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We deal with a perturbed eigenvalue Dirichlet-type problem for an elliptic hemivariational
inequality involving the p-Laplacian. We show that an appropriate oscillating behaviour of the
nonlinear part, even under small perturbations, ensures the existence of infinitely many solutions.
Themain tool in order to obtain our abstract results is a recent critical-point theorem for nonsmooth
functionals.

1. Introduction

Hemivariational inequalities appear in the mathematical modeling of several complicated
mechanical and engineering problems, whose relevant energy functionals are neither convex
nor smooth. For instance, this is the case of non-monotone multivalued interface laws
or constitutive relations that occur in certain contact and friction processes, as well as of
phenomena related to large displacements and deformations expressed by nonlinear strain-
displacement laws.

The theory of hemivariational inequalities can be viewed as a new field of nonsmooth
mechanics since the main ingredient used in the study of these inequalities is the notion
of the Clarke subdifferential of a locally Lipschitz continuous functional. The mathematical
theory hemivariational inequalities, as well as their applications in mechanics, engineering
or economics were introduced and developed by Panagiotopoulos [1, 2].

For a treatment of this topics, we refer the reader to the monographs byNaniewicz and
Panagiotopoulos [3], Motreanu and Panagiotopoulos [4], Motreanu and Rădulescu [5, 6],
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and Rădulescu [7, 8]. Moreover, very recently, several inequalities problems have been
studied; see, for instance, the papers [9–14].

Our work is inspired by the very nice and seminal papers of Marano and Motranu
[13, 15]. In particular, by following [13], where the authors stated the existence of infinitely
many solutions of a Neumann-type problem for an elliptic variational-hemivariational
inequality, in this paper we treat a Dirichlet-type problem for an elliptic hemivariational
inequality driven by the p-Laplacian, by using a different technique (see Remark 3.2).

Precisely, let Ω be a nonempty, bounded, open subset of the real Euclidean
N-dimensional space (�N , | · |), N ≥ 1, with smooth boundary ∂Ω, p ∈]N,+∞[, and let
f, g : � → � be two locally essentially bounded functions. Set α, β ∈ L1(Ω) such that
min{α(x), β(x)} ≥ 0, almost everywhere in Ω and, finally, λ, μ ∈ � with λ > 0 and μ ≥ 0.
The main purpose is to study the following elliptic hemivariational inequality problem, say
(Pf, g

λ, μ
).

Find u ∈ W
1,p
0 (Ω) fulfilling

−
∫
Ω
|∇u(x)|p−2∇u(x) · ∇(v(x) − u(x))dx

≤ λ

∫
Ω
α(x)F◦(u(x); (v(x) − u(x)))dx + μ

∫
Ω
β(x)G◦(u(x); (v(x) − u(x)))dx,

(1.1)

for every v ∈ W
1,p
0 (Ω), where F◦ and G◦ are the generalized directional derivatives of the

locally Lipschitz continuous functions

F(ξ) :=
∫ ξ

0
f(t)dt, G(ξ) :=

∫ ξ

0
g(t)dt, (1.2)

for every ξ ∈ �.
Here, by using a recent abstract critical-point result (see Theorem 2.2 below), under

some hypotheses on the behavior of the potential of the nonlinear term f at infinity, we show
the existence of a precise interval of parametersΛ such that, for each λ ∈ Λ, and every locally
essentially bounded function g that satisfies certain conditions at infinity, the perturbed
problem (Pf, g

λ, μ
) admits a sequence of solutions which are unbounded in the Sobolev space

W
1,p
0 (Ω); see Theorem 3.1.

Further, replacing the conditions at infinity of the potential of f and of the perturbation
term g, by a similar one at zero, the same results hold and, in addition, the sequence of
pairwise distinct solutions uniformly converges to zero; see Theorem 3.6.

If f, g ∈ C0(�), as pointed out in Remark 3.5 below, a function u ∈ W
1,p
0 (Ω) solves

(Pf, g

λ, μ
) if and only if it is a weak solution of the Dirichlet problem

Δpu = λα(x)f(u) + μβ(x)g(u) in Ω,

u|∂Ω = 0,
(Df,g

λ,μ
)

where Δp = div(|∇u|p−2∇u) is the p-Laplacian operator.
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The existence of infinitely many solutions for some elliptic Dirichlet problems has
received a great deal of interest in recent years; see, for instance, the papers [16–20]. Moreover,
very recently, existence results for problems involving a perturbation term have been studied
in [21–23].

Here, we present a special case of our result.

