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This paper investigates the second-order multipoint boundary value problem on the half-line
u′′(t) + f(t, u(t),u′(t)) = 0, t ∈ R

+, αu(0) − βu′(0) − ∑n
i=1 kiu(ξi) = a ≥ 0, limt→+∞u′(t) = b > 0,

where α > 0, β > 0, ki ≥ 0, 0 ≤ ξi < ∞ (i = 1, 2, . . . , n), and f : R+ × R × R → R is continuous.
We establish sufficient conditions to guarantee the existence of unbounded solution in a special
function space by using nonlinear alternative of Leray-Schauder type. Under the condition that f
is nonnegative, the existence and uniqueness of unbounded positive solution are obtained based
upon the fixed point index theory and Banach contraction mapping principle. Examples are also
given to illustrate the main results.

1. Introduction

In this paper, we consider the following second-order multipoint boundary value problem
on the half-line

u′′(t) + f
(
t, u(t), u′(t)

)
= 0, t ∈ R

+,

αu(0) − βu′(0) −
n∑

i=1

kiu(ξi) = a ≥ 0, lim
t→+∞

u′(t) = b > 0,
(1.1)

where α > 0, β > 0, ki ≥ 0, 0 < ξ1 < ξ2 < · · · < ξn < ∞, and f : R+ × R × R → R is continuous,
in which R

+ = [0,+∞), R = (−∞,+∞).
The study ofmultipoint boundary value problems (BVPs) for second-order differential

equations was initiated by Bicadze and Samarskı̆ [1] and later continued by II’in and
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Moiseev [2, 3] and Gupta [4]. Since then, great efforts have been devoted to nonlinear multi-
point BVPs due to their theoretical challenge and great application potential. Many results on
the existence of (positive) solutions for multi-point BVPs have been obtained, and for more
details the reader is referred to [5–10] and the references therein. The BVPs on the half-line
arise naturally in the study of radial solutions of nonlinear elliptic equations and models of
gas pressure in a semi-infinite porous medium [11–13] and have been also widely studied
[14–27]. When n = 1, β = 0, a = b = 0, BVP (1.1) reduces to the following three-point BVP on
the half-line:

u′′(t) + f
(
t, u(t), u′(t)

)
= 0, t ∈ (0,+∞),

u(0) = αu
(
η
)
, lim

t→+∞
u′(t) = 0,

(1.2)

where α/= 1, η ∈ (0,+∞). Lian and Ge [16] only studied the solvability of BVP (1.2) by the
Leray-Schauder continuation theorem. When ki = 0, i = 1, 2, . . . , n, and nonlinearity f is
variable separable, BVP (1.1) reduces to the second order two-point BVP on the half-line

u′′ + Φ(t)f
(
t, u, u′) = 0, t ∈ (0,+∞),

au(0) − bu′(0) = u0 ≥ 0, lim
t→+∞

u′(t) = k > 0.
(1.3)

Yan et al. [17] established the results of existence and multiplicity of positive solutions to the
BVP (1.3) by using lower and upper solutions technique.

Motivated by the above works, we will study the existence results of unbounded
(positive) solution for second order multi-point BVP (1.1). Our main features are as follows.
Firstly, BVP (1.1) depends on derivative, and the boundary conditions are more general.
Secondly, we will study multi-point BVP on infinite intervals. Thirdly, we will obtain the
unbounded (positive) solution to BVP (1.1). Obviously, with the boundary condition in (1.1),
if the solution exists, it is unbounded. Hence, we extend and generalize the results of [16, 17]
to some degree. The main tools used in this paper are Leray-Schauder nonlinear alternative
and the fixed point index theory.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries
and lemmas. In Section 3, the existence of unbounded solution is established. In Section 4,
the existence and uniqueness of positive solution are obtained. Finally, we formulate two
examples to illustrate the main results.

