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We find polynomial-type Jost solution of the self-adjoint discrete Dirac systems. Then we
investigate analytical properties and asymptotic behaviour of the Jost solution. Using the Weyl
compact perturbation theorem, we prove that discrete Dirac system has the continuous spectrum
filling the segment [-2,2]. We also study the eigenvalues of the Dirac system. In particular, we
prove that the Dirac system has a finite number of simple real eigenvalues.

1. Introduction

Let us consider the boundary value problem (BVP) generated by the Sturm-Liouville
equation

−y′′ + q(x)y = λ2y, 0 ≤ x < ∞ (1.1)

and the boundary condition

y(0) = 0, (1.2)

where q is a real-valued function and λ ∈ � is a spectral parameter. The bounded solution of
(1.1) satisfying the condition

lim
x→∞

y(x, λ)e−iλx = 1, λ ∈ � + := {λ : λ ∈ � , Im λ ≥ 0} (1.3)



2 Boundary Value Problems

will be denoted by e(x, λ). The solution e(x, λ) satisfies the integral equation

e(x, λ) = eiλx +
∫∞

x

sin λ(t − x)
λ

q(t)e(t, λ)dt. (1.4)

It has been shown that, under the condition

∫∞

0
x
∣∣q(x)∣∣dx < ∞, (1.5)

the solution e(x, λ) has the integral representation

e(x, λ) = eiλx +
∫∞

x

K(x, t)eiλtdt, λ ∈ � +, (1.6)

where the functionK(x, t) is defined by q. The function e(x, λ) is analytic with respect to λ in
� + := {λ : λ ∈ � , Im λ > 0}, continuous � +, and

e(x, λ) = eiλx[1 + o(1)], λ ∈ � +, x −→ ∞ (1.7)

holds [1, chapter 3].
The functions e(x, λ) and e(λ) := e(0, λ) are called Jost solution and Jost function of

the BVP (1.1) and (1.2), respectively. These functions play an important role in the solution
of inverse problems of the quantum scattering theory [1–4]. In particular, the scattering date
of the BVP (1.1) and (1.2) is defined in terms of Jost solution and Jost function. Let iλk, k =
1, 2, 3, . . . , n, be the zeros of the Jost function, numbered in the order of increase of their moduli
(0 < λ1 < λ2 < · · · < λn) and

m−1
k :=

{∫∞

0
e2(x, iλk)dx

}1/2

. (1.8)

The functions

E(x, λ) := e(x,−λ) − s(λ)e(x, λ), λ2 ∈ (0,∞),

E(x, iλk) := mke(x, iλk), k = 1, 2, . . . , n,
(1.9)

are bounded solutions of the BVP (1.1) and (1.2), where s(λ) := e(−λ)/e(λ) is the scattering
function [1–4]. Using (1.7), we get that

E(x, λ) = e−iλx − s(λ)eiλx + o(1), λ2 ∈ (0,∞), x −→ ∞,

E(x, iλk) = mke
−λkx[1 + o(1)], k = 1, 2, . . . , n, x −→ ∞,

(1.10)

hold. The collection of quantities {s(λ), λ ∈ �; λk ,mk, k = 1, 2, . . . , n} that specify to as the
behaviour of the radial wave functions E(x, λ) and E(x, iλk) at infinity is called the scattering
of the BVP (1.1) and (1.2).
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Let us consider the self-adjoint system of differential equations of first order

y′
2 + p(x)y1 = λy1,

−y′
1 + q(x)y2 = λy2, 0 ≤ x < ∞,

(1.11)

where p and q are real-valued continuous functions. In the case p(x) = V (x)+m, q(x) = V (x)−
m, where V is a potential function and m the mass of a particle, (1.11) is called stationary
Dirac system in relativistic quantum theory [5, chapter 7]. Jost solution and the scattering
theory of (1.11) have been investigated in [6].

Jost solutions of quadratic pencil of Schrödinger, Klein-Gordon, and q-Sturm-Liouville
equations have been obtained in [7–9]. In [10–17], using the analytical properties of Jost
functions, the spectral analysis of differential and difference equations has been investigated.

Discrete boundary value problems have been intensively studied in the last decade.
The modelling of certain linear and nonlinear problems from economics, optimal control
theory, and other areas of study has led to the rapid development of the theory of difference
equations. Also the spectral analysis of the difference equations has been treated by various
authors in connection with the classical moment problem (see the monographs of Agarwal
[18], Agarwal and Wong [19], Kelley and Peterson [20], and the references therein). The
spectral theory of the difference equations has also been applied to the solution of classes of
nonlinear discrete Korteveg-de Vries equations and Toda lattices [21].