Theorem 1.1. Let f : � → � be a nonpositive continuous function with potential F(ξ) :=
∫ ξ
0 f(t)dt,

for every ξ ∈ �. Assume that the following condition holds:

(f ′′
2) lim infξ→+∞((−F(ξ))/ξ2) < (1/4)lim supξ→+∞((−F(ξ))/ξ2).

Then, for each

λ ∈ Λ :=

⎤
⎥⎦ 8
lim supξ→+∞((−F(ξ))/ξ2)

,
2

lim infξ→+∞((−F(ξ))/ξ2)

⎡
⎢⎣, (1.3)

for every nonpositive continuous function g : � → � such that

(g ′
1) G

�
∞ := limξ→+∞(

∫ ξ
0 g(t)dt/ξ

2) > −∞,

for every μ ∈ [0, μ̂g,λ[, where

μ̂g,λ :=
1
G�∞

(
2 − λ lim inf

ξ−→+∞
(−F(ξ))

ξ2

)
, (1.4)

the following problem

u′′ = λf(u) + μg(u) in ]0, 1[,

u(0) = u(1) = 0
(Pf,g

λ
)

admits a sequence of pairwise distinct positive classical solutions.

The present paper is arranged as follows. In Section 2, we recall some basic definitions
and preliminary results, while Section 3 is devoted to the existence of infinitely many
solutions for the eigenvalue problem (Pf, g

λ, μ
). Finally, in Section 4, we give concrete examples

of application of our abstract results.

2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space. We denote by X∗ the dual space of X, while 〈·, ·〉 stands
for the duality pairing between X∗ and X. A function h : X → � is called locally Lipschitz
continuous when to every x ∈ X, there correspond a neighborhood Vx of x and a constant
Lx ≥ 0 such that

|h(z) − h(w)| ≤ Lx‖z −w‖, ∀z,w ∈ Vx. (2.1)
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If x, z ∈ X, we write h◦(x; z) for the generalized directional derivative of h at the point x
along the direction z, that is,

h◦(x; z) := lim sup
w→x, t→ 0+

h(w + tz) − h(w)
t

. (2.2)

The generalized gradient of the function h in x, denoted by ∂h(x), is the set

∂h(x) := {x∗ ∈ X∗ : 〈x∗, z〉 ≤ h◦(x; z), ∀z ∈ X}. (2.3)

Two meaningful properties of generalized directional derivatives are collected in the
proposition below. Their proofs and a thorough treatment of this topic can be found in [24];
let us mention [25] too.

Proposition 2.1. Let h : X → � be locally Lipschitz continuous functional. Then, h◦ : X ×X → �

is upper semicontinuous and for all λ ≥ 0, x, z ∈ X, one has

(λh)◦(x; z) = λh◦(x; z). (2.4)

Moreover, if h1, h2 : X → � are locally Lipschitz continuous functional, then

(h1 + h2)◦(x, z) ≤ h◦
1(x, z) + h◦

2(x, z), ∀x, z ∈ X. (2.5)

When a nonsmooth functional, g : X → ] − ∞,+∞], is expressed as a sum of a locally
Lipschitz continuous function, h : X → �, and a convex, proper, and lower semicontinuous
function, j : X → ] − ∞,+∞], that is, g := h + j, a (generalized) critical point of g is every
x ∈ X such that

h◦(x; z − x) + j(z) − j(x) ≥ 0, (2.6)

for all z ∈ X; see [4, Chapter 3].
If j ≡ 0, then it clearly signifies 0 ∈ ∂h(x), namely, x is a critical point of h according to

[25, Definition 2.1].
From now, assume that X is a reflexive real Banach space,Φ : X → � is a sequentially

weakly lower semicontinuous functional, Υ : X → � is a sequentially weakly upper
semicontinuous functional, λ is a positive real parameter, j : X → ] − ∞,+∞] is a convex,
proper and lower semicontinuous functional, and D(j) is the effective domain of j.

Write

Ψ := Υ − j, Jλ := Φ − λΨ = (Φ − λΥ) + λj. (2.7)

We also assume that Φ is coercive and

D
(
j
) ∩Φ−1(]−∞, r[)/= ∅, (2.8)
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for all r > infXΦ. Moreover, from (2.8) and provided r > infXΦ, we can define

ϕ(r) = inf
u∈Φ−1(]−∞,r[)

(
supv∈Φ−1(]−∞,r[)Ψ(v)

)
−Ψ(u)

r −Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→ (infxΦ)+

ϕ(r).