2. Preliminaries and Lemmas

Denote v0(t) = t + (a/b + δ)/Δ, where Δ = α −∑n
i=1 ki /= 0, δ = β +

∑n
i=1 kiξi. Let

E = C1
∞(R

+,R) =
{

x ∈ C1(R+,R) : lim
t→+∞

x(t)
1 + v0(t)

exists, lim
t→+∞

x′(t) exists
}

. (2.1)
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For any x ∈ E, define

‖x‖∞ = max

{

sup
t∈R+

∣
∣
∣
∣

x(t)
1 + v0(t)

∣
∣
∣
∣, sup

t∈R+

∣
∣x′(t)

∣
∣

}

, (2.2)

then E = C1
∞(R

+,R) is a Banach space with the norm ‖ · ‖∞ (see [17]).
The Arzela-Ascoli theorem fails to work in the Banach space E due to the fact that the

infinite interval [0,+∞) is noncompact. The following compactness criterion will help us to
resolve this problem.

Lemma 2.1 (see [17]). LetM ⊂ E = C1
∞(R

+,R). Then,M is relatively compact in E if the following
conditions hold:

(a) M is bounded in E;

(b) the functions belonging to {y : y(t) = x(t)/(1+v0(t)), x ∈ M} and {z : z(t) = x′(t), x ∈
M} are locally equicontinuous on R

+;

(c) the functions from {y : y(t) = x(t)/(1 + v0(t)), x ∈ M} and {z : z(t) = x′(t), x ∈ M}
are equiconvergent, at ∞.

Throughout the paper we assume the following.

(H1) Suppose that f(t, 0, 0)/≡ 0, t ∈ R
+, and there exist nonnegative functions

p(t), q(t), r(t) ∈ L1[0,+∞) with tp(t), tq(t), tr(t) ∈ L1[0,+∞) such that

∣
∣f(t, (1 + v0(t))u, v)

∣
∣ ≤ p(t)|u| + q(t)|v| + r(t), a.e. (t, u, v) ∈ R

+ × R × R. (2.3)

(H2) Δ = α −∑n
i=1 ki > 0.

(H3) P1 +Q1 < 1, where

P1 =
∫+∞

0
p(t)dt, Q1 =

∫+∞

0
q(t)dt. (2.4)

Denote

P2 =
∫+∞

0
(1 + v0(t))p(t)dt, Q2 =

∫+∞

0
(1 + v0(t))q(t)dt,

R1 =
∫+∞

0
r(t)dt, R2 =

∫+∞

0
(1 + v0(t))r(t)dt.

(2.5)

Lemma 2.2. Supposing that σ(t) ∈ L1[0,+∞) with tσ(t) ∈ L1[0,+∞), then BVP

u′′(t) + σ(t) = 0, t ∈ R
+,

αu(0) − βu′(0) −
n∑

i=1

kiu(ξi) = a ≥ 0, lim
t→+∞

u′(t) = b > 0
(2.6)
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has a unique solution

u(t) =
∫+∞

0
G(t, s)σ(s)ds +

a + bδ

Δ
+ bt, t ∈ R

+, (2.7)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β + Σj

i=1kiξi + Σn
i=j+1kis

Δ
+ t,

t ∈ R
+, max

{
t, ξj

} ≤ s ≤ ξj+1, j = 0, 1, 2, . . . , n,

β + Σj

i=1kiξi + Σn
i=j+1kis

Δ
+ s,

t ∈ R
+, ξj ≤ s ≤ min

{
t, ξj+1

}
, j = 0, 1, 2, . . . , n,

(2.8)

in which ξ0 = 0, ξn+1 = +∞, and
∑m2

i=m1
f(i) = 0 for m2 < m1.

