ (see Lemma 4.1). The fact that
E0(u+) = E+(u+) < 0 (see the proof of Lemma 4.3) proves that v0 is nontrivial meaning that
v0 /= 0.

5. Existence of Sign-Changing Solutions

The main result in this section about the existence of a nontrivial solution of problem (1.1)
reads as follows.

Theorem 5.1. Under hypotheses (H1)–(H3), problem (1.1) has a nontrivial sign-changing solution
u0 ∈ C1(Ω).

Proof. In view of Lemma 4.4, the existence of a global minimizer v0 ∈ W1,p(Ω) of E0 satisfying
v0 /= 0 has been proved. This means that v0 is a nontrivial solution of (1.1) belonging to
[u−, u+]. If v0 /=u− and v0 /=u+, then u0 := v0 must be a sign-changing solution because u− is the
greatest negative solution and u+ is the smallest positive solution of (1.1), which proves the
theorem in this case. We still have to show the theorem in case that either v0 = u− or v0 = u+.
Let us only consider the case v0 = u+ because the case v0 = u− can be proved similarly. The
function u− is a local minimizer of E0. Without loss of generality, we suppose that u− is a strict
local minimizer; otherwise, we would obtain infinitely many critical points v of E0 which are
sign-changing solutions due to u− ≤ v ≤ u+ and the extremality of the solutions u−, u+. Under
these assumptions, there exists a ρ ∈ (0, ‖u+ − u−‖W1,p(Ω)) such that

E0(u+) ≤ E0(u−) < inf
{
E0(u) : u ∈ ∂Bρ(u−)

}
, (5.1)

where ∂Bρ = {u ∈ W1,p(Ω) : ‖u − u−‖W1,p(Ω) = ρ}. Now, we may apply the Mountain-Pass
Theorem to E0 (cf., [30]) thanks to (5.1) along with the fact that E0 satisfies the Palais-Smale
condition. This yields the existence of u0 ∈ W1,p(Ω) satisfying E′

0(u0) = 0 and

inf
{
E0(u) : u ∈ ∂Bρ(u−)

} ≤ E0(u0) = inf
π∈Π

max
t∈[−1,1]

E0(π(t)), (5.2)

where

Π =
{
π ∈ C

(
[−1, 1],W1,p(Ω)

)
: π(−1) = u−, π(1) = u+

}
. (5.3)

It is clear that (5.1) and (5.2) imply that u0 /=u− and u0 /=u+. Hence, u0 is a sign-changing
solution provided that u0 /= 0. We have to show that E0(u0)/= 0,which is fulfilled if there exists
a path π̃ ∈ Π such that

E0(π̃(t))/= 0, ∀t ∈ [−1, 1]. (5.4)
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Let S = W1,p(Ω)∩∂BLp(∂Ω)
1 , where ∂BLp(∂Ω)

1 = {u ∈ Lp(∂Ω) : ‖u‖Lp(∂Ω) = 1}, and SC = S∩C1(Ω)
be equipped with the topologies induced by W1,p(Ω) and C1(Ω), respectively. Furthermore,
we set

Π0 =
{
π ∈ C([−1, 1], S) : π(−1) = −ϕ1, π(1) = ϕ1

}
,

Π0,C =
{
π ∈ C([−1, 1], SC) : π(−1) = −ϕ1, π(1) = ϕ1

}
.

(5.5)

Because of the results of Martı́nez and Rossi in [26], there exists a continuous path π ∈ Π0

satisfying t �→ π(t) ∈ {u ∈ W1,p(Ω) : I(a,b)(u) < 0, ‖u‖Lp(∂Ω) = 1} provided that (a, b) is above
the curve C of hypothesis (H3). Recall that the functional I(a,b) is given by

I(a,b)(u) =
∫

Ω

(|∇u|p + |u|p)dx −
∫

∂Ω

(
a(u+)p + b

(
u−)p)dσ. (5.6)

This implies the existence of μ > 0 such that

I(a,b)(π(t)) ≤ −μ < 0, ∀t ∈ [−1, 1]. (5.7)

It is well known that SC is dense in S, which implies the density of Π0,C in Π0. Thus, a
continuous path π0 ∈ Π0,C exists such that

∣∣∣I(a,b)(π(t)) − I(a,b)(π0(t))
∣∣∣ <

μ

2
, ∀t ∈ [−1, 1]. (5.8)

The boundedness of the set π0([−1, 1])(Ω) in R ensures the existence of M > 0 such that

|π0(t)(x)| ≤ M ∀x ∈ Ω, ∀t ∈ [−1, 1]. (5.9)

Theorem 3.5 yields that u+,−u− ∈ int(C1(Ω)+). Thus, for every u ∈ π0([−1, 1]) and any
bounded neighborhood Vu of u in C1(Ω), there exist positive numbers hu and ju satisfying

u+ − hv ∈ int
(
C1
(
Ω
)

+

)
, −u− + jv ∈ int

(
C1
(
Ω
)

+

)
, (5.10)

for all h : 0 ≤ h ≤ hu, for all j : 0 ≤ j ≤ ju, and for all v ∈ Vu. Using (5.10) along with a
compactness argument implies the existence of ε0 > 0 such that

u−(x) ≤ επ0(t)(x) ≤ u+(x), (5.11)
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for all x ∈ Ω, for all t ∈ [−1, 1], and for all ε ≤ ε0. Representing E0 in terms of I(a,b), we obtain

E0(u) =
1
p
I(a,b)(u) +

∫

∂Ω

(
a(u+)p + b

(
u−)p)dσ −

∫

Ω

∫u(x)

0
f(x, T0(x, s))dsdx

−
∫

∂Ω

∫u(x)

0

(
aT∂Ω

+ (x, s)p−1 − b
∣
∣
∣T∂Ω

− (x, s)
∣
∣
∣
p−1)

dsdσ

−
∫

∂Ω

∫u(x)

0
g
(
x, T∂Ω

0 (x, s)
)
dsdσ.