(2.9)

If Φ and Υ are locally Lipschitz continuous functionals, in [26] the following result is proved,
which is a more precise version of [13, Theorem 1.1] (see also [27]).

Theorem 2.2. Under the above assumptions on X, Φ, and Ψ, one has

(a) If γ < +∞, then, for each λ ∈]0, 1/γ[, the following alternative holds:

either

(a1) Jλ possesses a global minimum,

or

(a2) there is a sequence {un} of critical points (local minima) of Jλ such that
limn→∞Φ(un) = +∞.

(b) If δ < +∞, then, for each λ ∈]0, 1/δ[, the following alternative holds:

either

(b1) there is a global minimum of Φ which is a local minimum of Jλ,

or

(b2) there is a sequence {un} of pairwise distinct critical points (local minima) of Jλ, with
limn→∞Φ(un) = infXΦ, which weakly converges to a global minimum of Φ.

We recall here some basic definitions and notations. As usual, W1,p
0 (Ω) is the closure

of C∞
0 (Ω) with respect to the norm

‖u‖ =
(∫

Ω
|∇u(x)|pdx

)1/p

. (2.10)

We are interested in the existence of infinitely many solutions for problem (Pf, g

λ, μ
). The main

objective is to use the abstract Theorem 2.2.
Put

k := sup
{maxx∈Ω|u(x)|

‖u‖ : u ∈ W
1,p
0 (Ω), u /= 0

}
. (2.11)
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Since p > N, one has k < +∞. For our goal, it is enough to know an explicit upper bound for
the constant k. Denoting by Γ the Gamma function defined by

Γ(t) :=
∫+∞

0
zt−1e−zdz, ∀t > 0. (2.12)

In this connection, it is well known (see [28, formula (6b)]) that if we set

m :=
N−1/p
√
π

[
Γ
(
1 +

N

2

)]1/N(
p − 1
p −N

)1−1/p
meas (Ω)1/N−1/p, (2.13)

where “meas(Ω)” is the Lebesgue measure of Ω, one has k ≤ m (equality occurs when Ω is a
ball). Then,

‖u‖∞ ≤ m‖u‖, (2.14)

for every u ∈ W
1,p
0 (Ω). Define

σ
(
N, p

)
:= inf

η∈]0,1[
1 − ηN

ηN
(
1 − η

)p , (2.15)

and consider η ∈]0, 1[ such that σ(N, p) = (1 − ηN)/(ηN(1 − η)p). Moreover, let

τ := sup
x∈Ω

dist(x, ∂Ω), (2.16)

where “dist(x, ∂Ω)” denotes the usual Euclidean distance from x ∈ Ω to the boundary ∂Ω.
Simple calculations show that there is x0 ∈ Ω such that B(x0, τ) ⊆ Ω. Further, put

κ :=

(
τp

mp‖α‖L1(Ω)σ
(
N, p

)
)‖α‖L1(B(x0,ητ))

ηNωτ

, (2.17)

where m is given by (2.13). We also denote by

ωτ := τN πN/2

Γ(1 +N/2)
, (2.18)

the measure of the N-dimensional ball of radius τ . Finally, let

A := lim inf
ξ−→+∞

max|t|≤ξ(−F(t))
ξp

, B := lim sup
ξ−→+∞

(−F(ξ))
ξp

,

λ1 :=
ωτη

Nσ
(
N, p

)
pτp‖α‖L1(B(x0,ητ))B

, λ2 :=
1

pmp‖α‖L1(Ω)A
.

(2.19)
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3. Main Results

In this section, we present our main existence result for the hemivariational inequality
problem (Pf, g

λ, μ
).

Theorem 3.1. Let f : � → � be a locally essentially bounded function and put F(ξ) :=
∫ ξ
0 f(t)dt,

for every ξ ∈ �. Assume that

(f1) supξ≥0F(ξ) = 0

(f2) and that

lim inf
ξ−→+∞

max|t|≤ξ(−F(t))
ξp

< κ lim sup
ξ−→+∞

(−F(ξ))
ξp

, (3.1)

where κ is given by (2.17).

Then, for every λ ∈]λ1, λ2[, for every locally essentially bounded function g : � → � whose
potential G(ξ) :=

∫ ξ
0 g(t)dt for every ξ ∈ �, satisfies

(g1) supξ≥0G(ξ) = 0,

(g2) G∞ := limξ→+∞(max|t|≤ξ(−G(t))/ξp) < +∞,

and for every μ ∈ [0, μg,λ[, where

μg,λ :=
1∥∥β∥∥

L1(Ω)G∞mpp

{
1 − λpmp‖α‖L1(Ω)lim inf

ξ−→+∞
max|t|≤ξ(−F(t))

ξp

}
, (3.2)

the problem (Pf, g

λ, μ
) admits a sequence of solutions which are unbounded inW

1,p
0 (Ω).