Now let us consider the discrete Dirac system

Δy
(2)
n + pny

(1)
n = λy

(1)
n ,

−∇y
(1)
n + qny

(2)
n = λy

(2)
n , n ∈ � = {1, 2, . . .},

(1.12)

with the boundary condition

y
(1)
0 = 0, (1.13)

whereΔ is the forward difference operator:Δun = un+1 −un and∇ is the backward difference
operator: ∇un = un − un−1; (pn) and (qn) are real sequences. It is evident that (1.12) is the
discrete analogy of (1.11). Let L denote the operator generated in the Hilbert space l2(�, � 2 )
by the BVP (1.12) and (1.13). The operator L is self-adjoint, that is, L = L∗. In the following,
we will assume that, the real sequences (pn) and (qn) satisfy

∞∑
n=1

n
(∣∣pn∣∣ + ∣∣qn∣∣) < ∞. (1.14)

In this paper, we find Jost solution of (1.12) and investigate analytical properties and
asymptotic behaviour of the Jost solution. We also show that, σc(L) = [−2, 2], where σc(L)
denotes the continuous spectrum of L, generated in l2(�, � 2 ) by (1.12) and (1.13).

We also prove that under the condition (1.14) the operator L has a finite number of
simple real eigenvalues.
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2. Jost Solution of (1.12)

If pn = qn = 0 for all n ∈ � and λ = −iz − (iz)−1 from (1.12), we get

y
(2)
n+1 − y

(2)
n =

[
−iz − (iz)−1

]
y
(1)
n ,

y
(1)
n−1 − y

(1)
n =

[
−iz − (iz)−1

]
y
(2)
n .

(2.1)

It is clear that

en(z) =

⎛
⎝e

(1)
n (z)

e
(2)
n (z)

⎞
⎠ =

(
z

−i

)
z2n, n ∈ �, (2.2)

is a solution of (2.1). Now we find the solution fn(z) =
(

f
(1)
n

f
(2)
n

)
, n ∈ � of (1.12) for λ =

−iz − (iz)−1, satisfying the condition

fn(z) = [I + o(1)]en(z), |z| = 1, n −→ ∞, (2.3)

where I =
(

1 0

0 1

)
.

Theorem 2.1. Under the condition (1.14) for λ = −iz − (iz)−1 and |z| = 1, (1.12) has the solution

fn(z) =
(

f
(1)
n

f
(2)
n

)
, n ∈ �, having the representation

fn(z) =

⎛
⎝f

(1)
n

f
(2)
n

⎞
⎠ =

[
I +

∞∑
m=1

Knmz
2m

](
z

−i

)
z2n, n ∈ �, (2.4)

f
(1)
0 (z) = z +

∞∑
m=1

(
K11

0mz
2m+1 − iK12

0mz
2m
)
, (2.5)

where

Knm =

(
K11

nm K12
nm

K21
nm K22

nm

)
. (2.6)
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Proof. Substituting fn(z) defined by (2.4) and (2.5) into (1.12) and taking λ = −iz − (iz)−1,
|z| = 1, we get the following:

pnz
2n+1 −

∞∑
m=1

K12
nmz

2m+2n−1 + i
∞∑

m=1

(
K22

nm − pnK
12
nm −K11

nm

)
z2m+2n

+
∞∑

m=1

(
pnK

11
nm −K21

nm +K12
nm

)
z2m+2n+1

= i
∞∑

m=1

(
K11

nm −K22
n+1,m

)
z2m+2n+2 +

∞∑
m=1

K21
n+1,mz

2m+2n+3,

(2.7)

iqnz
2n + i

∞∑
m=1

K12
n−1,mz

2m+2n−2 −
∞∑
m=1

(
K11

n−1,m −K22
nm

)
z2m+2n−1 − i

∞∑
m=1

(
K12

nm − qnK
22
nm −K21

nm

)
z2m+2n

=
∞∑

m=1

(
qnK

21
nm −K11

nm +K22
nm

)
z2m+2n+1 + i

∞∑
m=1

K21
nmz

2m+2n+2.

(2.8)

Using (2.7) and (2.8),

K12
n1 = −

∞∑
k=n+1

(
pk + qk

)
,

K11
n1 =

∞∑
k=n+1

pkK
12
k1,

K22
n1 = K11

n−1,1 =
∞∑
k=n

pkK
12
k1,

K21
n1 = K12

n1 + pnK
11
n1 +

∞∑
k=n+1

[
qkK

22
k1 + pkK

11
k1

]
,

K12
n2 = −

∞∑
k=n+1

[
pkK

11
k1 + qkK

22
k1

]
,

K11
n2 = −K22

n+1,1 +
∞∑

k=n+1

[
pkK

12
k2 − qkK

21
k1

]
,

K22
n2 = −K11

n1 +
∞∑
k=n

[
pkK

12
k2 − qk+1K

21
k+1,1

]
,

K21
n2 = K12

n2 +
∞∑
k=n

[
pkK

11
k2 + qk+1K

22
k+1,2

]

