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We present some sufficient conditions of blowup of the solutions to Laplace equations with
semilinear dynamical boundary conditions of hyperbolic type.

1. Introduction

LetΩ be a bounded domain ofRN,N ≥ 1,with a smooth boundary ∂Ω = S = S1∪S2,where S1

and S2 are closed and disjoint and S1 possesses positive measure. We consider the following
problem:

−Δu = 0, in Ω × (0, T), (1.1)

∂2u

∂t2
+ k

∂u

∂n
= g(u), on S1 × (0, T), (1.2)

a
∂u

∂n
+ bu = 0, on S2 × (0, T), (1.3)

u(x, 0) = u0, ut(x, 0) = u1, on S1, (1.4)

where a ≥ 0, b ≥ 0, a + b = 1, and k > 0 are constants, Δ is the Laplace operator with respect
to the space variables, and ∂/∂n is the outer unit normal derivative to boundary S. u0, u1 are
given initial functions. For convenience, we take k = 1 in this paper.
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The problem (1.1)–(1.4) can be used as models to describe the motion of a fluid in a
container or to describe the displacement of a fluid in a medium without gravity; see [1–5]
for more information. In recent years, the problem has attracted a great deal of people. Lions
[6] used the theory of maximal monotone operators to solve the existence of solution of the
following problem:

Δu = 0, in Ω × (0, T), (1.5)

∂2u

∂t2
+ k

∂u

∂n
+ f(ut) + |u|pu = 0, on S × (0, T), (1.6)

u(x, 0) = u0, ut(x, 0) = u1, on S. (1.7)

Hintermann [2] used the theory of semigroups in Banach spaces to give the existence
and uniqueness of the solution for problem (1.5)–(1.7). Cavalcanti et al. [7–11] studied
the existence and asymptotic behavior of solutions evolution problem on manifolds. In
this direction, the existence and asymptotic behavior of the related of evolution problem
on manifolds has been also considered by Andrade et al. [12, 13], Antunes et al. [14],
Araruna et al. [15], and Hu et al. [16]. In addition, Doronin et al. [17] studied a class
hyperbolic problem with second-order boundary conditions.

We will consider the blowup of the solution for problem (1.1)–(1.4) with nonlinear
boundary source term g(u). Blowup of the solution for problem (1.1)–(1.4) was considered
by Kirane [3], when ∂Ω = S1, by use of Jensen’s inequality and Glassey’s method [18]. Kirane
et al. [19] concerned blowup of the solution for the Laplace equations with a hyperbolic
type dynamical boundary inequality by the test function methods. In this paper, we present
some sufficient conditions of blowup of the solutions for the problem (1.1)–(1.4)when Ω is a
bounded domain and S2 can be a nonempty set. We use a different approach from those ones
used in the prior literature [3, 19].

Another related problem to (1.1)–(1.4) is the following problem:

Δu = f, in Ω × (0, T), (1.8)

∂u

∂t
+
∂u

∂n
= g(u), on S × (0, T), (1.9)

u(x, 0) = u0, on S. (1.10)

Amann and Fila [20], Kirane [3], and Koleva and Vulkov [21]Vulkov [22] considered blowup
of the solution of problem (1.8)–(1.10). For more results concerning the related problem (1.8)–
(1.10), we refer the reader to [3, 6, 19–31] and their references. In these papers, existence,
boundedness, asymptotic behavior, and nonexistence of global solutions for problem (1.8)–
(1.10)were studied.

In this paper, the definition of the usually space H1(Ω),Hs(S), Lp(Ω), and Lp(S) can
be found in [32] and the norm of L2(S) is denoted by ‖ • ‖S.
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2. Blowup of the Solutions

In this paper, we always assume that the initial data u0 ∈ Hs+1/2(S1), u1 ∈ Hs(S1), s > 1, and
g ∈ C and that the problem (1.1)–(1.4) possesses a unique local weak solution [2, 3, 6] that is,
u is in the class

u ∈ L∞
(
0, T ;Hs+1(Ω)

)
, ut ∈ L∞(0, T,Hs(S1)), utt ∈ L∞

(
0, T ;L2(S1)

)
, (2.1)

and the boundary conditions are satisfied in the trace sense [2].

