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We investigate the existence of positive solutions of singular problem (−1)mx(2m+1) = f(t, x, . . . ,
x(2m)), x(0) = 0, x(2i−1)(0) = x(2i−1)(T) = 0, 1 ≤ i ≤ m. Here, m ≥ 1 and the Carathéodory function
f(t, x0, . . . , x2m) may be singular in all its space variables x0, . . . , x2m. The results are proved by
regularization and sequential techniques. In limit processes, the Vitali convergence theorem is
used.

1. Introduction

Let T be a positive constant, J = [0, T] and �− = (−∞, 0), �+ = (0,∞), �0 = �\{0}. We consider
the singular complementary Lidstone boundary value problem

(−1)mx(2m+1)(t) = f
(
t, x(t), . . . , x(2m)(t)

)
, m ≥ 1, (1.1)

x(0) = 0, x(2i−1)(0) = x(2i−1)(T) = 0, 1 ≤ i ≤ m, (1.2)

where f satisfies the local Carathéodory function on J × D (f ∈ Car(J × D)) with

D =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

�
2
+ × �0 × �− × �0 × �+ × · · · × �+ × �0︸ ︷︷ ︸

4k−1

if m = 2k − 1,

�
2
+ × �0 × �− × �0 × �+ × · · · × �− × �0︸ ︷︷ ︸

4k+1

if m = 2k.
(1.3)
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The function f(t, x0, . . . , x2m) is positive and may be singular at the value zero of all its space
variables x0, . . . , x2m.

Let i ∈ {0, 1, . . . , 2m}. We say that f is singular at the value zero of its space variable xi if
for a.e. t ∈ J and all xj , 0 ≤ j ≤ 2m, j /= i such that (x0, . . . , xi, . . . , x2m) ∈ D, the relation

lim
xi → 0

f(t, x0, . . . , xi, . . . , x2m) = ∞ (1.4)

holds.
A function x ∈ AC2m(J) (i.e., x has absolutely continuous 2mth derivative on J) is

a positive solution of problem (1.1), (1.2) if x(t) > 0 for t ∈ (0, T], x satisfies the boundary
conditions (1.2) and (1.1) holds a.e. on J .

The regular complementary Lidstone problem

(−1)mx(2m+1)(t) = h
(
t, x(t), . . . , x(q)(t)

)
, m ≥ 1, q fixed, 0 ≤ q ≤ 2m,

x(0) = α0, x(2i−1)(0) = αi, x(2i−1)(1) = βi, 1 ≤ i ≤ m

(1.5)

was discussed in [1]. Here, h : [0, 1] × �q+1 → � is continuous at least in the interior of the
domain of interest. Existence and uniqueness criteria for problem (1.5) are proved by the
complementary Lidstone interpolating polynomial of degree 2m. No contributions exist, as
far as we know, concerning the existence of positive solutions of singular complementary
Lidstone problems.

We observe that differential equations in complementary Lidstone problems as well as
derivatives in boundary conditions are odd orders, in contrast to the Lidstone problem

(−1)mx(2m)(t) = p
(
t, x(t), . . . , x(r)(t)

)
, m ≥ 1, r fixed, 0 ≤ r ≤ 2m − 1,

x(2i)(0) = ai, x(2i)(1) = bi, 1 ≤ i ≤ m − 1,
(1.6)

where the differential equation and derivatives in the boundary conditions are even orders.
For ai = bi = 0 (1 ≤ i ≤ m − 1), regular Lidstone problems were discussed in [2–9], while
singular ones in [10–15].

The aim of this paper is to give the conditions on the function f in (1.1) which gua-
rantee that the singular problem (1.1), (1.2) has a solution. The existence results are proved
by regularization and sequential techniques, and in limit processes, the Vitali convergence
theorem [16, 17] is applied.

Throughout the paper, ‖x‖∞ = max{|x(t)| : t ∈ J} and ‖x‖Cn =
∑n

k=0 ‖x(k)‖∞, n ≥ 1
stands for the norm in C0(J) and Cn(J), respectively. L1(J) denotes the set of functions
(Lebesgue) integrable on J and measM the Lebesgue measure of M ⊂ J .

We work with the following conditions on the function f in (1.1).