Proof. Integrating the differential equation from t to +∞, one has

u′(t) = b +
∫+∞

t

σ(s)ds, t ∈ R
+ (2.9)

Then, integrating the above integral equation from 0 to t, noticing that σ(t) ∈ L1[0,+∞) and
tσ(t) ∈ L1[0,+∞), we have

u(t) = u(0) + bt +
∫ t

0

∫+∞

s

σ(τ)dτ ds. (2.10)

Since αu(0) − βu′(0) −∑n
i=1 kiu(ξi) = a, it holds that

u(t) =
1
Δ

[

a + bδ + β

∫+∞

0
σ(s)ds + Σn

i=1ki

∫ ξi

0

∫+∞

s

σ(τ)dτds

]

+ bt +
∫ t

0

∫+∞

s

σ(τ)dτds

=
1
Δ

[

β

∫+∞

0
σ(s)ds + Σn

i=1ki

∫ ξi

0
sσ(s)ds + Σn

i=1ki

∫+∞

ξi

ξiσ(s)ds

]

+
∫ t

0
sσ(s)ds +

∫+∞

t

tσ(s)ds + bt +
a + bδ

Δ
.

(2.11)

By using arguments similar to those used to prove Lemma 2.2 in [9], we conclude that (2.7)
holds. This completes the proof.
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Now, BVP (1.1) is equivalent to

u(t) =
∫+∞

0
G(t, s)f

(
s, u(s), u′(s)

)
ds +

a + bδ

Δ
+ bt, t ∈ R

+. (2.12)

Letting v(t) = u(t) − bt − ((a + bδ)/Δ), t ∈ R
+, (2.12) becomes

v(t) =
∫+∞

0
G(t, s)f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)

ds, t ∈ R
+. (2.13)

For v ∈ E, define operator A : E → E by

Av(t) =
∫+∞

0
G(t, s)f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)

ds, t ∈ R
+. (2.14)

Then,

(Av)′(t) =
∫+∞

t

f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)

ds, t ∈ R
+. (2.15)

Set

γ(t) =

⎧
⎪⎨

⎪⎩

t +
δ

Δ
, t ∈ [0, 1],

1 +
δ

Δ
, t ∈ (1,+∞).

(2.16)

Remark 2.3. G(t, s) is the Green function for the following associated homogeneous BVP on
the half-line:

u′′(t) + f
(
t, u(t), u′(t)

)
= 0, t ∈ R

+,

αu(0) − βu′(0) −
n∑

i=1

kiu(ξi) = 0, lim
t→+∞

u′(t) = 0.
(2.17)

It is not difficult to testify that

G(t, s)
γ(t)

≥ G(τ, s)
1 + v0(τ)

, ∀t, s, τ ∈ R
+,

G(t, s) ≤ G(s, s),
G(t, s)
1 + v0(t)

≤ 1, ∀t, s ∈ R
+.

(2.18)

Let us first give the following result of completely continuous operator.

Lemma 2.4. Supposing that (H1) and (H2) hold, then A : E → E is completely continuous.
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Proof. (1) First, we show that A : E → E is well defined.
For any v ∈ E, there exists d1 > 0 such that ‖v‖∞ ≤ d1. Then,

|Av(t)|
1 + v0(t)

≤
∫+∞

0

G(t, s)
1 + v0(t)

∣
∣
∣
∣f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)∣
∣
∣
∣ds

≤
∫+∞

0
p(s)

( |v(s)|
1 + v0(s)

+ b

)

ds +
∫+∞

0
q(s)

(∣
∣v′(s)

∣
∣ + b

)
ds +

∫∞

0
r(s)ds

≤ (d1 + b)(P1 +Q1) + R1, t ∈ R
+,

(2.19)

so

sup
t∈R+

|Av(t)|
1 + v0(t)

≤ (d1 + b)(P1 +Q1) + R1. (2.20)

Similarly,

∣
∣(Av)′(t)

∣
∣ =

∣
∣
∣
∣

∫+∞

t

f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)

ds

∣
∣
∣
∣

≤
∫+∞

t

[

p(s)
( |v(s)|
1 + v0(s)

+ b

)

+ q(s)
∣
∣v′(s) + b

∣
∣ + r(s)

]

ds, t ∈ R
+,

(2.21)

sup
t∈R+

∣
∣(Av)′(t)

∣
∣ ≤

∫+∞

0

[

p(s)
( |v(s)|
1 + v0(s)

+ b

)

+ q(s)
∣
∣v′(s) + b

∣
∣ + r(s)

]

ds

≤ (d1 + b)(P1 +Q1) + R1.

