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The Trojan Y Chromosome strategy (TYC) is a theoretical method for eradication of invasive
species. It requires constant introduction of artificial individuals into a target population, causing
a shift in the sex ratio that ultimately leads to local extinction. In this work we demonstrate the
existence of a unique weak solution to the infinite dimensional TYC system. Furthermore, we
obtain improved estimates on the upper bounds for the Hausdorff and fractal dimensions of the
global attractor of the TYC system, via the use of weighted Sobolev spaces. These results confirm
that the TYC eradication strategy is a sound theoretical method of eradication of invasive species
in a spatial setting. It also provides a solid ground for experiments in silico and validates the use
of the TYC strategy in vivo.

1. Introduction

An exotic species is a species that resides outside its native habitat. When it causes some sort
of measurable damage, it is often referred to as invasive. The recent globalization process
has expedited the pace at which exotic species are introduced into new environments. Once
established, these species can be extremely difficult to manage and almost impossible to
eradicate [1, 2]. Studies have indicated that the losses caused by invasive species could be
as much as $120 billion/year by 2004 [3]. The effect of these invaders is thus devastating [4].
Current approaches for controlling exotic fish species are limited to general chemical control
methods applied to small water bodies and/or small isolated populations that kill native
fish in addition to the target fish [5]. For example, the piscicide Rotenone has been used to
eradicate exotic fish, but at the expense of killing all the endogenous fish, making it necessary
to restock native fish from other sources [1, 2].

A genetic strategy to cause extinction of invasive species was proposed by Gutierrez
and Teem [6]. This strategy is relevant to species amenable to sex reversal andwith an XY sex-
determination system, in whichmales are the heterogametic sex (carrying one X chromosome
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and one Y chromosome, XY) and females are the homogametic sex (carrying two X
chromosomes, XX). The strategy relies on the fact that variations in the sex chromosome
number can be produced through genetic manipulation, for example, a normal and fertile
male bearing two Y chromosomes (supermale, YY) [7–10]. Also hormone treatments can be
used to reverse the sex, resulting in a feminized YY supermale [5, 11, 12].

The eradication strategy requires adding a sex-reversed “Trojan” female individual
bearing two Y chromosomes, that is, feminized supermales (r), at a constant rate μ to a
target population of an invasive species, containing normal females and males denoted
as f and m, respectively. Matings involving the introduced r generate a disproportionate
number of males over time. The higher incidence of males decrease the female to male ratio.
Ultimately, the number of f decline to zero, causing local extinction. This theoretical method
of eradication is known as Trojan Y Chromosome (TYC) strategy.

The original model considered by Gutierrez and Teem was an ODE model. Spatial
spread is ubiquitous in aquatic settings and was thus considered by Gutierrez et al. [13],
resulting in a PDE model. In [14], we considered the PDE model and showed the existence
of a global attractor for the system, which isH2(Ω) regular, attracting orbits uniformly in the
L2(Ω) metric. We showed that this attractor supports a state, in which the female population
is driven to zero, thus resulting in local extinction. Recall the TYC model with spatial spread
takes the following form [14]:

∂f

∂t
= DΔf +

1
2
fmβL − δf, f

∣
∣
∂Ω = 0, (1.1)

∂m

∂t
= DΔm +

(
1
2
fm +

1
2
rm + fs

)

βL − δm, m|∂Ω = 0, (1.2)

∂s

∂t
= DΔs +

(
1
2
rm + rs

)

βL − δs, s|∂Ω = 0, (1.3)

∂r

∂t
= DΔr + μ − δr, r|∂Ω = 0. (1.4)

Here, Ω ⊂ R3 is a bounded domain. Also

L = 1 −
(
f +m + r + s

K

)

, (1.5)

where K is the carrying capacity of the ecosystem, D is a diffusivity coefficient, δ is a birth
coefficient (i.e., what proportion of encounters betweenmales and females result in progeny),
and δ is a death coefficient (i.e., what proportion of the population is dying at any given
moment). We assume initial data is positive and in L2(Ω). At the outset wewould like to point
out that the difficulty in analyzing (1.1)–(1.4) lies in the nonlinear terms Lfm, L((1/2)fm +
(1/2)rm + fs) and L((1/2)rm + rs). See [15] for a PDE dealing with similar nonlinearities,
albeit in the setting of a fluid-saturated porous medium. We will also assume positivity of
solutions as negative f,m, r, s do not make sense in the biological context. We also provide a
rigoros proof to this end.
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In the current paper we will show that the TYC model, (1.1)–(1.4), possesses a unique
weak solution (f,m, r, s). By this we mean that there exist (f,m, r, s) such that the following
is satisfied in the distributional sense:

d

dt

〈

f, v
〉

+D
〈∇f,∇v

〉

+ δ
〈

f, v
〉

=
〈
1
2
fmβL, v

〉

,

d

dt
〈m,v〉 +D〈∇m,∇v〉 + δ〈m,v〉 =

〈[
1
2
fm +

1
2
rm + fs

]

βL, v

〉

,

d

dt
〈r, v〉 +D〈∇s,∇v〉 + δ〈s, v〉 =

〈[
1
2
rm + rs

]

βL, v

〉

,

d

dt
〈s, v〉 +D〈∇s,∇v〉 + δ〈s, v〉 =

〈

μ, v
〉

.