(H1) f ∈ Car(J × D) and there exists a ∈ (0,∞) such that

a ≤ f(t, x0, . . . , x2m), (1.7)

for a.e. t ∈ J and each (x0, . . . , x2m) ∈ D.
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(H2) For a.e. t ∈ J and for all (x0, . . . , x2m) ∈ D, the inequality

f(t, x0, . . . , x2m) ≤ h

⎛
⎝t,

2m∑
j=0

∣∣xj

∣∣
⎞
⎠ +

2m∑
j=0

ωj

(∣∣xj

∣∣) (1.8)

is fulfilled, where h ∈ Car(J × [0,∞)) is positive and nondecreasing in the second
variable, ωj : �+ → �+ is nonincreasing, 0 ≤ j ≤ 2m,

lim sup
v→∞

1
v

∫T

0
h(t, Kv)dt < 1, K =

⎧
⎪⎨
⎪⎩

T2m+1 − 1
T − 1

if T /= 1,

2m + 1 if T = 1,

∫1

0
ω2j

(
s2
)
ds < ∞,

∫1

0
ω2j+1(s)ds < ∞ if 0 ≤ j ≤ m − 1,

∫1

0
ω2m(s)ds < ∞.

(1.9)

The paper is organized as follows. In Section 2, we construct a sequence of auxiliary
regular differential equations associated with (1.1). Section 3 is devoted to the study of
auxiliary regular complementary Lidstone problems. We show that the solvability of these
problems is reduced to the existence of a fixed point of an operatorH. The existence of a fixed
point of H is proved by a fixed point theorem of cone compression type according to Guo-
Krasnosel’skii [18, 19]. The properties of solutions to auxiliary problems are also investigated
here. In Section 4, applying the results of Section 3, the existence of a positive solution of the
singular problem (1.1), (1.2) is proved.

2. Regularization

Let m be from (1.1). For n ∈ �, define χn, ϕn, τn,m ∈ C0(�), �n ⊂ �, and Dn ⊂ �
2m+1 by

the formulas

χn(u) =

⎧
⎪⎨
⎪⎩
u for u ≥ 1

n
,

1
n

for u <
1
n
,

ϕn(u) =

⎧
⎪⎨
⎪⎩
− 1
n

for u > − 1
n
,

u for u ≤ − 1
n
,

τn,m =

⎧
⎨
⎩
χn if m = 2k − 1,

ϕn if m = 2k,
�n =

(
−∞,− 1

n

]
∪
[
1
n
,∞
)
,

Dn = �2 × �n × � × �n × � × · · · × � × �n︸ ︷︷ ︸
2m+1

.

(2.1)
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Let f ∈ Car(J × D). Chose n ∈ � and put

f∗
n(t, x0, x1, x2, x3, x4, . . . , x2m−1, x2m)

= f
(
t, χn(x0), χn(x1), x2, ϕn(x3), x4, . . . , τn,m(x2m−1), x2m

) (2.2)

for (t, x0, x1, x2, x3, x4, . . . , x2m−1, x2m) ∈ J ×Dn. Now, define an auxiliary function fn by means
of the following recurrence formulas:

fn,0(t, x0, x1, . . . , x2m) = f∗
n(t, x0, x1, . . . , x2m) for (t, x0, x1, . . . , x2m) ∈ J × Dn,

fn,i(t, x0, x1, . . . , x2m)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

fn,i−1(t, x0, x1, . . . , x2m) if |x2i| ≥ 1
n
,

n

2

[
fn,i−1

(
t, x0, . . . , x2i−1,

1
n
, x2i+1, . . . , x2m

)(
x2i +

1
n

)

−fn,i−1
(
t, x0, . . . , x2i−1,− 1

n
, x2i+1, . . . , x2m

)(
x2i − 1

n

)]
if |x2i| < 1

n
,

(2.3)

for 1 ≤ i ≤ m, and

fn(t, x0, x1, . . . , x2m) = fn,m(t, x0, x1, . . . , x2m) for (t, x0, x1, . . . , x2m) ∈ J × �2m+1 . (2.4)

Then, under condition (H1), fn ∈ Car(J × �2m+1 ) and

a ≤ fn(t, x0, x1, . . . , x2m) for a.e. t ∈ J and all(x0, x1, . . . , x2m) ∈ �2m+1 . (2.5)