(2.22)

Further,

|Av(t)| ≤
∫+∞

0
G(t, s)

∣
∣
∣
∣f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)∣
∣
∣
∣ds

≤
∫+∞

0
(1 + v0(s))

[

p(s)
( |v(s)|
1 + v0(s)

+ b

)

+ q(s)
∣
∣v′(s) + b

∣
∣ + r(s)

]

ds

≤ (d1 + b)(P2 +Q2) + R2 < +∞, t ∈ R
+,

(2.23)

∣
∣(Av)′(t)

∣
∣ ≤

∫+∞

0

∣
∣
∣
∣f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)∣
∣
∣
∣ds

≤
∫+∞

0

[

p(s)
( |v(s)|
1 + v0(s)

+ b

)

+ q(s)
∣
∣v′(s) + b

∣
∣ + r(s)

]

ds

≤ (d1 + b)(P1 +Q1) + R1 < +∞.

(2.24)
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On the other hand, for any t1, t2 ∈ R
+ and s ∈ R

+, by Remark 2.3, we have

|G(t1, s) −G(t2, s)|
∣
∣
∣
∣f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)∣
∣
∣
∣

≤ 2(1 + v0(s))
[

p(s)
( |v(s)|
1 + v0(s)

+ b

)

+ q(s)
∣
∣v′(s) + b

∣
∣ + r(s)

]

≤ 2(1 + v0(s))
[(
p(s) + q(s)

)
(‖v‖ + b) + r(s)

]
.

(2.25)

Hence, by (H1), the Lebesgue dominated convergence theorem, and the continuity of G(t, s),
for any t1, t2 ∈ R

+, we have

|(Av)(t1) − (Av)(t2)| ≤
∫+∞

0
|G(t1, s) −G(t2, s)|

∣
∣
∣
∣f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)∣
∣
∣
∣ds

−→ 0, as t1 −→ t2,

∣
∣(Av)′(t1) − (Av)′(t2)

∣
∣ =

∫ t2

t1

∣
∣
∣
∣f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)∣
∣
∣
∣ds −→ 0, as t1 −→ t2.

(2.26)

So, Av ∈ C1(R+, R) for any v ∈ E.
We can show that Av ∈ E. In fact, by (2.23) and (2.24), we obtain

lim
t→+∞

|Av(t)|
1 + v0(t)

= 0, then lim
t→+∞

Av(t)
1 + v0(t)

= 0,

lim
t→+∞

(Av)′(t) = lim
t→+∞

∫+∞

t

f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)

ds = 0.

(2.27)

Hence, A : E → E is well defined.
(2)We show that A is continuous.
Suppose {vm} ⊆ E, v ∈ E, and limm→∞vm = v. Then, vm(t) → v(t), v′

m(t) → v′(t) as
m → +∞, t ∈ R

+, and there exists r0 > 0 such that ‖vm‖∞ ≤ r0, (m = 1, 2, . . .), ‖v‖∞ ≤ r0. The
continuity of f implies that

∣
∣
∣
∣f

(

t, vm(t) + bt +
a + bδ

Δ
, v′

m(t) + b

)

− f

(

t, v(t) + bt +
a + bδ

Δ
, v′(t) + b

)∣
∣
∣
∣ −→ 0 (2.28)

asm → ∞, t ∈ R
+. Moreover, since

∣
∣
∣
∣f

(

t, vm(t) + bt +
a + bδ

Δ
, v′

m(t) + b

)