(1.6)

Here, 〈·〉 is the standard inner product in L2(Ω). Furthermore the above hold for all v ∈
H1

0(Ω). Our main result is summarized in the following theorem.

Theorem 1.1. Consider the Trojan Y Chromosome model, (1.1)–(1.4). There exists a unique weak
solution (f,m, r, s) to the system for positive initial data in L2(Ω), such that

(

f,m, r, s
) ∈ C

(

[0, T];L2(Ω)
)

∩ L∞
(

0, T ;L2(Ω)
)

∩ L2
(

0, T ;H1
0(Ω)

)

,

(
∂f

∂t
,
∂m

∂t
,
∂r

∂t
,
∂s

∂t

)

∈ L2
(

0, T ;H−1(Ω)
)

,

(1.7)

for all T > 0. Furthermore, (f,m, r, s) are continuous with respect to initial data.

Our strategy to prove the above is as follows: we first derive a priori estimates for
the f,m, r, s variables. We then show existence of a solution to (1.1). Note, showing existence
of a solution to (1.1) requires a priori estimates on (m, r, s) also. The key here is Lemma 4.1
which enables convergence of the nonlinear term Lfm. Next we show uniqueness of the
solution to (1.1). The procedure to show existence and uniqueness of solutions to (1.2)–
(1.4) follow similarly. We then consider the question of sharpening the upper bounds on the
Hausdorff and fractal dimension of the global attractor for the system, derived in [14]. This
constitutes our second main result, Theorem 7.2. Lastly, we offer some concluding remarks.
In all estimates made hence, forth, C is a generic constant that can change in its value from
line to line and sometimes within the same line if so required.

2. A Bound in L∞(Ω)

The biology of the system dictates that the solutions are bounded in the supremum norm by
the carrying capacity. We now provide a proof via a maximum principle argument.
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Lemma 2.1. Consider the Trojan Y Chromosome model, (1.1)–(1.4). The solutions f,m, r, s of the
system are bounded as follows:

∣
∣f
∣
∣
∞ ≤ K,

|m|∞ ≤ K,

|s|∞ ≤ K,

|r|∞ ≤ K.

(2.1)

Proof. The proof relies heavily on the form of the nonlinearity in the system. We concentrate
on the nonlinear term in (1.1),

F
(

f,m, r, s
)

= fm

(

1 − f +m + r + s

K

)

. (2.2)

The analysis for the other terms is similar. As is biologically viable, we assumes f , m, r, and
s are always positive, thus, we have

f > 0, m > 0, r > 0, s > 0. (2.3)

Assuming positive initial data, f0 > 0, m0 > 0, r0 > 0, and s0 > 0, the solution at later times
remains positive. In order to prove this let us assume the contrary, that is f0 > 0,m0 > 0, r0 > 0,
and s0 > 0, but say f can become negative at a later time. Consider an interior minimum point
in the parabolic cylider Ω × [0, T], that is some (x∗, t∗), such that f attains a minimum there,
and that f(x∗, t∗) < 0, m(x∗, t∗) < 0, r(x∗, t∗) < 0, and s(x∗, t∗) < 0. Under this setting, from
standard calculus, we have

∂f

∂t
(x∗, t∗) = 0, Δf(x∗, t∗) ≥ 0, (2.4)

furthermore,

−δf(x∗, t∗) > 0,

βf(x∗, t∗)m(x∗, t∗)
(

1 − f(x∗, t∗) +m(x∗, t∗) + r(x∗, t∗) + s(x∗, t∗)
K

)

> 0.
(2.5)
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Thus from (1.1), we have

∂f

∂t
(x∗, t∗) = 0

= Δf(x∗, t∗) − δf(x∗, t∗)

+ βf(x∗, t∗)m(x∗, t∗)
(

1 − f(x∗, t∗) +m(x∗, t∗) + r(x∗, t∗) + s(x∗, t∗)
K

)

> 0 + 0 + 0

= 0.

(2.6)

This is clearly a contradiction. Thus even at an interior minimum f > 0, hence f > 0
everywhere else. The same argument can be applied on the equations describing the m, r,
and s variables. Actually the equation for r is exactly solvable and is seen to be positive. Thus
our assumption via (2.3) is feasible. Thus we proceed with our proof via maximum principle.
Despite not biologically viable, assume for purposes of analysis that

f ≥ K ≥ 1, m ≥ K ≥ 1. (2.7)

We now define the positive and negative parts of (f −K) as

(

f −K
)

+(x) =

⎧

⎨

⎩

f −K, f > K,

0, otherwise,

(

f −K
)

−(x) =

⎧

⎨

⎩

f −K, f < K,

0, otherwise.