Condition (H2) gives

fn(t, x0, x1, . . . , x2m) ≤ h

⎛
⎝t, 2m + 1 +

2m∑
j=0

∣∣xj

∣∣
⎞
⎠ +

2m∑
j=0

(
ωj

(∣∣xj

∣∣) +ωj(1)
)
,

for a.e. t ∈ J and all (x0, x1, . . . , x2m) ∈ �2m+1
0 ,

(2.6)

fn(t, x0, x1, . . . , x2m) ≤ h

⎛
⎝t, 2m + 1 +

2m∑
j=0

∣∣xj

∣∣
⎞
⎠ +

2m∑
j=0

ωj

(
1
n

)
,

for a.e. t ∈ J and all (x0, x1, . . . , x2m) ∈ �2m+1 .

(2.7)

We investigate the regular differential equation

(−1)mx(2m+1)(t) = fn
(
t, x(t), . . . , x(2m)(t)

)
. (2.8)

If a function x ∈ AC2m(J) satisfies (2.8) for a.e. t ∈ J , then x is called a solution of (2.8).
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3. Auxiliary Regular Problems

Let j ∈ � and denote by Gj(t, s) the Green function of the problem

x(2j)(t) = 0, x(2i)(0) = x(2i)(T) = 0, 0 ≤ i ≤ j − 1. (3.1)

Then,

G1(t, s) =

⎧
⎪⎪⎨
⎪⎪⎩

s

T
(t − T) for 0 ≤ s ≤ t ≤ T,

t

T
(s − T) for 0 ≤ t ≤ s ≤ T.

(3.2)

By [2, 3, 20], the Green function Gj can be expressed as

Gj(t, s) =
∫T

0
G1(t, τ)Gj−1(τ, s)dτ, j > 1, (3.3)

and it is known that (see, e.g., [3, 20])

(−1)jGj(t, s) > 0 for (t, s) ∈ (0, T) × (0, T), j ≥ 1. (3.4)

Lemma 3.1 (see [10, Lemmas 2.1 and 2.3]). For (t, s) ∈ J × J and j ∈ �, the inequalities

(−1)jGj(t, s) ≤ T2j−3

6j−1
s(T − s), (3.5)

(−1)jGj(t, s) ≥ T2j−5

30j−1
ts(T − t)(T − s) (3.6)

hold.

Let γ ∈ L1(J) and let u ∈ AC2m−1(J) be a solution of the differential equation

(−1)mu(2m)(t) = γ(t), (3.7)

satisfying the Lidstone boundary conditions

u(2i)(0) = u(2i)(T) = 0, 0 ≤ i ≤ m − 1. (3.8)

It follows from the definition of the Green function Gj that

(−1)ju(2j)(t) = (−1)m−j
∫T

0
Gm−j(t, s)γ(s)ds for t ∈ J, 0 ≤ j ≤ m − 1. (3.9)
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It is easy to check that x ∈ AC2m(J) is a solution of problem (2.8), (1.2) if and only if x(0) = 0,
and its derivative x′ is a solution of a problem involving the functional differential equation

(−1)mu(2m)(t) = fn

(
t,

∫ t

0
u(s)ds, u(t), . . . , u(2m−1)(t)

)
(3.10)

and the Lidstone boundary conditions (3.8). From (3.9) (for j = 0), we see that u ∈ AC2m−1(J)
is a solution of problem (3.10), (3.8) exactly if it is a solution of the equation

u(t) = (−1)m
∫T

0
Gm(t, s)fn

(
s,

∫s

0
u(τ)dτ, u(s), . . . , u(2m−1)(s)

)
ds, (3.11)

in the set C2m−1(J). Consequently, x is a solution of problem (2.8), (1.2) if and only if it is a
solution of the equation

x(t) = (−1)m
∫ t

0

(∫T

0
Gm(s, τ)fn

(
τ, x

(
τ, . . . , x(2m)(τ)

))
dτ

)
ds, (3.12)

in the set C2m(J). It means that x is a solution of problem (2.8), (1.2) if x is a fixed point of the
operator H : C2m(J) → C2m(J) defined as

(Hx)(t) = (−1)m
∫ t

0

(∫T

0
Gm(s, τ)fn

(
τ, x

(
τ, . . . , x(2m)(τ)

))
dτ

)
ds. (3.13)

We prove the existence of a fixed point of H by the following fixed point result of cone
compression type according to Guo-Krasnosel’skii (see, e.g., [18, 19]).