− f

(

t, v(t) + bt +
a + bδ

Δ
, v′(t) + b

)∣
∣
∣
∣

≤ 2
[(
p(t) + q(t)

)
(r0 + b) + r(t)

]
, t ∈ R

+,

(2.29)
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we have from the Lebesgue dominated convergence theorem that

‖Avm −Av0‖∞

= max

{

sup
t∈R+

|(Avm)(t) − (Av)(t)|
1 + v0(t)

, sup
t∈R+

∣
∣(Avm)′(t) − (Av)′(t)

∣
∣

}

≤
∫+∞

0

∣
∣
∣
∣f

(

s, vm(s) + bs +
a + bδ

Δ
, v′

m(s) + b

)

− f

(

s, v(s) + bs +
a + bδ

Δ
, v′(s) + b

)∣
∣
∣
∣ds

−→ 0 (m −→ ∞).
(2.30)

Thus, A : E → E is continuous.
(3)We show that A : E → E is relatively compact.

(a) Let B ⊂ E be a bounded subset. Then, there existsM > 0 such that ‖v‖∞ ≤ M for all
v ∈ B. By the similar proof of (2.20) and (2.22), if v ∈ B, one has

‖Av‖∞≤ (M + b)(P1 +Q1) + R1, (2.31)

which implies that A(B) is uniformly bounded.

(b) For any T > 0, if t1, t2 ∈ [0, T], v ∈ B, we have

∣
∣
∣
∣
(Av)(t1)
1 + v0(t1)

− (Av)(t2)
1 + v0(t2)

∣
∣
∣
∣

≤
∫+∞

0

∣
∣
∣
∣
G(t1, s)
1 + v0(t1)

− G(t2, s)
1 + v0(t2)

∣
∣
∣
∣

∣
∣
∣
∣f

(

s, v(s) + bs +
a + bδ

Δ
, v′(s) + b

)∣
∣
∣
∣ds

≤ 2
∫+∞

0

∣
∣
∣
∣f

(

s, v(s) + bs +
a + bδ

Δ
, v′(s) + b

)∣
∣
∣
∣ds

≤ 2[(M + b)(P1 +Q1) + R1],
∣
∣(Av)′(t1) − (Av)′(t2)

∣
∣

≤
∫ t2

t1

∣
∣
∣
∣f

(

s, v(s) + bs +
a + bδ

Δ
, v′(s) + b

)∣
∣
∣
∣ds

≤ (M + b)(P1 +Q1) + R1.

(2.32)

Thus, for any ε > 0, there exists δ > 0 such that if t1, t2 ∈ [0, T], |t1 − t2| < δ, v ∈ B,
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then

∣
∣
∣
∣
(Av)(t1)
1 + v0(t1)

− (Av)(t2)
1 + v0(t2)

∣
∣
∣
∣ < ε,

∣
∣(Av)′(t1) − (Av)′(t2)

∣
∣ < ε.

(2.33)

Since T is arbitrary, then {(AB)(t)/(1 + v0(t))} and {(AB)′(t)} are locally equi-
continuous on R

+.

(c) For v ∈ B, from (2.27), we have

lim
t→+∞

∣
∣
∣
∣
(Av)(t)
1 + v0(t)

− lim
s→+∞

(Av)(s)
1 + v0(s)

∣
∣
∣
∣ = lim

t→+∞

∣
∣
∣
∣
(Av)(t)
1 + v0(t)

∣
∣
∣
∣ = 0,

lim
t→+∞

∣
∣
∣
∣(Av)′(t) − lim

s→+∞
(Av)′(s)

∣
∣
∣
∣ = lim

t→+∞
∣
∣(Av)′(t)

∣
∣ = 0,

(2.34)

which means that {(AB)(t)/(1 + v0(t))} and {(AB)′(t)} are equiconvergent at +∞. By
Lemma 2.1, A : E → E is relatively compact.