Lemma 2.1 (see [33]). Suppose that ut = F(t, u), vt ≥ F(t, v), F ∈ C, t0 ≤ t < +∞, −∞ < u <
+∞, and u(t0) = v(t0). Then, v(t) ≥ u(t), t ≥ t0.

Theorem 2.2. Suppose that u(x, t) is a weak solution of problem (1.1)–(1.4) and g(s) satisfies:

(1) sg(s) ≥ KG(s), where K > 2, G(s) =
∫s
0 g(ρ)dρ, G(s) ≥ β|s|p+1, where β > 0, p > 1;

(2) E0 = ‖u0‖2S1
+‖u1‖2S1

+(b/a)‖u0‖S2−2
∫
S1
G(σ)dσ ≤ −2/[(K−2)βC1(p+3)

−1]2/(p−1)(1−
e(1−p)/4)4/(p−1) < 0

where C1 = (mS1)
(p+1)/(p−1). Then, the solution of problem (1.1)–(1.4) blows up in a finite time.

Proof. Denote

E(t) = ‖ut‖2S1
+ ‖∇u‖2Ω +

b

a
‖u‖S2

− 2
∫

S1

G(u)dσ, (2.2)

then from (1.1)–(1.4), we have

d

dt
E(t) = 0, t > 0. (2.3)

Hence

E(t) = E(0) = E0. (2.4)

Let H(t) = ‖u(t)‖2S1
+
∫ t
0

∫τ
0 ‖u(s)‖2S1

dsdτ. Using condition (1) of Theorem 2.2, we have

Ḣ(t) =
d

dt
H(t) = 2

∫

S1

uutdσ +
∫ t

0
‖u(s)‖2S1

ds,

Ḧ(t) =
d2

dt2
H(t) = 2

∫

S1

u2
t dσ + 2

∫

S1

uuttdσ +
∫

S1

u2dσ

= 2
∫

S1

[
u2
t − u

∂u

∂n
+ ug(u) +

1
2
u2
]
dσ

≥ 2
∫

S1

[
u2
t − u

∂u

∂n
+KG(u) +

1
2
u2
]
dσ.

(2.5)
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Observing that

∫

S1

u
∂u

∂n
=
∫

Ω
|∇u|2dx +

b

a

∫

S2

u2dσ, (2.6)

K

∫

S1

G(u)dσ = −E0 + (K − 2)
∫

S1

G(u)dσ +
∫

S1

u2
t dσ +

b

a

∫

S2

u2dσ +
∫

Ω
|∇u|2dx, (2.7)

we know from (2.5)–(2.7) that

Ḧ(t) ≥ 4
∫

S1

u2
t dσ − 2E0 +

∫

S1

u2dσ + 2(K − 2)
∫

S1

G(u)dσ ≥ −2E0 + 2(K − 2)β
∫

S1

|u|p+1dσ.
(2.8)

It follows from (2.8) that

Ḣ(t) ≥ −2E0t + 2(K − 2)β
∫ t

0

∫

S1

|u|p+1dσ ds + Ḣ(0), (2.9)

H(t) ≥ −E0t
2 + 2(K − 2)β

∫ t

0

∫ τ

0

∫

S1

|u(s)|p+1dσ dsdτ + tḢ(0) +H(0), (2.10)

where H(0) = ‖u0‖2S1
, Ḣ(0) = 2

∫
S1
u0u1dσ. From (2.8) and (2.10), we have

Ḧ(t)+H(t)≥2(K−2)β
[∫

S1

|u|p+1dσ +
∫ t

0

∫ τ

0

∫

S1

|u(s)|p+1dσ dsdτ

]

+ tḢ(0) − E0t
2 +H(0) − 2E0.

(2.11)

Using the inversion of the Hölder inequality, we obtain

∫

S1

|u|p+1dσ ≥
(∫

S1

|u|2dσ
)(p+1)/2

(mS1)(1−p)/2, (2.12)

∫ t

0

∫ τ

0

∫

S1

|u(s)|p+1dσ dsdτ ≥
(∫ t

0

∫ τ

0

∫

S1

|u(s)|2dσ dsdτ

)(p+1)/2(
1
2
t2mS1

)(p−1)/2
. (2.13)
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Substituting (2.12) and (2.13) into (2.11), we have

Ḧ(t) +H(t)

≥ 2(K − 2)β(mS1)(p+1)/(p−1)