Lemma 3.2. Let X be a Banach space, and let P ⊂ X be a cone in X. Let Ω1,Ω2 be bounded open
balls of X centered at the origin with Ω1 ⊂ Ω2. Suppose that F : P ∩ (Ω2\Ω1) → P is completely
continuous operator such that

‖Fx‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω1, ‖Fx‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω2 (3.14)

holds. Then, F has a fixed point in P ∩ (Ω2 \Ω1).

We are now in the position to prove that problem (2.8), (1.2) has a solution.

Lemma 3.3. Let (H1) and (H2) hold. Then, problem (2.8), (1.2) has a solution.

Proof. Let the operatorH : C2m(J) → C2m(J) be given in (3.13), and let

P =
{
x ∈ C2m(J) : x(t) ≥ 0 for t ∈ J

}
. (3.15)

Then, P is a cone in C2m(J) and since (−1)mGm(t, s) > 0 for (t, s) ∈ (0, T) × (0, T) by (3.4) and
fn satisfies (2.5), we see that H : C2m(J) → P . The fact that H is a completely continuous
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operator follows from fn ∈ Car(J × �2m+1), from Lebesgue dominated convergence theorem,
and from the Arzelà-Ascoli theorem.

Choose x ∈ P and put y(t) = (Hx)(t) for t ∈ J . Then, (cf. (2.5))

(−1)my(2m+1)(t) = fn
(
t, x(t), . . . , x(2m)(t)

)
≥ a > 0 for a.e. t ∈ J. (3.16)

Since y(0) = 0 and y(2i−1)(0) = y(2i−1)(T) = 0 for 1 ≤ i ≤ m, the equality y(j)(ξj) = 0 holds with
some ξj ∈ J for 0 ≤ j ≤ 2m. We now use the equality y(2m)(ξ2m) = 0 and have

∣∣∣y(2m)(t)
∣∣∣ =

∣∣∣∣∣
∫ t

ξ2m

y(2m+1)(s)ds

∣∣∣∣∣ ≥ a|t − ξ2m| for t ∈ J. (3.17)

Hence, ‖y(2m)‖∞ ≥ aT/2, and so

‖Hx‖C2m >
aT

2
. (3.18)

Next, we deduce from the relation

∣∣∣y(2m)(t)
∣∣∣ =

∣∣∣∣∣
∫ t

ξ2m

fn
(
s, x(s), . . . , x(2m)(s)

)
ds

∣∣∣∣∣ ≤
∫T

0
fn
(
s, x(s), . . . , x(2m)(s)

)
ds (3.19)

and from (2.7) that

∣∣∣y(2m)(t)
∣∣∣ ≤

∫T

0
h(s, 2m + 1 + ‖x‖C2m)ds + T

2m∑
j=0

ωj

(
1
n

)
for t ∈ J. (3.20)

Therefore,

∥∥∥y(2m)
∥∥∥
∞
≤
∫T

0
h(s, 2m + 1 + ‖x‖C2m)ds + V, (3.21)

where V = T
∑2m

j=0 ωj(1/n). Since y(j)(ξj) = 0 for 0 ≤ j ≤ 2m, we have

∥∥∥y(j)
∥∥∥
∞
≤ T2m−j

∥∥∥y(2m)
∥∥∥
∞
, 0 ≤ j ≤ 2m. (3.22)

The last inequality together with (3.21) gives

∥∥y∥∥
C2m ≤ K

∥∥∥y(2m)
∥∥∥
∞
≤ K

(∫T

0
h(s, 2m + 1 + ‖x‖C2m)ds + V

)
, (3.23)

where K is from (H2). Since x ∈ P is arbitrary, relations (3.18) and (3.21) imply that for all
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x ∈ P , inequalities (3.18) and

‖Hx‖C2m ≤ K

(∫T

0
h(s, 2m + 1 + ‖x‖C2m)ds + V

)
(3.24)

hold. By (H2), there exists C > 0 such that

1
v

(∫T

0
h(s, 2m + 1 +Kv)ds + V

)
≤ 1 ∀v ≥ C

K
, (3.25)

and therefore,

K

(∫T

0
h(s, 2m + 1 + v)ds + V

)
≤ v ∀v ≥ C. (3.26)

Let

Ω1 =
{
x ∈ C2m(J) : ‖x‖C2m <

aT

2

}
, Ω2 =

{
x ∈ C2m(J) : ‖x‖C2m < C

}
. (3.27)

Then, it follows from (3.18), (3.24), and (3.26) that

‖Hx‖C2m ≥ ‖x‖C2m for x ∈ P ∩ ∂Ω1, ‖Hx‖C2m ≤ ‖x‖C2m for x ∈ P ∩ ∂Ω2. (3.28)

The conclusion now follows from Lemma 3.2 (for X = C2m(J) and F = H).