Proof. Our aim is to apply part (a) of Theorem 2.2. To this end, fix λ ∈]λ1, λ2[ and let g be a
function that satisfies hypotheses (g1)-(g2). Owing to λ < λ2, one has

μg,λ :=
1∥∥β∥∥L1(Ω)G∞mpp

{
1 − λpmp‖α‖L1(Ω)lim inf

ξ−→+∞
max|t|≤ξ(−F(t))

ξp

}
> 0. (3.3)

Fix 0 ≤ μ < μg,λ and denote by X the Banach spaceW1,p
0 (Ω) endowed of the norm

‖u‖ :=
(∫

Ω
|∇u(x)|pdx

)1/p

. (3.4)

Assume j identically zero in X and let Φ,Ψ : X → � defined as follows:

Φ(u) :=
‖u‖p
p

, Ψ(u) :=
∫
Ω
Hλ(u(x))dx, ∀u ∈ X, (3.5)
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where

Hλ(u) := −α(x)F(u) − μ

λ
β(x)G(u), (3.6)

for every u ∈ X.
By standard arguments, one has that Φ is Gâteaux differentiable and sequentially

weakly lower semicontinuous and its Gâteaux derivative (at the point u) is the functional
Φ′(u) ∈ X∗ given by

Φ′(u)(v) =
∫
Ω
|∇u(x)|p−2∇u(x) · ∇v(x)dx, (3.7)

for every v ∈ X. Furthermore, Ψ is, in particular, sequentially weakly upper semicontinuous.
Put Jλ(u) := Φ(u) − λΨ(u) for every u ∈ X. We want to prove that, under our hypotheses,
there exists a sequence {un} ⊂ X of critical points for the functional Jλ, that is, every element
un satisfies

J◦
λ
(un, v − un) ≥ 0, (3.8)

for every v ∈ X.
First of all, we will show that λ < 1/γ . Hence, let {cn} be a real sequence such that

limn→∞cn = +∞ and

lim
n→∞

max|t|≤cn(−F(t))
c
p
n

= A. (3.9)

Put rn = c
p
n/m

pp for every n ∈ �. Taking into account formula (2.14), one has maxx∈Ω|v(x)| ≤
cn for all v ∈ X such that ‖v‖p < prn. Moreover, for every n ∈ �, it follows that

ϕ(rn) = inf
‖u‖p<prn

sup‖v‖p<prn
∫
Ω Hλ(v(x))dx − ∫

Ω Hλ(u(x))dx

rn − ‖u‖p/p ≤
sup‖v‖p<prn

∫
Ω Hλ(v(x))dx

rn

≤
sup‖v‖p<prn

∫
Ω −α(x)F(v(x))dx

rn
+
μ

λ

sup‖v‖p<prn
∫
Ω −β(x)G(v(x))dx

rn

≤ mpp‖α‖L1(Ω)
max|t|≤cn(−F(t))

c
p
n

+
μmpp

λ

∥∥β∥∥
L1(Ω)

max|t|≤cn(−G(t))

c
p
n

.

(3.10)

Therefore, from the assumption (f2), one hasA < +∞. Hence, from hypothesis (g2), we obtain

lim
n→∞

max|t|≤cn(−G(t))

c
p
n

= G∞. (3.11)
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Then,

γ ≤ lim inf
n→+∞

ϕ(rn) ≤ mppA‖α‖L1(Ω) +
μmpp

λ

∥∥β∥∥
L1(Ω)G∞ < +∞. (3.12)

Assumption 0 < μ < μg,λ immediately yields

γ ≤ mpp‖α‖L1(Ω)A +
μmpp

λ

∥∥β∥∥
L1(Ω)G∞ < mpp‖α‖L1(Ω)A +

1 − λpmp‖α‖L1(Ω)A

λ
. (3.13)

Hence,

λ =
1

mpp‖α‖L1(Ω)A +
(
1 − λpmp‖α‖L1(Ω)A

)
/λ

<
1
γ
. (3.14)

We claim that the functional Jλ is unbounded from below. Let {ζn} be a real sequence such
that limn→∞ζn = +∞ and

lim
n→∞

(−F(ζn))
ζ
p
n

= B. (3.15)

For each n ∈ �, define

wn(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if x ∈ Ω \ B(x0, τ),

ζn

τ
(
1 − η

)(τ − |x − x0|), if x ∈ B(x0, τ) \ B
(
x0, ητ

)
,

ζn, if x ∈ B
(
x0, ητ

)
.