×
⎡
⎣
(∫

S1

|u|2dσ
)(p+1)/2(

1
2
t2
)(p+1)/(p−1)(∫ t

0

∫ τ

0

∫

S1

|u(s)|p+1dσ dsdτ

)2/(p+1)
⎤
⎦

+ tḢ(0) − E0t
2 +H(0) − 2E0

≥ 2(K − 2)β(mS1)(p+1)/(p−1)
⎡
⎣
(∫

S1

|u|2dσ
)(p+1)/2

+

(∫ t

0

∫ τ

0

∫

S1

|u(s)|p+1dσ dsdτ

)(p+1)/2
⎤
⎦

+ tḢ(0) − E0t
2 +H(0) − 2E0, t ≥ 1.

(2.14)

Noticing that

(a + b)n ≤ 2n−1(an + bn), a > 0, b > 0, n > 1, (2.15)

we have

Ḧ(t) +H(t) ≥ 2(3−p)/2(K − 2)β(mS1)(p+1)/(p−1)H(p+1)/2(t) + tḢ(0) − E0t
2 +H(0) − 2E0.

(2.16)

We see from (2.9) and (2.10) that Ḣ(t) → +∞,H(t) → +∞ as t → +∞. Therefore, there is a
t0 ≥ 1 such that

Ḣ(t) > 0, H(t) > 0, t ≥ t0. (2.17)

Multiplying both sides of (2.16) by 2Ḣ(t) and using (2.9), we get

d

dt

[
Ḣ2(t) +H2(t)

]
≥ 1

p + 3
2(5−p)/2(K − 2)β(mS1)(p+1)/(p−1)

d

dt
H(p+3)/2(t) + I(t), t ≥ t0,

(2.18)

where

I(t) =
(−4E0t + 2Ḣ(0)

)(−E0t
2 + Ḣ(0)t +H(0) − 2E0

)
. (2.19)

From (2.18) we have

d

dt

[
Ḣ2(t) +H2(t) − C2H

(p+3)/2(t)
]
≥ I(t), t ≥ t0, (2.20)
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where C2 = (1/(p+ 3))2(5−p)/2(K − 2)β(mS1)
(p+1)/(p−1). Integrating (2.20) over (t, t0), we arrive

at

Ḣ2(t) +H2(t) − C2H
(p+3)/2(t) ≥

∫ t

t0

I(τ)dτ + Ḣ2(t0) +H2(t0) − C2H
(p+3)/2(t0), t ≥ t0.

(2.21)

Observe that when t → +∞, the right-hand side of (2.21) approaches to positive infinity
since I(t) > 0 for sufficiently large t; hence, there is a t1 ≥ t0 such that the right side of (2.21)
is larger than or equal to zero when t ≥ t1. We thus have

Ḣ2(t) +H2(t) ≥ C2H
(p+3)/2(t), t ≥ t1. (2.22)

Extracting the square root of both sides of (2.22) and noticing that Ḣ(t)H(t) ≥ 0, we obtain

Ḣ(t) +H(t) ≥ C3H
(p+3)/4(t) ≥ C3t

(1−p)/2H(p+3)/4(t), t ≥ t1, (2.23)

since 1 − p < 0, t > t1 > t0 > 1, where C3 =
√
C2.

Consider the following initial value problem of the Bernoulli equation:

Ż + Z = C3t
(1−p)/2Z(p+3)/4, t ≥ t1, Z(t1) = H(t1). (2.24)

Solving the problem (2.24), we obtain the solution

Z(t) = e−(t−t1)
[
H(1−p)/4(t1) −

p − 1
4

∫ t

t1

C3τ
(1−p)/2e((1−p)/4)(τ−t1)dτ

]4/(1−p)

= e−(t−t1)H(t1)J4/(1−p)(t), t ≥ t1,

(2.25)

where J(t) = (1 − (p − 1)/4)H(p−1)/4(t1)C3
∫ t
t1
τ (1−p)/2e((1−p)/4)(τ−t1)dτ. Obviously, J(t1) = 1 > 0,

and for t > t1 + 1

δ(t) =
p − 1
4

H(p−1)/4(t1)C3

∫ t

t1

τ (1−p)/2e((1−p)/4)(τ−t1)dτ

≥ p − 1
4

H(p−1)/4(t1)C3

∫ t1+1

t1

τ (1−p)/2e((1−p)/4)(τ−t1)dτ

≥ p − 1
4

H(p−1)/4(t1)C3(t1 + 1)(1−p)/2
∫ t1+1

t1

e((1−p)/4)(τ−t1)dτ

= H(p−1)/4(t1)C3(t1 + 1)(1−p)/2
(
1 − e(1−p)/4

)
.