The properties of solutions to problem (2.8), (1.2) are collected in the following lemma.

Lemma 3.4. Let (H1) and (H2) be satisfied. Let xn be a solution of problem (2.8), (1.2). Then, for all
n ∈ �, the following assertions hold:

(i) (−1)jx(2j+1)
n (t) > 0 for t ∈ (0, T), 0 ≤ j ≤ m − 1, and (−1)mx(2m+1)

n (t) ≥ a for a.e. t ∈ J ,

(ii) xn is increasing on J , and for 0 ≤ j ≤ m − 1, (−1)jx(2j+2)
n is decreasing on J , and there is a

unique ξj,n ∈ (0, T) such that x(2j+2)
n (ξj,n) = 0,

(iii) there exists a positive constant A such that

∣∣∣x(2m)
n (t)

∣∣∣ ≥ A|t − ξm−1,n|,
∣∣∣x(2j+2)

n (t)
∣∣∣ ≥ A

(
t − ξj,n

)2 if 0 ≤ j ≤ m − 2,
∣∣∣x(2j+1)

n (t)
∣∣∣ ≥ At(T − t) if 0 ≤ j ≤ m − 1,

xn(t) ≥ At2,

(3.29)

for t ∈ J ,

(iv) the sequence {xn} is bounded in C2m(J).
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Proof. Let us choose an arbitrary n ∈ �. By (2.5),

(−1)mx(2m+1)
n (t) = fn

(
t, xn(t), . . . , x

(2m)
n (t)

)
≥ a for a.e. t ∈ J, (3.30)

and it follows from the definition of the Green function Gj that the equality

(−1)jx(2j+1)
n (t) = (−1)m−j

∫T

0
Gm−j(t, s)fn

(
s, xn(s), . . . , x

(2m)
n (s)

)
ds (3.31)

holds for t ∈ J and 0 ≤ j ≤ m − 1. Now, using (1.2), (3.4), (3.30), and (3.31), we see that
assertion (i) is true. Hence, (−1)jx(2j+2)

n is decreasing on J for 0 ≤ j ≤ m−1 and xn is increasing
on this interval. Due to x(2i−1)

n (0) = x
(2i−1)
n (T) = 0 for 1 ≤ i ≤ m, there exists a unique ξj,n ∈ (0, T)

such that u(2j+2)
n (ξj,n) = 0 for 0 ≤ j ≤ m − 1. Consequently, assertion (ii) holds.

Next, in view of (2.5), (3.6), and (3.31),

∣∣∣x(2j+1)
n (t)

∣∣∣ ≥ T2(m−j)−5a
30m−j−1 t(T − t)

∫T

0
s(T − s)ds

=
T2(m−j)−2a
6 · 30m−j−1 t(T − t) for t ∈ J, 0 ≤ j ≤ m − 1.

(3.32)

Since

x
(2j+2)
n (t) =

∫ t

ξj,n

x
(2j+3)
n (s)ds (3.33)

and, by [13, Lemma 6.2],

∣∣∣∣∣
∫ t

ξj,n

s(T − s)ds

∣∣∣∣∣ ≥
T

6
(
t − ξj,n

)2
, (3.34)

we have

∣∣∣x(2j+2)
n (t)

∣∣∣ ≥ T2(m−j)−3a
36 · 30m−j−2

(
t − ξj,n

)2 for t ∈ J, 0 ≤ j ≤ m − 2. (3.35)

Furthermore,

∣∣∣x(2m)
n (t)

∣∣∣ =
∣∣∣∣∣
∫ t

ξm−1,n
fn
(
s, xn(s), . . . , x

(2m)
n (s)