(5.12)

In view of (5.11) we get for all ε ≤ ε0 and all t ∈ [−1, 1]

E0(επ0(t))

=
1
p
I(a,b)(επ0(t)) −

∫

Ω

∫ επ0(t)(x)

0
f(x, s)dsdx −

∫

∂Ω

∫ επ0(t)(x)

0
g(x, s)dsdσ

= εp
[
1
p
I(a,b)(π0(t)) − 1

εp

∫

Ω

∫ επ0(t)(x)

0
f(x, s)dsdx − 1

εp

∫

∂Ω

∫ επ0(t)(x)

0
g(x, s)dsdσ

]

< εp
[

− μ

2p
+

1
εp

∫

Ω

∣∣∣∣∣

∫ επ0(t)(x)

0
f(x, s)ds

∣∣∣∣∣
dx +

1
εp

∫

∂Ω

∣∣∣∣∣

∫ επ0(t)(x)

0
g(x, s)ds

∣∣∣∣∣
dσ

]

.

(5.13)

Due to hypotheses (H1)(f1) and (H2)(g1), there exist positive constants δ1, δ2 such that

∣∣f(x, s)
∣∣ ≤ μ

5Mp
|s|p−1, for a.a. x ∈ Ω and all s : |s| ≤ δ1,

∣∣g(x, s)
∣∣ ≤ μ

5Mp
|s|p−1, for a.a. x ∈ ∂Ω and all s : |s| ≤ δ2.

(5.14)

Choosing ε > 0 such that ε < min{ε0, δ1/M, δ2/M} and using (5.14) provide

1
εp

∫

Ω

∣∣∣∣∣

∫ επ0(t)(x)

0
f(x, s)ds

∣∣∣∣∣
dx ≤ μ

5p
,

1
εp

∫

∂Ω

∣∣∣∣∣

∫ επ0(t)(x)

0
g(x, s)ds

∣∣∣∣∣
dσ ≤ μ

5p
.

(5.15)

Applying (5.15) to (5.13) yields

E0(επ0(t)) ≤ εp
(
− μ

2p
+

μ

5p
+

μ

5p

)
< 0, ∀t ∈ [−1, 1]. (5.16)
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We have constructed a continuous path επ0 joining −εϕ1 and εϕ1. In order to construct
continuous paths π+, π− connecting εϕ1 and u+, respectively, u− and −εϕ1, we first denote
that

c+ = E+
(
εϕ1

)
, m+ = E+(u+), Ec+

+ =
{
u ∈ W1,p(Ω) : E+(u) ≤ c+

}
. (5.17)

It holds that m+ < c+ because u+ is a global minimizer of E+. By Lemma 4.1 the functional E+

has no critical values in the interval (m+, c+]. The coercivity of E+ along with its property to
satisfy the Palais-Smale condition allows us to apply the Second Deformation Lemma (see,
e.g., [31, page 366]) to E+. This ensures the existence of a continuous mapping η ∈ C([0, 1] ×
Ec+
+ , Ec+

+ ) satisfying the following properties:

(i) η(0, u) = u, for all u ∈ Ec+
+ ,

(ii) η(1, u) = u+, for all u ∈ Ec+
+ ,

(iii) E+(η(t, u)) ≤ E+(u), for all t ∈ [0, 1] and for all u ∈ Ec+
+ .

Next, we introduce the path π+ : [0, 1] → W1,p(Ω) given by π+(t) = η(t, εϕ1)
+ =

max{η(t, εϕ1), 0} for all t ∈ [0, 1] which is obviously continuous in W1,p(Ω) joining εϕ1 and
u+. Additionally, one has

E0(π+(t)) = E+(π+(t)) ≤ E+
(
η
(
t, εϕ1

)) ≤ E+
(
εϕ1

)
< 0, ∀t ∈ [0, 1]. (5.18)

Similarly, the Second Deformation Lemma can be applied to the functional E−. We get a
continuous path π− : [0, 1] → W1,p(Ω) connecting −εϕ1 and u− such that

E0(π−(t)) < 0, ∀t ∈ [0, 1]. (5.19)

In the end, we combine the curves π−, επ0, and π+ to obtain a continuous path π̃ ∈ Π joining
u− and u+. Taking into account (5.16), (5.18), and (5.19), we get u0 /= 0. This yields the existence
of a nontrivial sign-changing solution u0 of problem (1.1) satisfying u− ≤ u0 ≤ u+, which
completes the proof.
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