Therefore, A : E → E is completely continuous. The proof is complete.

Lemma 2.5 (see [28, 29]). Let E be Banach space, Ω be a bounded open subset of E, θ ∈ Ω, and
A : Ω → E be a completely continuous operator. Then either there exist x ∈ ∂Ω, λ > 1 such that
F(x) = λx, or there exists a fixed point x∗ ∈ Ω.

Lemma 2.6 (see [28, 29]). Let Ω be a bounded open set in real Banach space E, let P be a cone of
E, θ ∈ Ω, and let A : Ω ∩ P → P be completely continuous. Suppose that

λAx/=x, ∀x ∈ ∂Ω ∩ P, λ ∈ (0, 1]. (2.35)

Then,

i(A,Ω ∩ P, P) = 1. (2.36)

3. Existence Result

In this section, we present the existence of an unbounded solution for BVP (1.1) by using the
Leray-Schauder nonlinear alternative.

Theorem 3.1. Suppose that conditions (H1)–(H3) hold. Then BVP (1.1) has at least one unbounded
solution.
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Proof. Since f(t, 0, 0)/≡ 0, by (H1), we have r(t) ≥ |f(t, 0, 0)|, a.e. t ∈ R
+, which implies that

R1 > 0. Set

R =
b(P1 +Q1) + R1

1 − P1 −Q1
, ΩR = {v ∈ E : ‖v‖∞ < R}. (3.1)

From Lemmas 2.2 and 2.4, BVP (1.1) has a solution v = v(t) if and only if v is a fixed point of
A in E. So, we only need to seek a fixed point of A in E.

Suppose v ∈ ∂ΩR, λ > 1 such that Av = λv. Then

λR = λ‖v‖∞ = ‖Av‖∞ = max

{

sup
t∈R+

|(Av)(t)|
1 + v0(t)

, sup
t∈R+

∣
∣(Av)′(t)

∣
∣

}

≤
∫+∞

0

∣
∣
∣
∣f

(

s, v(s) + bs +
a + bδ

Δ
, v′(s) + b

)∣
∣
∣
∣ds

≤ (P1 +Q1)‖v‖∞ + (P1 +Q1)b + R1

= (P1 +Q1)R + (P1 +Q1)b + R1.

(3.2)

Therefore,

λ ≤ (P1 +Q1) +
(P1 +Q1)b + R1

R
= 1, (3.3)

which contradicts λ > 1. By Lemma 2.5, A has a fixed point v∗ ∈ ΩR. Letting u∗(t) = v∗(t) +
bt + ((a + bδ)/Δ), t ∈ R

+, boundary conditions imply that u∗ is an unbounded solution of
BVP (1.1).

4. Existence and Uniqueness of Positive Solution

In this section, we restrict the nonlinearity f ≥ 0 and discuss the existence and uniqueness of
positive solution for BVP (1.1).

Define the cone P ⊂ E as follows:

P =

{

u ∈ E : u(t) ≥ γ(t)sup
s∈R+

∣
∣
∣
∣

u(s)
1 + v0(s)

∣
∣
∣
∣, t ∈ R

+,
u(0)

1 + v0(0)
≥ β

δ + Δ + a/b
sup
s∈R+

∣
∣u′(s)

∣
∣

}

.

(4.1)

Lemma 4.1. Suppose that (H1) and (H2) hold. Then, A : P → P is completely continuous.

Proof. Lemma 2.4 shows that A : P → E is completely continuous, so we only need to
prove A(P) ⊂ P . Since f ∈ C(R+ × R × R, R

+), (Av)(t) ≥ 0, t ∈ R
+, and from Remark 2.3,
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we have

(Av)(t) =
∫+∞

0
G(t, s)f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)

ds

≥ γ(t)
∫+∞

0

G(τ, s)
1 + v0(τ)

f

(

s, v(s) +
a + bδ

Δ
+ bs, v′(s) + b

)

ds

= γ(t)

∫+∞
0 G(τ, s)f(s, v(s) + (a + bδ)/Δ + bs, v′(s) + b)ds

1 + v0(τ)

= γ(t)
Av(τ)

1 + v0(τ)
, ∀t, τ ∈ R

+.