)
ds

∣∣∣∣∣ ≥ a|t − ξm−1,n|, t ∈ J, (3.36)
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and (cf. (3.32) for j = 0)

xn(t) =
∫ t

0
x′
n(s)ds ≥ T2m−2a

6 · 30m−1

∫ t

0
s(T − s)ds

=
T2m−2a

36 · 30m−1 t
2(3T − 2t) ≥ T2m−1a

36 · 30m−1 t
2 for t ∈ J,

(3.37)

since x′
n > 0 on (0, T) by assertion (ii). Let

A = a ·min

{
1, A1, A2,

T2m−1

36 · 30m−1

}
, (3.38)

where

A1 = min

{
T2(m−j)−2

6 · 30m−j−1 : 0 ≤ j ≤ m − 1

}
,

A2 = min

{
T2(m−j)−3

36 · 30m−j−2 : 0 ≤ j ≤ m − 2

}
.

(3.39)

Then estimate (3.29) follows from relations (3.32)–(3.37).
It remains to prove the boundedness of the sequence {xn} in C2m(J). We use estimate

(3.29), the properties of ωj given in (H2), and the inequality

t(T − t) ≥

⎧
⎪⎪⎨
⎪⎪⎩

T

2
t for 0 < t ≤ T

2
,

T

2
(T − t) for

T

2
< t < T

(3.40)

and have

∫T

0
ω2m

(∣∣∣x(2m)
n (s)

∣∣∣
)
ds ≤

∫T

0
ω2m(A|s − ξm−1,n|)ds

=
1
A

(∫Aξm−1,n

0
ω2m(s)ds +

∫A(T−ξm−1,n)

0
ω2m(s)ds

)

<
2
A

∫AT

0
ω2m(s)ds,

∫T

0
ω2j+2

(∣∣∣x(2j+2)
n (s)

∣∣∣
)
ds ≤

∫T

0
ω2j+2

(
A
(
s − ξj,n

)2)ds

=
1√
A

∫√
A(T−ξj,n)

−
√
Aξj,n

ω2j+2

(
s2
)
ds
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<
2√
A

∫√
AT

0
ω2j+2

(
s2
)
ds for 0 ≤ j ≤ m − 2,

∫T

0
ω2j+1

(∣∣∣x(2j+1)
n (s)

∣∣∣
)
ds ≤

∫T

0
ω2j+1(As(T − s))ds

<

∫T/2

0
ω2j+1

(
ATs

2

)
ds +

∫T

T/2
ω2j+1

(
AT(T − s)

2

)
ds

<
4
AT

∫AT2/4

0
ω2j+1(s)ds for 0 ≤ j ≤ m − 1,

∫T

0
ω0(|xn(s)|)ds ≤

∫T

0
ω0

(
As2

)
ds =

1√
A

∫√
AT

0
ω0

(
s2
)
ds.

(3.41)

In particular,

∫T

0
ω2m

(∣∣∣x(2m)
n (s)

∣∣∣
)
ds <

2
A

∫AT

0
ω2m(s)ds,

∫T

0
ω2j+2

(∣∣∣x(2j+2)
n (s)

∣∣∣
)
ds <

2√
A

∫√
AT

0
ω2j+2

(
s2
)
ds for 0 ≤ j ≤ m − 2,

∫T

0
ω2j+1

(∣∣∣x(2j+1)
n (s)

∣∣∣
)
ds <

4
AT

∫AT2/4

0
ω2j+1(s)ds for 0 ≤ j ≤ m − 1,

∫T

0
ω0(|xn(s)|)ds ≤ 1√

A

∫√
AT

0
ω0

(
s2
)
ds,

(3.42)

for all n ∈ �. Now, from the above estimates, from (2.6) and from x
(2m)
n (ξm−1,n) = 0 for some

ξm−1,n ∈ (0, T), which is proved in (ii), we get

∣∣∣x(2m)
n (t)

∣∣∣ =
∣∣∣∣∣
∫ t

ξm−1,n
fn
(
s, xn(s), . . . , x

(2m)
n (s)

)
ds

∣∣∣∣∣

≤
∫T

0
fn
(
s, xn(s), . . . , x

(2m)
n (s)

)
ds

≤
∫T

0
h

⎛
⎝s, 2m + 1 +

2m∑
j=0

∣∣∣x(j)
n (s)