(2.9)
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hold, where n ∈ �. For m ≥ 3, we obtain

K12
nm = K21

n+1,m−2 −
∞∑

k=n+1

[
qkK

22
k,m−1 + pkK

11
k,m−1

]
,

K11
nm = −K22

n+1,m−1 +
∞∑

k=n+1

[
pkK

12
km − qkK

21
k,m−1

]
,

K22
nm = −K11

n,m−1 +
∞∑
k=n

[
pkK

12
km − qk+1K

21
k+1,m−1

]
,

K21
nm = K12

nm + pnK
11
nm +

∞∑
k=n+1

[
qkK

22
km + pkK

11
km

]
.

(2.10)

By the condition (1.14), the series in the definition of K
ij
nm (i, j = 1, 2) are absolutely

convergent. Therefore, Kij
nm (i, j = 1, 2) can, by uniquely be defined by pn and qn, that is,

the system (1.12) for λ = −iz − (iz)−1 and |z| = 1, has the solution fn(z) given by (2.4) and
(2.5).

By induction, we easily obtain that

∣∣∣Kij
nm

∣∣∣ ≤ C
∑

r=n+
m/2�

(∣∣pr∣∣ + ∣∣qr∣∣), (2.11)

where 
m/2� is the integer part of m/2 and C > 0 is a constant. It follows from (2.4) and
(2.11) that (2.3) holds.

Theorem 2.2. The solution fn(z) has an analytic continuation from {z : |z| = 1} to D := {z : |z| <
1} \ {0}.

Proof. From (1.14) and (2.11), we obtain that the series
∑∞

m=1 Knmeimz and
∑∞

m=1 mKnmeimz are
uniformly convergent in D. This shows that the solution fn(z) has an analytic continuation
from {z : |z| = 1} to D.

The functions fn(z) and f
(1)
0 (z) are called Jost solution and Jost function of the BVP

(1.12) and (1.13), respectively. It follows from Theorem 2.2 that Jost solution and Jost function
are analytic in D and continuous on D := {z : |z| ≤ 1} \ {0}.

Theorem 2.3. The following asymptotics hold:

fn(z) =

⎛
⎝f

(1)
n (z)

f
(2)
n (z)

⎞
⎠ = [I + o(1)]

(
z

−i

)
z2n, z ∈ D, n −→ ∞. (2.12)
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Proof. From (2.4), we get that

f
(1)
n (z) = z2n+1 +

[ ∞∑
m=1

K11
nmz

2m − i
∞∑

m=1

K12
nmz

2m−1
]
z2n+1, z ∈ D,

f
(1)
n (z)z−2n−1 = 1 +

∞∑
m=1

K11
nmz

2m − i
∞∑

m=1

K12
nmz

2m−1, z ∈ D.

(2.13)

Using (2.11) and (2.13), we obtain

∣∣∣f (1)
n (z)z−2n−1

∣∣∣ ≤ 1 +
∞∑

m=1

∣∣∣K11
nm

∣∣∣ +
∞∑

m=1

∣∣∣K12
nm

∣∣∣

≤ 1 + c
∞∑

m=1

∑
k=n+[|m/2|]

(∣∣pk∣∣ + ∣∣qk∣∣) ≤ 1 + c
∞∑

k=n+1

k−n∑
m=1

(∣∣pk∣∣ + ∣∣qk∣∣)

≤ 1 + c
∞∑

k=n+1

(k − n)
(∣∣pk∣∣ + ∣∣qk∣∣) ≤ 1 + c

∞∑
k=n+1

k
(∣∣pk∣∣ + ∣∣qk∣∣).

(2.14)

So we have

f
(1)
n (z) = z2n+1[1 + o(1)], z ∈ D, n −→ ∞, (2.15)

by (2.14). In a manner similar to (2.15), we get

f
(2)
n (z) = −iz2n[1 + o(1)], z ∈ D, n −→ ∞. (2.16)

From (2.15) and (2.16), we obtain (2.12).

3. Continuous and Discrete Spectrum of the BVP (1.12) and (1.13)

Let �2(�, C2) denote the Hilbert space of all complex vector sequences

y =

⎧⎨
⎩
⎛
⎝y

(1)
n

y
(2)
n

⎞
⎠
⎫⎬
⎭

n∈�

(3.1)

with the norm

∥∥y∥∥2 =
∞∑
n=1

(∣∣∣y(1)
n

∣∣∣2 + ∣∣∣y(2)
n

∣∣∣2
)
. (3.2)
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Theorem 3.1. σc(L) = [−2, 2].

Proof. Let L0 denote the operator generated in �2(�, C2) by the BVP

Δy
(2)
n = λy

(1)
n ,

−∇y
(1)
n = λy

(2)
n ,

y
(1)
0 = 0.