(4.2)

Then,

(Av)(t) ≥ γ(t)sup
τ∈R+

Av(τ)
1 + v0(τ)

, t ∈ R
+,

Av(0)
1 + v0(0)

=

∫+∞
0 G(0, s)f(s, v(s) + (a + bδ)/Δ + bs, v′(s) + b)ds

1 + v0(0)

≥
(
β/Δ

) ∫+∞
0 f(s, v(s) + (a + bδ)/Δ + bs, v′(s) + b)ds

1 + (a/b + δ)/Δ

≥ β

δ + Δ + a/b
sup
t∈R+

∣
∣(Av)′(t)

∣
∣.

(4.3)

Therefore, A(P) ⊂ P .

Theorem 4.2. Suppose that conditions (H2) and (H3) hold and the following condition holds:

(H′
1) suppose that f(t, 0, 0), tf(t, 0, 0) ∈ L1[0,+∞), f(t, 0, 0)/≡ 0 and there exist nonnegative

functions p(t), q(t) ∈ L1[0,+∞) with tp(t), tq(t) ∈ L1[0,+∞) such that

∣
∣f(t, (1 + v0(t))u1, v1) − f(t, (1 + v0(t))u2, v2

∣
∣

≤ p(t)|u1 − u2| + q(t)|v1 − v2|, a.e. (t, ui, vi) ∈ R
+ × R × R, i = 1, 2.

(4.4)

Then, BVP (1.1) has a unique unbounded positive solution.

Proof. We first show that (H′
1) implies (H1). By (4.4), we have

∣
∣f(t, (1 + v0(t))u, v)

∣
∣ ≤ p(t)|u| + q(t)|v| + ∣

∣f(t, 0, 0)
∣
∣, a.e. (t, u, v) ∈ R

+ × R × R. (4.5)

By Lemma 4.1, A : P → P is completely continuous. Let R =
∫∞
0 f(t, 0, 0)dt. Then, R > 0. Set

R >
b(P1 +Q1) + R

1 − P1 −Q1
, Ω = {v ∈ E : ‖v‖∞ < R}. (4.6)
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For any v ∈ P ∩ ∂Ω, by (4.5), we have

|(Av)(t)|
1 + v0(t)

=
∣
∣
∣
∣

∫+∞

0

G(t, s)
1 + v0(t)

f

(

s, v(s) + bs +
a + bδ

Δ
, v′(s) + b

)

ds

∣
∣
∣
∣

≤ (R + b)(P1 +Q1) + R < R, t ∈ R
+,

∣
∣(Av)′(t)

∣
∣ =

∣
∣
∣
∣

∫+∞

t

f

(

s, v(s) + bs +
a + bδ

Δ
, v′(s) + b

)

ds

∣
∣
∣
∣

≤
∫+∞

0

∣
∣
∣
∣f

(

s, v(s) + bs +
a + bδ

Δ
, v′(s) + b

)∣
∣
∣
∣ds

≤ (R + b)(P1 +Q1) + R < R, t ∈ R
+.

(4.7)

Therefore, ‖Av‖∞ < ‖v‖∞, for all v ∈ P ∩ ∂Ω, that is, λAv /=v for any λ ∈ (0, 1], v ∈ P ∩ ∂Ω.
Then, Lemma 2.6 yields i(A,P ∩Ω, P) = 1, which implies that A has a fixed point v∗ ∈ P ∩Ω.
Let u∗(t) = v∗(t) + bt + ((a + bδ)/Δ), t ∈ R

+. Then, u∗ is an unbounded positive solution of
BVP (1.1).

