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We applied the variational iteration method and the homotopy perturbation method to solve
Sturm-Liouville eigenvalue and boundary value problems. The main advantage of these methods
is the flexibility to give approximate and exact solutions to both linear and nonlinear problems
without linearization or discretization. The results show that both methods are simple and
effective.

1. Introduction

The variational iterationmethod (VIM) [1–4] and homotopy perturbationmethod (HPM) [5–
8], proposed byHe, are powerful analytical methods for various kinds of linear and nonlinear
problems. For example, the variational iteration method has been applied to autonomous
ordinary differential equation [9] and delay differential equation [10]. Abdou and Soliman
applied this method to Schrodinger-KDV, generalized KDV, and Shallow water equations
[11], Burger’s equations, and coupled Burger’s equations [12]. Furthermore, Momani
and Abuasad [13] used VIM for Helmoltz partial equation. Also homotopy perturbation
methodwas successfully applied to Voltra’s integrodifferential equation [14], boundary value
problem [8], nonlinear wave equations [15], and so forth; see [16–20]. In this paper, we exert
these methods for linear Sturm-Liouville eigenvalue and boundary value problems (BVPs).
A linear Sturm-Liouville operator has the form

�y(t) : Ky(t) = λr(t)y(t) + g(t), (1.1)
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where

K = − d

dt

[
p(t)

d

dt

]
+ q(t), t ∈ I = [a, b], (1.2)

and g(t) is known analytic function representing the nonhomogeneous term. Associated
with the differential equation (1.1) are the following separated homogeneous boundary
conditions:

α1y(a) + β1y
′(a) = 0,

α2y(b) + β2y
′(b) = 0,

(1.3)

where α1, α2, β1, and β2 are arbitrary constants. For simplicity, we will assume that
p(t), p′(t), q(t), and r(t) are continuous. The values of λ for which BVP has a nontrivial
solution are called eigenvalues of L, and a nontrivial solution corresponding to an eigenvalue
is called an eigenfunction.

The paper is organized as follows: in Sections 2 and 3, an analysis of the variational
iteration and homotopy perturbation methods will be given. In Section 4, we apply HPM to
solve Sturm-Liouville problems. We present 3 examples to show the efficiency and simplicity
of the proposed methods in Section 5. Finally, we give our conclusions in Section 6.

2. He’s Variational Iteration Method

To illustrate the basic concept of He’s variational iteration method [1–4], we consider the
following nonlinear differential equation:

L(u) +N(u) = g(t), (2.1)

where L is a linear operator, N is a nonlinear operator, and g(t) is a nonhomogeneous term.
He has modified the general Lagrange multiplier method into an iteration method which is
called correction functional as follows [1–4, 9]:

un+1(t) = un(t) +
∫ t

0
μ
[
Lun(r) +Nũn(r) − g(r)

]
dr, (2.2)

where μ is a general Lagrangemultiplier, which can be identified optimally via the variational
theory [21]. The subscript n denotes the nth approximation, and ũn is considered as a
restricted variation [1–4], that is, δũn = 0. Employing the restricted variation in (2.2) makes
it easy to compute the Lagrange multiplier; see [22, 23]. It is shown that this method is very
effective and easy and can solve a large class of nonlinear problems. For linear problems, its
exact solution can be obtained only one iteration because μ can be exactly identified.
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3. Homotopy Perturbation Method

In this section, we will present a review of the homotopy perturbation method. To clarify the
basic idea of the HPM [5–8], we consider the following nonlinear differential equation:

A(u) − g(r) = 0, r ∈ Ω, (3.1)

with boundary conditions

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (3.2)

where A is a general differential operator, B is a boundary operator, g(r) is a known analytic
function, and Γ is the boundary of the domain Ω. The operator A can, generally speaking, be
divided into parts L and N while N is nonlinear. Equation (3.1), therefore, can be rewritten
as follows:

L(u) +N(u) − g(r) = 0. (3.3)

By the homotopy technique, we construct a homotopy as follows:

ν
(
r, p

)
: Ω × [0, 1] −→ R, (3.4)

which satisfies

H
(
ν, p

)
=
(
1 − p

)
[L(ν) − L(u0)] + p

[
A(ν) − g(r)

]
= 0, p ∈ [0, 1], r ∈ Ω, (3.5)

or

H
(
ν, p

)
= L(ν) − L(u0) + pL(u0) + p

[
N(ν) − g(r)

]
= 0, p ∈ [0, 1], r ∈ Ω, (3.6)

where p ∈ [0, 1] is an embedding parameter, and u0 is an initial approximation of (3.1)which
satisfies the boundary conditions. Obviously, from (3.5), we have