(3.3)

We also define the operator P in �2(�, C2 ) by the following:

P

⎛
⎝y

(1)
n

y
(2)
n

⎞
⎠ :=

(
pn 0

0 qn

)⎛
⎝y

(1)
n

y
(2)
n

⎞
⎠. (3.4)

It is clear that P = P ∗ and

L = L0 + P, (3.5)

where L denotes the operator generated in �2(�, C2 ) by the BVP (1.12) and (1.13). It follows
from (1.14) that the operator P is compact in �2(�, C2). We easily prove that

σc(L0) = [−2, 2]. (3.6)

Using the Weyl theorem [22] of a compact perturbation, we obtain

σc(L) = σc(L0) = [−2, 2]. (3.7)

Since the operator L is selfadjoint, the eigenvalues of L are real. From the definition of
the eigenvalues, we get that

σd(L) =
{
λ : λ = −iz − (iz)−1, iz ∈ (−1, 0) ∪ (0, 1), f (1)

0 (z) = 0
}
, (3.8)

where σd(L) denotes the set of all eigenvalues of L.

Definition 3.2. The multiplicity of a zero of the function f
(1)
0 is called the multiplicity of the

corresponding eigenvalue of L.

Theorem 3.3. Under the condition (1.14), the operator L has a finite number of simple real
eigenvalues.

Proof. To prove the theorem, we have to show that the function f
(1)
0 has a finite number of

simple zeros.
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Let z0 be one of the zeros of f
(1)
0 . Now we show that

d

dz
f
(1)
0 (z)

∣∣∣∣
z=z0

/= 0. (3.9)

Let fn(z) =
(

f
(1)
n (z)

f
(2)
n (z)

)
be the Jost solution of (1.12) that is,

f
(2)
n+1(z) − f

(2)
n (z) + pnf

(1)
n (z) =

[
−iz − (iz)−1

]
f
(1)
n (z),

f
(1)
n−1(z) − f

(1)
n (z) + qnf

(2)
n (z) =

[
−iz − (iz)−1

]
f
(2)
n (z).

(3.10)

Differentiating (3.10) with respect to z, we have

d

dz
f
(2)
n+1(z) −

d

dz
f
(2)
n (z) + pn

d

dz
f
(1)
n (z) =

[
−iz − (iz)−1

] d

dz
f
(1)
n (z) − i

(
1 − z−2

)
f
(1)
n (z),

d

dz
f
(1)
n−1(z) −

d

dz
f
(1)
n (z) + qn

d

dz
f
(2)
n (z) =

[
−iz − (iz)−1

] d

dz
f
(2)
n (z) − i

(
1 − z−2

)
f
(2)
n (z).

(3.11)

Using (3.10) and (3.11), we obtain

⎡
⎣df

(1)
n (z)
dz

f
(2)
n+1(z) − f

(1)
n (z)

df
(2)
n+1(z)
dz

⎤
⎦ −

⎡
⎣df

(1)
n−1(z)
dz

f
(2)
n (z) − f

(1)
n−1(z)

df
(2)
n (z)
dz

⎤
⎦

= i
(
1 − z−2

){[
f
(1)
n (z)

]2
+
[
f
(2)
n (z)

]2}
(3.12)

or

−df
(1)
0 (z)
dz

f
(2)
1 (z) = i

(
1 − z−2

) ∞∑
n=1

{[
f
(1)
n (z)

]2
+
[
f
(2)
n (z)

]2}
. (3.13)

It follows from (3.13) that

d

dz
f
(1)
0 (z)

∣∣∣∣
z=z0

/= 0, (3.14)

that is, all zeros of f (1)
0 are simple.
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Let δ denote the infimum of distances between two neighboring zeros of f (1)
0 . We show

that δ > 0. Otherwise, we can take a sequence of zeros zk and wk of the function f
(1)
0 , such

that

lim
k→∞

(zk −wk) = 0. (3.15)

It follows from (2.4) that, for large p ∈ �,

∞∑
n=p

[
f
(1)
n (zk)f

(1)
n (wk) + f

(2)
n (zk)f

(2)
n (wk)

]
≥ M (3.16)

holds, whereM > 0.
From the equation

∞∑
n=1

[
f
(1)
n (zk)f

(1)
n (wk) + f

(2)
n (zk)f

(2)
n (wk)

]
= 0, (3.17)

we get

lim inf
k→∞

∞∑
n=p

[
f
(1)
n (zk)f

(1)
n (wk) + f

(2)
n (zk)f

(2)
n (wk)

]
≤ 0. (3.18)

There is a contradiction comparing (3.16) and (3.18). So δ > 0 and f
(1)
0 function has only a

finite number of zeros.
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