(3.16)

One can prove that

‖wn‖p =
∫
Ω |∇wn(x)|pdx = ζ

p
nωτ

[
1 − ηN

τp
(
1 − η

)p
]
. (3.17)

Indeed,

∫
Ω
|∇wn(x)|pdx =

∫
B(x0 ,τ)\B(x0,ητ)

ζ
p
n

τp
(
1 − η

)p dx

=
ζ
p
n(

1 − η
)p
τp

(
meas

(
B
(
x0, η

)) −meas
(
B
(
x0, ητ

)))

=
ζ
p
nωτ(

1 − η
)p
τp

(
1 − ηN

)
.

(3.18)
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At this point, bearing in mind (f1), we infer

∫
Ω
(−α(x)F(wn(x)))dx ≥

∫
B(x0 ,ητ)

(−α(x)F(ζn))dx ≥ −F(ζn)‖α‖L1(B(x0,ητ)), ∀n ∈ �,

(3.19)

and, clearly, one has

−λ
∫
Ω
(−α(x)F(wn(x)))dx ≤ λF(ζn)‖α‖L1(B(x0 ,ητ)). (3.20)

Moreover, owing to (g1), it follows that

−μ
∫
Ω

(−β(x)G(wn(x))
)
dx ≤ 0, (3.21)

for every n ∈ �.
Hence, inequalities (3.20) and (3.21) imply that

Jλ(wn) = Φ(wn) − λΨ(wn) =
‖wn‖p

p
− λ

∫
Ω
(−α(x)F(wn(x)))dx − μ

∫
Ω

(−β(x)G(wn(x))
)
dx

≤ ‖wn‖p
p

− λ

∫
Ω
(−α(x)F(wn(x)))dx ≤ ζ

p
nωτ

p

[
1 − ηN

τp
(
1 − η

)p
]
+ λF(ζn)‖α‖L1(B(x0,ητ)),

(3.22)

for every n ∈ �.
If B < +∞, let ε ∈](ωτη

Nσ(N, p))/(λpτp‖α‖L1(B(x0 ,ητ))B), 1[. By (3.15), there exists νε
such that

F(ζn) < −εBζpn, ∀n > νε. (3.23)

Moreover,

Jλ(wn) ≤ ζ
p
nωτ

p

[
1 − ηN

τp
(
1 − η

)p
]
− λ‖α‖L1(B(x0 ,ητ))εBζ

p
n

= ζ
p
n

(
ωτη

Nσ
(
N, p

)
pτp

− λ‖α‖L1(B(x0 ,ητ))εB

)
, ∀n > νε.

(3.24)

Taking into account the choice of ε, one has

lim
n→∞

Jλ(wn) = −∞. (3.25)
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If B = +∞, let us consider

M >
ωτη

Nσ
(
N, p

)
λpτp‖α‖L1(B(x0,ητ))

. (3.26)

By (3.15), there exists νM such that

F(ζn) < −Mζ
p
n, ∀n > νM. (3.27)

Then,

Jλ(wn) ≤ ζ
p
nωτ

p

[
1 − ηN

τp
(
1 − η

)p
]
− λ‖α‖L1(B(x0,ητ))Mζ

p
n

= ζ
p
n

(
ωτη

Nσ
(
N, p

)
pτp

− λ‖α‖L1(B(x0,ητ))M

)
, ∀n > νM.

(3.28)

Finally, inequality (3.26) implies that

lim
n→∞

Jλ(wn) = −∞. (3.29)

From part (b) of Theorem 2.2, the functional Jλ admits a sequence of critical points {un} ⊂ X
such that limn→∞Φ(un) = +∞. Since Φ is bounded on bounded sets and taking into account
that limn→+∞Φ(un) = +∞, then {un} has to be unbounded. Moreover, if un ∈ X is a critical
point of Jλ, clearly, by definition, one has

J◦
λ
(un, v − un) ≥ 0, (3.30)

for every v ∈ X.
We will prove that un solves problem (Pf, g

λ, μ ). From (3.30), taking into account
Proposition 2.1 and by the regularity of the term Φ, one has

Φ′(un, v − un) + λ[−Ψ(un, v − un)]
◦ ≥ 0, (3.31)

for every v ∈ X.
From (3.31), it follows that

∫
Ω
|∇un(x)|p−2∇un(x) · ∇(v(x) − un(x))dx + λ

[∫
Ω
α(x)F(un(x); (v(x) − un(x)))dx

+
μ

λ

∫
Ω
β(x)G(un(x); (v(x) − un(x)))dx

]◦
≥ 0, ∀v ∈ X.