(2.26)
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From (2.10), we see that

H(p−1)/4(t)(t + 1)(1−p)/2 ≥
[
−E0t

2 + Ḣ(0)t +H(0)
t2 + 2t + 1

](p−1)/4
−→ (−E0)(p−1)/4 (2.27)

as t → +∞. Take t1 sufficiently large such that H(p+1)/4(t1)(t1 + 1)(1−p)/2 ≥ 1/2(−E0)
(p−1)/4. It

follows from (2.26) and the condition of Theorem 2.2 that

δ(t) ≥ 1
2
(−E0)(p−1)/4C3

(
1 − e(1−p)/4

)
≥ 1, t ≥ t1 + 1. (2.28)

Therefore,

J(t) = 1 − δ(t) ≤ 0, t ≥ t1 + 1. (2.29)

By virtue of the continuity of J(t) and the theorem of the intermediate values, there is a
constant t1 < T̃ ≤ t1 + 1 such that J (̃T) = 0. Hence, Z(t) → +∞ as t → T̃−. It follows from
Lemma 2.1 thatH(t) ≥ Z(t), t ≥ t1. Thus,H(t) → +∞ as t → T̃−. The theorem is proved.

Theorem 2.3. Suppose that g(s) is a convex function, g(0) = 0, g(s) ≥ lsp, where a is a real number
p > 1, and u(x, t) is a weak solution of problem (1.1)–(1.4)

∫

S1

u0(σ)ψ1(σ)dσ = α ≥
(

λ1
l

1/(p−1))
> 0,

∫

S1

u1(σ)ψ1(σ)dσ = β > 0, (2.30)

where ψ1 is the normalized eigenfunction (i.e., ψ1 ≥ 0,
∫
S1
ψ1(σ)dσ = 1) corresponding the smallest

eigenvalue λ1 > 0 of the following Steklov spectral problem [23]:

Δψ = 0, in Ω, (2.31)

∂ψ

∂n
= λψ, on S1, (2.32)

a
∂ψ

∂n
+ bψ = 0, on S2, (2.33)

whereΩ, S1, S2, k, a, b are defined as in Section 1. Then, the solution of problem (1.1)–(1.4) blows up
in a finite time.

Proof. Let

y(t) =
∫

S1

u(σ, t)ψ1(σ)dσ. (2.34)
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Then, y(0) = y0 = α > 0, yt(0) = y1 = β > 0. It follows from (1.1)–(1.4) that y(t) satisfies

ytt = −
∫

S1

∂u

∂n
ψ1dσ +

∫

S1

g(u)ψ1dσ. (2.35)

Using Green’s formula, we have

0 =
∫

Ω
Δuψ1dx =

∫

S

∂u

∂n
ψ1dσ −

∫

Ω
∇u · ∇ψ1dx

=
∫

S

∂u

∂n
ψ1dσ −

∫

S

u
∂ψ1

∂n
dσ +

∫

Ω
uΔψ1dx

=

(∫

S1

∂u

∂n
ψ1dσ −

∫

S1

u
∂ψ1

∂n
dσ

)
+

(∫

S2

∂u

∂n
ψ1dσ −

∫

S2

u
∂ψ1

∂n
dσ

)
+
∫

Ω
uΔψ1dx

= B1 + B2,

(2.36)

where we have used (2.31) and the fact that ψ1 is the eigenfunction of the problem (1.1)–(1.4),
B1 and B2 are denoted as the expressions in the first and the second parenthesis, respectively.
From (2.32), we have

B1 =
∫

S1

∂u

∂n
ψ1dσ − λ1

∫

S1

uψ1dσ. (2.37)

If a = 0, it is clear that B2 = 0 otherwise, by (1.3) and (2.33),

B2 =
∫

S2

(
−b

a
u

)
ψ1dσ −

∫

S2

u

(
−b

a
ψ1

)
dσ = 0. (2.38)