Next, we show the uniqueness of positive solution for BVP (1.1). We will show that A
is a contraction. In fact, by (4.4), we have

‖Av1 −Av2‖∞

= max

{

sup
t∈R+

|(Av1)(t) − (Av2)(t)|
1 + v0(t)

, sup
t∈R+

∣
∣(Av1)′(t) − (Av2)′(t)

∣
∣

}

≤
∫+∞

0

∣
∣
∣
∣f

(

s, v1(s) + bs +
a + bδ

Δ
, v′

1(s) + b

)

− f

(

s, v2(s) + bs +
a + bδ

Δ
, v′

2(s) + b

)∣
∣
∣
∣ds

≤
∫+∞

0

[

p(s)
|v1(s) − v2(s)|

1 + v0(s)
+ q(s)

∣
∣v′

1(s) − v′
2(s)

∣
∣
]

ds

≤ (P1 +Q1)‖v1 − v2‖∞.
(4.8)

So, A is indeed a contraction. The Banach contraction mapping principle yields the
uniqueness of positive solution to BVP (1.1).

5. Examples

Example 5.1. Consider the following BVP:

u′′(t) + 2e−4t
u2(t)

1 + u2(t)
+ 2e−3t

(u′(t))3

1 + (u′(t))4
− arctan t

1 + t3
= 0, t ∈ R

+,

89u(0) − 3u′(0) −
7∑

i=1

iu

(
i + 3
4

)

= 2, lim
t→+∞

u′(t) = 1,

(5.1)
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We have

Δ = 89 −
7∑

i=1

i = 61, δ = 3 +
7∑

i=1

i
i + 3
4

= 59, v0(t) = t +
2 + 59
61

= t + 1,

f
(
t, x, y

)
= 2e−4t

x2

1 + x2
+ 2e−3t

y3

1 + y4
− arctan t

1 + t3
∈ C(R+ × R × R,R).

∣
∣f
(
t, (2 + t)x, y

)∣
∣ ≤ (2 + t)e−4t|x| + e−3t

∣
∣y

∣
∣ +

arctan t

1 + t3
.

(5.2)

Let

p(t) = (2 + t)e−4t, q(t) = e−3t, r(t) =
arctan t

1 + t3
. (5.3)

Then, p(t), q(t), r(t) ∈ L1[0,∞), tp(t), tq(t), tr(t) ∈ L1[0,∞), and it is easy to prove that (H1)
is satisfied. By direct calculations, we can obtain that P1 = 9/16, Q1 = 1/3, P1 + Q1 < 1. By
Theorem 3.1, BVP (5.1) has an unbounded solution.

Example 5.2. Consider the following BVP:

u′′(t) +
1

(2 + t)2
e−4t

u2(t)
1 + u2(t)

+
1
4
e−3t

|u′(t)|3
1 + (u′(t))4

+
arctan t

1 + t3
= 0, t ∈ R

+,

89u(0) − 3u′(0) −
7∑

i=1

iu

(
i + 3
4

)

= 2, lim
t→+∞

u′(t) = 1.

(5.4)

In this case, we have

Δ = 61, δ = 59, v0(t) = t + 1,

f
(
t, x, y

)
=

1

(2 + t)2
e−4t

x2

1 + x2
+
1
4
e−3t

∣
∣y

∣
∣3

1 + y4
+
arctan t

1 + t3
∈ C(R+ × R × R,R+),

∣
∣f
(
t, (2 + t)x1, y1

) − f
(
t, (2 + t)x2, y2

)∣
∣ ≤ 2e−4t|x1 − x2| + 3

4
e−3t

∣
∣y1 − y2

∣
∣.

(5.5)

Let

p(t) = 2e−4t, q(t) =
3
4
e−3t. (5.6)

Then, P1 = 1/2, Q1 = 1/4, P1 +Q1 < 1. By Theorem 4.2, BVP (5.4) has a unique unbounded
positive solution.
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