(3.32)



12 Boundary Value Problems

By using Proposition 2.1 and from formula (2) on p. 77 in [24], we have

[∫
Ω
α(x)F(un(x); (v(x) − un(x)))dx +

μ

λ

∫
Ω
β(x)G(un(x); (v(x) − un(x)))dx

]◦

≤
∫
Ω
α(x)F◦(un(x); (v(x) − un(x)))dx +

μ

λ

∫
Ω
β(x)G◦(un(x); (v(x) − un(x)))dx.

(3.33)

Then,

∫
Ω
|∇un(x)|p−2∇un(x) · ∇(v(x) − un(x))dx

+ λ

[∫
Ω
α(x)F◦(un(x); (v(x) − un(x)))dx +

μ

λ

∫
Ω
β(x)G◦(un(x); (v(x) − un(x)))dx

]
≥ 0,

(3.34)

that is,

−
∫
Ω
|∇un(x)|p−2∇un(x) · ∇(v(x) − un(x))dx

≤ λ

∫
Ω
α(x)F◦(un(x); (v(x) − un(x)))dx + μ

∫
Ω
β(x)G◦(un(x); (v(x) − un(x)))dx,

(3.35)

for every v ∈ X. The proof is complete.

Remark 3.2. In [13], it is showed, under suitable assumptions on the potentials F and G, the
existence of infinitely many solutions for the following variational-hemivariational inequality
problem. Find u ∈ K fulfilling

−
∫
Ω

[
|∇u(x)|p−2∇u(x) · ∇(v(x) − u(x)) + q(x)|u(x)|p−2u(x)(v(x) − u(x))

]
dx

≤
∫
Ω

[
α(x)F◦(u(x); (v(x) − u(x))) + β(x)G◦(u(x); (v(x) − u(x)))

]
dx, ∀v ∈ K,

(3.36)

where q ∈ L∞(Ω) with ess infx∈Ωq(x) > 0 and K is a closed and convex set of the Sobolev
space W1,p(Ω) that contains the constant functions. Hence, roughly speaking, variational-
hemivariational inequalities may be regarded as hemivariational inequalities subject to
variational constraints. We pointed out that, in their treatment, the authors consider the
presence of the constant functions. In our approach, for problem of Dirichlet type, the rule
of the constant functions is played by the sequence {wn} ⊂ W

1,p
0 (Ω) defined in Theorem 3.1
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and previously introduced by Bonanno and Livrea in [29]. It is worth noticing that the
techniques adopted here and introduced by Bonanno and Molica Bisci in [26] (see also [30])
are fundamentally proving Theorem 3.1, since the usual method utilized in order to obtain
infinitely many solutions (see [13, 31]) cannot be easily applied in the Dirichlet problems.

Remark 3.3. Assume that in Theorem 3.1, f is a nonpositive continuous function. Hence,
hypothesis (f2) can be written as follows:

(f ′
2) lim infξ→+∞ ((−F(ξ))/ξp) < κ lim supξ→+∞((−F(ξ))/ξp),

as well as

μg,λ :=
1∥∥β∥∥L1(Ω)G∞mpp

{
1 − λpmp‖α‖L1(Ω) meas(Ω)lim inf

ξ−→+∞
(−F(t))

ξp

}
. (3.37)

Remark 3.4. If f is such that condition (f1) holds and

lim inf
ξ−→+∞

max|t|≤ξ(−F(t))
ξp

= 0, lim sup
ξ−→+∞

(−F(ξ))
ξp

= +∞, (3.38)

clearly, hypothesis (f2) is verified and Theorem 3.1 guarantees the existence of infinitely
many solutions for problem (Pf, g

λ, μ
), for every pair (λ, μ) ∈ D, where

D := ]0,+∞[ ×
[
0,

1∥∥β∥∥
L1(Ω)G∞mpp

[
. (3.39)

Moreover, under the assumptionG∞ = 0, the main result guarantees the existence of infinitely
many solutions for problem (Pf, g

λ, μ
), for every μ ≥ 0.