∣∣∣
⎞
⎠ds +

2m∑
j=0

∫T

0

(
ωj

(∣∣∣x(j)
n (s)

∣∣∣
)
+ωj(1)

)
ds

<

∫T

0
h

⎛
⎝s, 2m + 1 +

2m∑
j=0

∥∥∥x(j)
n

∥∥∥
∞

⎞
⎠ds + Λ,

(3.43)
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where

Λ =
2
A

∫AT

0
ω2m(s)ds +

2√
A

m−2∑
j=0

∫√
AT

0
ω2j+2

(
s2
)
ds

+
4
AT

m−1∑
j=0

∫AT2/4

0
ω2j+1(s)ds +

1√
A

∫√
AT

0
ω0

(
s2
)
ds + T

2m∑
j=0

ωj(1).

(3.44)

Notice that Λ < ∞ by (H2). Consequently,

∥∥∥x(2m)
n

∥∥∥
∞
<

∫T

0
h

⎛
⎝s, 2m + 1 +

2m∑
j=0

∥∥∥x(j)
n

∥∥∥
∞

⎞
⎠ds + Λ for n ∈ �. (3.45)

Since ‖x(j)
n ‖∞ ≤ T2m−j‖x(2m)

n ‖∞ for 0 ≤ j ≤ 2m, which follows from the fact that x(j)
n vanishes

in J by (1.2) and assertion (ii), inequality (3.45) yields

∥∥∥x(2m)
n

∥∥∥
∞
<

∫T

0
h
(
s, 2m + 1 +K

∥∥∥x(2m)
n

∥∥∥
∞

)
ds + Λ for n ∈ �, (3.46)

where K is from (H2). Due to the condition

lim sup
v→∞

1
v

∫T

0
h(t, Kv)dv < 1 (3.47)

in (H2), there exists a positive constant S such that for all v ≥ S the inequality

∫T

0
h(t, 2m + 1 +Kv)dt + Λ ≤ v (3.48)

is fulfilled. The last inequality together with estimate (3.46) gives ‖x(2m)
n ‖∞ < S for n ∈ �.

Consequently, ‖x(j)
n ‖∞ < T2m−jS for 0 ≤ j ≤ 2n, n ∈ �, and assertion (iv) follows.

The following result gives the important property of {fn(t, xn(t), . . . , x
(2m)
n (t))} for

applying the Vitali convergent theorem in the proof of Theorem 4.1.

Lemma 3.5. Let (H1) and (H2) hold. Let xn be a solution of problem (2.8), (1.2). Then, the sequence

{
fn
(
t, xn(t), . . . , x

(2m)
n (t)

)}
⊂ L1(J) (3.49)

is uniformly integrable on J , that is, for each ε > 0, there exists δ > 0 such that if M ⊂ J and
meas M < δ, then

∫

M
fn
(
t, xn(t), . . . , x

(2m)
n (t)

)
dt < ε for n ∈ �. (3.50)
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Proof. By Lemma 3.4 (iv), there exists S > 0 such that for n ∈ �, the inequality ‖xn‖C2m < S
holds. Now, we conclude from (2.5) and (2.6), from the properties of h and ωj given in (H2),
and finally from (3.29) that for j ∈ J and n ∈ �, the estimate

a ≤ fn
(
t, xn(t), . . . , x

(2m)
n (t)

)

≤ h(t, 2m + 1 + S) +ω0

(
At2

)
+

m−1∑
j=0

ω2j+1(At(T − t))

+
m−2∑
j=0

ω2j+2

(
A
(
t − ξj,n

)2) +ω2m(A|t − ξm−1,n|) +
m∑
j=0

ωj(1)

(3.51)

is fulfilled, where A is a positive constant. Since the functions h(t, 2m + 1 + S), ω0(At2), and
ω2j+1(At(T − t)) (0 ≤ j ≤ m − 1) belong to the set L1(J) by assumption (H2), in order to
prove that {fn(t, xn(t), . . . , x

(2m)
n (t))} is uniformly integrable on J , it suffices to show that the

sequences

{ω2m(A|t − ξm−1,n|)},
{
ω2j+2

(
A
(
t − ξj,n

)2)}
, 0 ≤ j ≤ m − 2 (3.52)

are uniformly integrable on J . Due to
∫1
0 ω2m(s)ds < ∞ and

∫1
0 ω2j(s2)ds < ∞ for 1 ≤ j ≤ m − 1

by (H2), this fact follows from [13, Criterion 11.10 (with b = A and r = 1, 2)].