H(ν, 0) = L(ν) − L(u0) = 0,

H(ν, 1) = A(ν) − g(r) = 0.
(3.7)

The changing process of p from zero to unity is just that of ν(r, p) from u0(r) to u(r). In
topology, this is called deformation and L(ν) − L(u0), and A(ν) − g(r) are called homotopic.
According to HPM, we can assume that the solution of (3.5) can be written as a power series
in p:

ν = ν0 + pν1 + p2ν2 + · · · . (3.8)
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Setting p = 1 results in the approximate solution (3.2):

u = lim
p→ 1

ν = ν0 + ν1 + ν2 + · · · . (3.9)

The coupling of the perturbation method and the homotopy method is called the homotopy
perturbation method which has eliminated limitations of the traditional perturbation
method. On the other hand, the proposed technique can take full advantage of the traditional
perturbations techniques.

4. Applying HPM to Solve Sturm-Liouville Problem

To solve (1.1), by means of homotopy perturbation method, we choose linear operator

L
[
y(t)

]
= − d

dt

[
p(t)

d

dt
y(t)

]
, (4.1)

with the property L(c1) = 0, where c1 is constant of integration and suggests that we define
a nonlinear operator as N(y) = (q(t) − λr(t))y(t). Also g(t) is known analytic function
representing the nonhomogeneous term. Therefore, (1.1) can be rewritten as follows:

L
(
y
)
+N

(
y
) − g = 0. (4.2)

By the homotopy perturbation technique proposed byHe [5–8], we can construct a homotopy

Y
(
t, p

)
: [−l, l] × [0, 1] −→ R,

H
(
Y, p

)
=
(
1 − p

)[ d

dt

(
p(t)

d

dt
Y (t)

)
− d

dt

(
p(t)y′

0(t)
)]

+ p

[
d

dt

(
p(t)

d

dt
Y (t)

)
− {

q(t) − λr(t)
}
Y (t) + g(t)

]
= 0,

(4.3)

or

H
(
Y, p

)
=

d

dt

[
p(t)

d

dt
Y (t)

]
− d

dt

[
p(t)

d

dt
y0(t)

]
+ p

d

dt

[
p(t)

d

dt
y0(t)

]

− p
[{
q(t) − λr(t)

}
Y (t) − g(t)

]
= 0.

(4.4)

One may now try to obtain a solution of (4.2) in the form

Y (t) = Y0(t) + pY1(t) + p2Y2(t) + · · · , (4.5)
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where the Yi(t) for i = 0, 1, 2, . . . are functions yet to be determined. Substituting (4.5) into
(4.4) yields

d

dt

[
p(t)

(
d

dt
Y0(t) + p

d

dt
Y1(t) + p2

d

dt
Y2(t) + · · ·

)]
− d

dt

[
p(t)

d

dt
y0(t)

]
+ p

d

dt

[
p(t)

d

dt
y0(t)

]

− p
{
q(t) − λr(t)

}[
Y0(t) + pY1(t) + p2Y2(t) + · · ·

]
+ pg(t) = 0.

(4.6)

Collecting terms of the same powers of p yields

p0 :
d

dt

[
p(t)

d

dt
Y0(t)

]
− d

dt

[
p(t)

d

dt
y0(t)

]
= 0,

p1 :
d

dt

[
p(t)

d

dt
Y1(t)

]
+

d

dt

[
p(t)

d

dt
y0(t)

]
− {

q(t) − λr(t)
}
Y0(t) + g(t) = 0,

p2 :
d

dt

[
p(t)

d

dt
Y2(t)

]
− {

q(t) − λr(t)
}
Y1(t) = 0,

...

pn :
(

d

dt

)[
p(t)

(
d

dt

)
Yn(t)

]
− {

q(t) − λr(t)
}
Yn−1(t) = 0.

(4.7)

The initial approximation Y0(t) or y0(t) can be freely chosen.

5. The Applications

To incorporate our discussion above, three special cases of the Sturm-Liouville equation (1.1)
will be studied.

Example 5.1. Consider the Sturm-Liouville equation

−y′′(t) + λy(t) = t, (5.1)

with initial approximation

y0(t, λ) = A + Bt, (5.2)

where A and B are constants. To solve (5.1) using the VIM, we have correction functional

yn+1(t, λ) = yn(t, λ) +
∫ t

0
μ
[−y′′

n(r, λ) + λyn(r, λ) − r
]
dr, (5.3)



6 Boundary Value Problems

where μ = μ(r, t;λ) is Lagrange multiplier. Making the above correction functional stationary,
we can obtain the following stationary conditions:

μ′′(r, t;λ) − λμ(r, t;λ) = 0,

1 − μ′(r, t;λ)|r=t = 0,

μ(r, t;λ)|r=t = 0.