Remark 3.5. When f, g : � → � are continuous functions, the inequality (Pf, g

λ, μ
) takes the form

−
∫
Ω
|∇un(x)|p−2∇u(x) · ∇v(x)dx = λ

∫
Ω
α(x)f(u(x))v(x)dx + μ

∫
Ω
β(x)g(u(x))v(x)dx,

(3.40)

for every v ∈ W
1,p
0 (Ω).

Therefore, in such a case, a function u ∈ W
1,p
0 (Ω) solves (Pf, g

λ, μ
) if and only if it is a

weak solution of the Dirichlet problem

Δpu = λα(x)f(u) + μβ(x)g(u) in Ω,

u|∂Ω = 0.
(Df,g

λ,μ)

Hence, Theorem 1.1 in Introduction is a particular case of Theorem 3.1 taking into account
Remarks 3.3 and 3.4.
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We want to emphasize the fact that, replacing the condition at infinity of the potential
F by a similar one at zero, the existence of a sequence of pairwise distinct solutions (uniformly
converging to zero) of problem (Pf, g

λ, μ ), is achieved by using part (b) of Theorem 2.2 instead
of part (a). For this goal, put

A∗ := lim inf
ξ−→0+

max|t|≤ξ(−F(t))
ξp

, B∗ := lim sup
ξ−→0+

(−F(ξ))
ξp

,

λ∗
1 :=

ωτη
Nσ

(
N, p

)
pτp‖α‖L1(B(x0,ητ))B

∗ , λ∗
2 :=

1
pmp‖α‖L1(Ω)A

∗ .

(3.41)

Theorem 3.6. Let f : � → � be a locally essentially bounded function and put F(ξ) :=
∫ ξ
0 f(t)dt,

for every ξ ∈ �. Assume that

(f1) supξ≥0F(ξ) = 0

(f0
2 ) and that

lim inf
ξ−→0+

max|t|≤ξ(−F(t))
ξp

< κ lim sup
ξ−→0+

(−F(ξ))
ξp

, (3.42)

where κ is given by (2.17).
Then, for every λ ∈]λ∗

1, λ
∗
2[, for every locally essentially bounded function g : � → � whose

potential G(ξ) :=
∫ ξ
0 g(t)dt for every ξ ∈ �, satisfies

(g1) supξ≥0G(ξ) = 0,

(g0
2) G0 := limξ→ 0+ (max|t|≤ξ(−G(t))/ξp) < +∞,

and for every μ ∈ [0, μ�
g,λ

[, where

μ�
g,λ :=

1∥∥β∥∥
L1(Ω)G∞mpp

{
1 − λpmp‖α‖L1(Ω)lim inf

ξ→ 0+

max|t|≤ξ(−F(t))
ξp

}
, (3.43)

the problem (Pf, g

λ, μ
) possesses a sequence of nonzero solutions which strongly converge to 0 inW1,p(Ω).

Proof. Taking X, Φ, and Ψ as in the proof of Theorem 3.1, fix λ ∈]λ∗
1, λ

∗
2[, let g be a function

that satisfy hypotheses (g1)-(g0
2) and take 0 ≤ μ < μ�

g,λ. As first step, we will prove that

λ < 1/δ. Then, let {cn} be a real sequence of positive numbers such that limn→∞cn = 0 and

lim
n→∞

max|t|≤cn(−F(t))
c
p
n

= A∗. (3.44)

Arguing in a similar way of Theorem 3.1, by using hypotheses (f0
2 ) and (g0

2), we can prove
that

ϕ(rn) ≤ mpp‖α‖L1(Ω)
max|t|≤cn(−F(t))

c
p
n

+
μmpp

λ

∥∥β∥∥L1(Ω)

max|t|≤cn(−G(t))

c
p
n

, (3.45)
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for each n ∈ � and where rn = c
p
n/m

pp. Since

δ ≤ lim inf
n→∞

ϕ(rn) ≤ mppA∗‖α‖L1(Ω) +
μmpp

λ

∥∥β∥∥
L1(Ω)G0 < +∞. (3.46)

From 0 < μ < μ�

g,λ
, the following inequalities hold

δ ≤ mpp‖α‖L1(Ω)A
∗ +

μmpp

λ

∥∥β∥∥L1(Ω)G0 < mpp‖α‖L1(Ω)A
∗ +

1 − λpmp‖α‖L1(Ω)A
∗

λ
. (3.47)

Hence,

λ =
1

mpp‖α‖L1(Ω)A
∗ +

(
1 − λpmp‖α‖L1(Ω)A

∗
)
/λ

<
1
δ
. (3.48)