4. The Main Result

The following theorem is the existence result for the singular problem (1.1), (1.2).

Theorem 4.1. Let (H1) and (H2) hold. Then, problem (1.1), (1.2) has a positive solution
x ∈ AC2m(J) and

x(t) > 0 for t ∈ (0, T], (−1)jx(2j+1)(t) > 0 for t ∈ (0, T), 0 ≤ j ≤ m − 1. (4.1)

Proof. Lemma 3.3 guarantees that problem (2.8), (1.2) has a solution xn. Consider the se-
quence {xn}. By Lemma 3.4, {xn} is bounded in C2m(J),

(−1)jx(2j+1)
n (t) > 0 for t ∈ (0, T), 0 ≤ j ≤ m − 1, (4.2)

and xn fulfils estimate (3.29), where A is a positive constant and ξj,n ∈ (0, T). Furthermore,
the sequence {fn(t, xn(t), . . . , x

(2m)
n (t))} is uniformly integrable on J by Lemma 3.5, and

therefore, we deduce from the equality (−1)mx(2m+1)
n (t) = fn(t, xn(t), . . . , x

(2m)
n (t)) for a.e. t ∈ J

that {x(2m)
n } is equicontinuous on J . Now, by the Arzelà-Ascoli theorem and the Bolzano-

Weierstrass theorem, we may assume without loss of generality that {xn} is convergent in
C2m(J) and {ξj,n} is convergent in � for 0 ≤ j ≤ m − 1. Let limn→∞xn = x and limn→∞ξj,n = ξj
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(0 ≤ j ≤ m−1). Then x ∈ C2m(J) and x satisfies the boundary conditions (1.2). Letting n → ∞
in (3.29) and (4.2), we get (for t ∈ J)

∣∣∣x(2m)(t)
∣∣∣ ≥ A|t − ξm−1|,

∣∣∣x(2j+2)(t)
∣∣∣ ≥ A

(
t − ξj

)2 if 0 ≤ j ≤ m − 2

(−1)jx(2j+1)(t) ≥ At(T − t) if 0 ≤ j ≤ m − 1, x(t) ≥ At2.

(4.3)

Keeping in mind the definition of fn, we conclude from (4.3) that

lim
n→∞

fn
(
t, xn(t), . . . , x

(2m)
n (t)

)
= f

(
t, x(t), . . . , x(2m)(t)

)
for a.e. t ∈ J. (4.4)

Then, by the Vitali theorem, f(t, x(t), . . . , x(2m)(t)) ∈ L1(J) and

lim
n→∞

∫ t

0
fn
(
s, xn(s), . . . , x

(2m)
n (s)

)
ds =

∫ t

0
f
(
s, x(s), . . . , x(2m)(s)

)
ds for t ∈ J. (4.5)

Letting n → ∞ in the equality

x
(2m)
n (t) = x

(2m)
n (0) +

∫ t

0
fn
(
s, xn(s), . . . , x

(2m)
n (s)

)
ds, (4.6)

we get

x(2m)(t) = x(2m)(0) +
∫ t

0
f
(
s, x(s), . . . , x(2m)(s)

)
ds for t ∈ J. (4.7)

As a result, x ∈ AC2m(J) and x is a solution of (1.1). Consequently, x is a positive solution of
problem (1.1), (1.2) and inequality (4.1) follows from (4.3).

Example 4.2. Consider problem (1.1), (1.2) with

f(t, x0, . . . , x2m) = p(t) +
2m∑
k=0

(
ak(t)|xk |αk +

bk(t)

|xk|βk

)
(4.8)

on J×D, where p, ak ∈ L1(J), bk ∈ L∞(J) (that is, bk is essentially bounded andmeasurable on
J) are nonnegative, p(t) ≥ a > 0 for a.e. t ∈ J . If αk ∈ [0, 1) for 0 ≤ k ≤ 2m and β2k ∈ [0, 1/2),
β2m, β2k+1 ∈ [0, 1) for 0 ≤ k ≤ m − 1, then, by Theorem 4.1, the problem has a positive solution
x ∈ AC2m(J) satisfying inequality (4.1).
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