(5.4)

The Lagrange multiplier can, therefore, be identified as

μ(r, t;λ) =
1√
λ

(
e
√
λ(r−t) − e−

√
λ(r−t)

2

)
=

1√
λ
sinh

(√
λ(r − t)

)
. (5.5)

Substituting (5.5) for correction functional (5.3), we have the following iteration formula:

yn+1(t, λ) = yn(t, λ) +
∫ t

0
sinh

(√
λ(r − t)

)[−y′′
n(r, λ) + λyn(r, λ) − r

]
dr. (5.6)

Using the iteration formula (5.6) and initial approximation (5.2), we get

y1(t, λ) = A cosh
(√

λt
)
+

1√
λ

(
B +

1
λ

)
sinh

(√
λt
)
− t

λ
. (5.7)

In the same way, we obtain

yn(t, λ) = A cosh
(√

λt
)
+

1√
λ

(
B +

1
λ

)
sinh

(√
λt
)
− t

λ
, n ≥ 2, (5.8)

which means that

y(t, λ) = A cosh
(√

λt
)
+

1√
λ

(
B +

1
λ

)
sinh

(√
λt
)
− t

λ
(5.9)

is the exact solution of (5.1).
In order to solve (5.1) using the HPM according to (4.4), we can readily construct a

homotopy which satisfies

H
(
Y, p

)
=
(
1 − p

)[ d2

dt2
Y (t) − d2

dt2
y0(t)

]
+ p

[
d2

dt2
Y (t) − λY (t) + t

]
= 0, p ∈ [0, 1], (5.10)

or

H
(
Y, p

)
=

d2

dt2
[
Y (t) − y0(t)

]
+ p

[
d2

dt2
y0(t) − λY (t) + t

]
= 0. (5.11)
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We consider Y (t) as

Y (t) = Y (t, λ) = Y0(t, λ) + pY1(t, λ) + p2Y2(t, λ) + · · · . (5.12)

Substituting (5.12) into (5.11), collecting terms of the same power, and using initial
approximation, we have the following set of linear equations:

p0 :
d2

dt2
[Y0(t, λ)] = 0,

p1 :
d2

dt2
[Y1(t, λ)] − d2

dt2
[
y0(t, λ)

] − λY0(t, λ) + t = 0,

p2 :
d2

dt2
[Y2(t, λ)] − λY1(t, λ) = 0,

...

pn :
d2

dt2
[Yn(t, λ)] − λYn−1(t, λ) = 0.

(5.13)

Solving the above equations, we have

Y0(t, λ) = A + Bt,

Y1(t, λ) = A

⎛
⎜⎝1 +

(√
λt
)2

2!

⎞
⎟⎠ +

B√
λ

⎛
⎜⎝√

λt +

(√
λt
)3

3!

⎞
⎟⎠ − t3

6
,

Y2(t, λ) = A

⎛
⎜⎝1 +

(√
λt
)2

2!
+

(√
λt
)4

4!

⎞
⎟⎠ +

B√
λ

⎛
⎜⎝√

λt +

(√
λt
)3

3!
+

(√
λt
)5

5!

⎞
⎟⎠ − λt5

120
,

...

Yn(t, λ) = A

⎛
⎜⎝1 +

(√
λt
)2

2!
+ · · · +

(√
λt
)2n

(2n)!

⎞
⎟⎠ +

B√
λ

⎛
⎜⎝√

λt +

(√
λt
)3

3!
+ · · · +

(√
λt
)2n+1

(2n + 1)!

⎞
⎟⎠

+ (−1)n
(

(λ)n+1

(2n + 1)!

)
.

(5.14)

Continuing in this manner, we can obtain

Y (t, λ) = A cosh
(√

λt
)
+

1√
λ

(
B +

1
λ

)
sinh

(√
λt
)
− t

λ
, (5.15)

which is exactly the same as that obtained by VIM.
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Example 5.2. As another example, we consider Sturm-Liouville problem

−y′′(t) + (t − λ)y(t) = 0, t ≥ 0, (5.16)

with initial conditions

y(0) = A, y′(0) = B, (5.17)

where A and B are constants. To solve (5.16) by means of variational method, we construct a
correction functional

yn+1(t, λ) = yn(t, λ) +
∫ t

0
μ
[−y′′

n(r, λ) + rỹn(r, λ) − λyn(r, λ)
]
dr, (5.18)

where μ = μ(r, t;λ) is the Lagrange multiplier and ỹn denotes restricted variation that is
δỹn = 0. Then, we have