Therefore, (2.36) implies that B1 = 0, that is,

∫

S1

∂u

∂n
ψ1dσ = λ1

∫

S1

uψ1dσ = λ1y(t). (2.39)

Now, (2.35) takes the form

ytt = −λ1y +
∫

S1

g(u)ψ1dσ. (2.40)

From Jensen’s inequality and the condition g(s) ≥ lsp, we have

∫

S1

g(u)ψ1dσ ≥ g

(∫

S1

uψ1dσ

)
≥ lyp. (2.41)
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Substituting the above inequality into (2.40), we get

ytt + λ1y ≥ lyp, t > 0. (2.42)

Since y(0) = α > 0, yt(0) = β > 0, from the continuity of y(t), it follows that there is a right
neighborhood (0, δ) of the point t = 0, in which ẏ(t) > 0, and hence y(t) > y0 > 0. If there
exists a point t0 such that ẏ(t) > 0(t ∈ [0, t0)), but ẏ(t0) = 0, then y(t) is monotonically
increasing on [0, t0]. It follows from (2.42) that on (0, t0]

ytt ≥ y
(
lyp−1 − λ1

)
≥ y0

(
ly

p−1
0 − λ1

)
≥ 0, (2.43)

and thus yt(t) is monotonically increasing on [0, t0]. This contradicts ẏ(t0) = 0. Therefore,
ẏ(t) > 0 and hence y(t) > y0 as t > 0.

Multiplying both sides of (2.42) by 2yt and integrating the product over [0, t], we get

y2
t ≥

2l
p + 1

(
yp+1 − y

p+1
0

)
− λ1

(
y2 − y2

0

)
+ y2

1 = B
(
y
)
. (2.44)

Since B(y0) = y2
1 > 0 and

B′(y) = 2lyp − 2λ1y > 2y0

(
ly

p−1
0 − λ1

)
≥ 0, (2.45)

then B(y) > B(y0) > 0, ct > 0. Extracting the square root of both sides of (2.44), we have

yt ≥
[

2l
p + 1

(
yp+1 − y

p+1
0

)
− λ1

(
y2 − y2

0

)
+ y2

1

]−1/2
, t > 0. (2.46)

Equation (2.46) means that the interval [0, T̃] of the existence of y(t) is finite this, that is,

T ≤
∫+∞

y0

[
2l

p + 1

(
yp+1 − αp+1

)
− λ1

(
y2 − α2

)
+ β2

] 1/2

ds < +∞, (2.47)

and y(t) → +∞ as t → T̃−. The theorem is proved.

Remark 2.4. The results of the above theorem hold when one considers (1.1)–(1.4) with more
general elliptic operator, like

Lu ≡ −div(k(x)∇u) + c(x)u, 0 < k0 ≤ k(x) ≤ k1, c(x) ≥ 0, in Ω × (0, T), (2.48)
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and the corresponding boundary conditions

∂2u

∂t2
+ k(x)

∂u

∂n
= g(u), on S1 × (0, T),

k(x)
∂u

∂n
+ bu = 0, b(x) ≥ 0, on S2 × (0, T).

(2.49)

Acknowledgments

The authors are very grateful to the referee’s suggestions and comments. The authors are
supported by National Natural Science Foundation of China and Foundation of Henan
University of Technology.

References

[1] R. M. Garipov, “On the linear theory of gravity waves: the theorem of existence and uniqueness,”
Archive for Rational Mechanics and Analysis, vol. 24, pp. 352–362, 1967.

[2] T. Hintermann, “Evolution equations with dynamic boundary conditions,” Proceedings of the Royal
Society of Edinburgh. Section A, vol. 113, no. 1-2, pp. 43–60, 1989.

[3] M. Kirane, “Blow-up for some equations with semilinear dynamical boundary conditions of parabolic
and hyperbolic type,” Hokkaido Mathematical Journal, vol. 21, no. 2, pp. 221–229, 1992.

[4] H. Lamb, Hydrodynamics, Cambridge University Press, Cambridge, Mass, USA, 4th edition, 1916.
[5] R. E. Langer, “A problem in diffusion or in the flow of heat for a solid in contact with a fluid,” Tohoku

Mathematical Journal, vol. 35, pp. 260–275, 1932.
[6] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, France,
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