In the next step, we show that 0 is not a local minimum point for the functional Jλ. Indeed,
let {ζn} be a real sequence of positive numbers such that limn→∞ζn = 0 and

lim
n→∞

(−F(ζn))
ζ
p
n

= B∗. (3.49)

Consider the sequence of functions {wn} defined in Theorem 3.1. Of course, {wn} strongly
converges to zero inX, and from (g1) it follows that Jλ(wn) < 0 for every integer n sufficiently
large. Since Jλ(0) = 0, this means that 0 is not a local minimum of Jλ. Then, the unique global
minimum of Φ is not a local minimum of the functional Jλ. From part (b) of Theorem 2.2, we
obtain a sequence {vn} ⊂ X of critical points of Jλ such that limn→∞‖vn‖ = 0. Moreover, again
as in the proof of Theorem 3.1, one can show that every critical point of the functional Jλ is

also a solution of problem (Pf, g

λ, μ ). Thus, the proof is complete.

4. Applications

Finally, by using our results, we show the existence of infinitely many solutions in two
concrete cases.

Example 4.1. Set

an :=
2n!(n + 2)! − 1

4(n + 1)!
, bn :=

2n!(n + 2)! + 1
4(n + 1)!

, (4.1)

for every n ∈ �.
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Define the nonpositive (and discontinuous) function h : � → � as follows:

h(ξ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2(n + 1)!
[
np−1(n + 1)!p − (n − 1)p−1n!p

]
, if ξ ∈

⋃
n≥0

]an, bn[,

0, if ξ ∈ � \
(⋃

n≥0
]an, bn[

)
.

(4.2)

Direct computations ensure that

lim sup
ξ→+∞

(−H(ξ))
ξp

= +∞, lim inf
ξ→+∞

(−H(ξ))
ξp

= 0, (4.3)

where H(ξ) :=
∫ ξ
0 h(t)dt, for every ξ ∈ �.

Then, for every (λ, μ) ∈]0,+∞[×[0,+∞[ and for every nonpositive and locally
essentially bounded function g : � → � with potential G satisfying

lim
ξ→+∞

G(ξ)
ξp

= 0, (4.4)

the following problem (Ph,g

λ,μ ).

Find u ∈ W
1,p
0 (Ω) fulfilling

−
∫
Ω
|∇u(x)|p−2∇u(x) · ∇(v(x) − u(x))dx

≤ λ

∫
Ω
H◦(u(x); (v(x) − u(x)))dx + μ

∫
Ω
G◦(u(x); (v(x) − u(x)))dx,

(4.5)

for every v ∈ W
1,p
0 (Ω), possesses a sequence of solutions which are unbounded inW

1,p
0 (Ω).

The next is a simple consequence of Theorem 1.1.

Example 4.2. Define the nonpositive continuous function f : � → � as follows:

f(t) :=

⎧⎪⎨
⎪⎩
−tcos2(ln(t)), if t > 0,

0, if t ≤ 0.
(4.6)

Since

lim inf
ξ−→+∞

∫ ξ
0

(−f(t))dt
ξ2

=
2 − √

2
8

,

lim sup
ξ−→+∞

∫ ξ
0

(−f(t))dt
ξ2

=
2 +

√
2

8
,

] (4.7)
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one has

lim inf
ξ−→+∞

∫ ξ
0

(−f(t))dt
ξ2

<
1
4
lim sup
ξ→+∞

∫ ξ
0

(−f(t))dt
ξ2

. (4.8)

From Theorem 1.1, for each

λ ∈ Λ :=
]

64

2 +
√
2
,

16

2 −√
2

[
, (4.9)

for every nonpositive continuous function g : � → � such that (g ′
1) holds and for every

μ ∈ [0, μ̂g,λ[, where

μ̂g,λ :=
λ
(
2 − √

2
)
− 16

8

⎛
⎝ lim

ξ→+∞

∫ξ
0 g(t)dt

ξ2

⎞
⎠

−1

, (4.10)

the following problem

−u′′ = λf(u) + μg(u) in ]0, 1[,

u(0) = u(1) = 0,
(Pf, g

λ, μ
)

possesses a sequence of weak solutions which are unbounded inW1,2
0 (]0, 1[).

For instance, for each (λ, μ) ∈ Λ × [0,+∞[, the Dirichlet problem

u′′ + μ
√
|u| = λf(u) in ]0, 1[,

u(0) = u(1) = 0,

(Pf

λ, μ)

possesses a sequence of pairwise distinct positive classical solutions.
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