δyn+1(t, λ) = δyn(t, λ) + δ

∫ t

0
μ
[−y′′

n(r, λ) + rỹn(r, λ) − λyn(r, λ)
]
dr. (5.19)

Calculus of variations and integration by parts give the stationary conditions

μ′′(r, t;λ) + λμ(r, t;λ) = 0,

1 + μ′(r, t;λ)|r=t = 0,

μ(r, t;λ)|r=t = 0,

(5.20)

for which the Lagrange multiplier μ should satisfy. The Lagrange multiplier can, therefore,
be identified as

μ(r, t;λ) = − 1√
λ
sin

(√
λ(r − t)

)
. (5.21)

Substituting (5.21) into correction functional (5.18) results in the following iteration formula:

yn+1(t, λ) = yn(t, λ) −
∫ t

0

1√
λ
sin

(√
λ(r − t)

)[−y′′
n(r, λ) + ryn(r, λ) − λyn(r, λ)

]
dr. (5.22)
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According to initial conditions (5.17), it is natural to choose initial approximation y0(t, λ) =
A + Bt. Using the above variational formula (5.22), we can obtain the following result:

y1(t, λ) = A cos
(√

λt
)
+

A

λ3/2

⎛
⎜⎝

(√
λt
)3

3!
−

(√
λt
)5

5!
+ · · ·

⎞
⎟⎠

+
B√
λ
sin

(√
λt
)
+
2B
λ2

⎛
⎜⎝

(√
λt
)4

4!
−

(√
λt
)6

6!
+ · · ·

⎞
⎟⎠,

....

(5.23)

In order to solve system (5.16)-(5.17) using HPM, after applying HPM and rearranging based
on powers of p-terms, we have

p0 :
d2

dt2
[Y0(t, λ)] − d2

dt2
[
y0(t, λ)

]
= 0,

p1 :
d2

dt2
[Y1(t, λ)] − d2

dt2
[
y0(t, λ)

]
+ (−t + λ)Y0(t, λ) = 0,

p2 :
d2

dt2
[Y2(t, λ)] + (−t + λ)Y1(t, λ) = 0,

....

(5.24)

Solving the above equations, we get

Y1(t, λ) = A

⎛
⎜⎝1 −

(√
λt
)2

2!

⎞
⎟⎠ +

A

λ3/2

⎛
⎜⎝

(√
λt
)3

3!

⎞
⎟⎠ +

B√
λ

⎛
⎜⎝√

λt −

⎛
⎜⎝

(√
λt
)3

3!

⎞
⎟⎠

⎞
⎟⎠

+
2B
λ2

⎛
⎜⎝

(√
λt
)4

4!

⎞
⎟⎠,

Y2(t, λ) � A

⎛
⎜⎝1 −

(√
λt
)2

2!
+

(√
λt
)4

4!

⎞
⎟⎠ +

A

λ3/2

⎛
⎜⎝

(√
λt
)3

3!
−

(√
λt
)5

5!

⎞
⎟⎠

+
B√
λ

⎛
⎜⎝√

λt −

(√
λt
)3

3!
+

(√
λt
)5

5!

⎞
⎟⎠ +

2B
λ2

⎛
⎜⎝

(√
λt
)4

4!
−

(√
λt
)6

6!

⎞
⎟⎠,

....

(5.25)
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Example 5.3. Finally, we consider eigenvalue Sturm-Liouville problem

−y′′(t) − λy(t) = 0, t ∈ (−l, l), l > 0, (5.26)

along with the Dirichlet boundary conditions

y(−l) = 0, y(l) = 0. (5.27)

To solve (5.26) bymeans of variational method, we construct a correction functional for (5.26)
that reads as

yn+1(t, λ) = yn(t, λ) +
∫ t

0
μ
[−y′′

n(r, λ) − λyn(r, λ)
]
dr, (5.28)

where μ = μ(r, t;λ) is Lagrangemultiplier. Following the discussion presented in the previous
example, we obtain the following iteration formula:

yn+1(t, λ) = yn(t, λ) −
∫ t

0

1√
λ
sin

(√
λ(r − t)

)[−y′′
n(r, λ) − λyn(r, λ)

]
dr. (5.29)

Let us begin with an initial approximation y0(t, λ) = A + Bt, where A and B are constants to
be determined. Substituting the proposed initial iterate y0(t, λ) in (5.29) gives

y1(t, λ) = A cos
(√

λt
)
+

B√
λ
sin

(√
λt
)
. (5.30)

In the same way, we obtain

yn(t, λ) = A cos
(√

λt
)
+

B√
λ
sin

(√
λt
)
, n ≥ 2. (5.31)

So, we can derive that

y(t, λ) = A cos
(√

λt
)
+

B√
λ
sin

(√
λt
)

(5.32)

is the exact solution of (5.26).
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In order to solve (5.26) using HPM, similar to previous examples, after applying HPM
and rearranging based on powers of p-terms, we have

p0 :
d2

dt2
[Y0(t, λ)] − d2

dt2
[
y0(t, λ)

]
= 0,

p1 :
d2

dt2
[Y1(t, λ)] − d2

dt2
[
y0(t, λ)

]
+ λY0(t, λ) = 0,

p2 :
d2

dt2
[Y2(t, λ)] + λY1(t, λ) = 0,

...

pn :
d

dt
[Yn(t, λ)] + λYn−1(t, λ) = 0.

(5.33)

Now, we choose y0(t, λ) = A + Bt. Solving the above sets of equations yields

Y0(t, λ) = A + Bt,

Y1(t, λ) = A

⎛
⎜⎝1 −

(√
λt
)2

2!

⎞
⎟⎠ +

B√
λ

⎛
⎜⎝√

λt −

(√
λt
)3

3!

⎞
⎟⎠,

Y2(t, λ) = A

⎛
⎜⎝1 −

(√
λt
)2

2!
+

(√
λt
)4

4!

⎞
⎟⎠ +

B√
λ

⎛
⎜⎝√

λt −

(√
λt
)3

3!
+

(√
λt
)5

5!

⎞
⎟⎠,

...

Yn(t, λ) = A

⎛
⎜⎝1 −

(√
λt
)2

2!
+

(√
λt
)4

4!
+ · · · + (−1)n

(√
λt
)2n

(2n)!

⎞
⎟⎠

+
B√
λ

⎛
⎜⎝√

λt −

(√
λt
)3

3!
+

(√
λt
)5

5!
+ · · · + (−1)n

(√
λt
)2n+1

(2n + 1)!

⎞
⎟⎠.

(5.34)

Hence, from (4.4) we get

Y (t, λ) = A cos
(√

λt
)
+

B√
λ
sin

(√
λt
)
, (5.35)
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which is exactly the same as that obtained by VIM. Now, we use the boundary condition
(5.27) to obtain eigenvalue and eigenfunctions of (5.26). Imposing the boundary conditions
in (5.35) yields

Y (−l, λ) = A cos
(√

λl
)
− B√

λ
sin

(√
λl
)
= 0,

Y (l, λ) = A cos
(√

λl
)
+

B√
λ
sin

(√
λl
)
= 0.

(5.36)

So, there are two infinite sequences of eigenvalues λm:

λm =
(
(2m − 1)π

2l

)2

, m = 1, 2, . . . ,

λm =
(mπ

l

)2
, m = 1, 2, . . . .

(5.37)

Thus, corresponding linearly nontrivial solutions are

um(t) = A cos
(
(2m − 1)π

2l
t

)
, m = 1, 2, . . . ,

vm(t) = B
l

mπ
sin

(mπ

l
t
)
, m = 1, 2, . . . .

(5.38)

Since um(t) and vm(t) are of class C(I,R), that is, are continuous real-valued functions of
t ∈ (−l, l), using the definition of inner product on C(I,R), that is,

〈um, vm〉 =
∫ l

−l
um(x)vm(x)dx, um, vm ∈ C(I,R), (5.39)

and the norm induced by inner product

(‖um‖2)2 = 〈um, um〉 =
∫ l

−l
um(x)vm(x)dx, (5.40)

we get the normalization constants as

A =
1√
l
, B =

mπ√
l3
. (5.41)
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Consequently, we obtain

ũm(t) =
1√
l
cos

(
(2m − 1)π

2l
t

)
, m = 1, 2, . . . ,

ṽm(t) =
1√
l
sin

(mπ

l
t
)
, m = 1, 2, . . . ,

(5.42)

where ũm(t) and ṽm(t) are normalized eigenfunctions, that is, ũm(t) = um(t)/‖um‖2 and
ṽm(t) = vm(t)/‖vm‖2.

6. Conclusion

In this work, we proposed variational method and compared with homotopy perturbation
method to solve ordinary Sturm-Liouville differential equation. The variational iteration
algorithm used in this paper is the variational iteration algorithm-I; there are also variational
iteration algorithm-II and variational iteration algorithm-III [24], which can also be used for
the present paper. It may be concluded that the two methods are powerful and efficient
techniques to find exact as well as approximate solutions for wide classes of ordinary
differential equations.
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