(2.8)

We now multiply (1.1) by (f −K)+(x) and integrate by parts to yield

d

dt

∣
∣
(

f −K
)

+

∣
∣
2
2 +
∣
∣∇(f −K

)

+

∣
∣
2
2 + δ

∣
∣
(

f −K
)

+

∣
∣
2
2 ≤
∫

Ω
F
(

f,m, r, s
)(

f −K
)

+(x)dx. (2.9)

When f < K the right-hand side is zero. When f > K, assuming f ≥ K + ε where ε > 0, and
m > k via (2.3), we have

∫

Ω
F
(

f,m, r, s
)(

f −K
)

+(x)dx =
∫

Ω
fm

(

1 − f +m + r + s

K

)
(

f −K
)

+(x)dx

≤
∫

Ω
(K + ε)K

(

1 − f +m + r + s

K

)

(ε)dx

≤
∫

Ω
(K + ε)K

(

1 − 2K + 2δ
K

)

(ε)dx

≤ |Ω|(K + ε)2ε
(

−1 − 2δ
K

)

≤ |Ω|(K + ε)2ε
(

−2δ
K

)

≤ 0.

(2.10)
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Hence, via Poincaré’s Inequality, we obtain

d

dt

∣
∣
(

f −K
)

+

∣
∣
2
2 + (C + δ)

∣
∣
(

f −K
)

+

∣
∣
2
2 ≤ 0. (2.11)

Application of Gronwall’s Lemma now yields

∣
∣
(

f −K
)

+

∣
∣
2
2 ≤ e−(C+δ)t

∣
∣
(

f0 −K
)

+

∣
∣
2
2. (2.12)

We can now consider t → ∞ to yield

(

f −K
)

+ = 0. (2.13)

The same argument on the negative part of f yields,

(

f −K
)

− = 0. (2.14)

Since the positive and negative parts of f can be no more than K, we obtain

∣
∣f
∣
∣
∞ ≤ K. (2.15)

The same technique works on m, s, and r and is trivially seen to be bounded from the
form of (1.4).

3. A Priori Estimates

3.1. A Priori Estimates for fn

In order to prove the well posedness we follow the standard approach of projecting onto a
finite dimensional subspace. This reduces the PDE to a finite dimensional system of ODE’s.
It is on this truncated system that we make a priori estimates. Essentially The truncation for
f takes the form

fn(t) =
n∑

j=1

fnj(t)wj. (3.1)

Here wj are the eigenfunctions of the negative Laplacian, so −Δwi = λiwi. A similar
truncation can be performed for m, r and s. Thus, essentially the following holds for all
1 ≤ j ≤ n,

∂fn
∂t

= DΔfn + Pn

(

F
(

fn,mn, rn, sn
)) − δfn, (3.2)

fn(0) = Pn

(

f0
)

. (3.3)
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Here Pn is the projection onto the space of the first n eigenvectors. Note in general

〈

fn, Pn

(

F
(

fn
))〉

=
〈

Pn

(

fn
)

, F
(

fn
)〉

=
〈

fn, F
(

fn
)〉

. (3.4)

We multiply (3.2) by fn and integrate by parts over Ω. We thus obtain

1
2
d
∣
∣fn
∣
∣
2
2

dt
= −D∣∣∇fn

∣
∣
2
2 +

β

2

[∫

Ω
mnf

2
ndx −

∫

Ω
mnf

2
n

fn +mn + rn + sn
K

dx
]

− δ
∣
∣fn
∣
∣
2
2.

(3.5)

Via the positivity of fn,mn, rn, sn, and K it follows that

∫

Ω
mnf

2
n

fn +mn + rn + sn
K

dx ≥
∫

Ω
mnf

2
n

fn
K

dx. (3.6)

This estimate is used in (3.5) to yield

1
2
d
∣
∣fn
∣
∣
2
2

dt
+D
∣
∣∇fn

∣
∣
2
2 + δ

∣
∣fn
∣
∣
2
2 +

β

2K

∫

Ω
mnf

3
ndx ≤ β

2

∫

Ω
mnf

2
ndx. (3.7)

We now use Young’s Inequality to obtain

1
2
d
∣
∣fn
∣
∣
2
2

dt
+D
∣
∣∇fn

∣
∣
2
2 + δ

∣
∣fn
∣
∣
2
2 +

β

2K

∫

Ω
mnf

3
ndx ≤ β

2K

∫

Ω
mnf

3
ndx +

βK2

2

∫

Ω
mndx. (3.8)

Using

|mn|∞ ≤ |m|∞ ≤ K, (3.9)

we obtain the following

1
2
d
∣
∣fn
∣
∣
2
2

dt
+D
∣
∣∇fn

∣
∣
2
2 + δ

∣
∣fn
∣
∣
2
2 ≤

βK3

2
|Ω|. (3.10)

The use of Poincaré’s Inequality yields

d
∣
∣fn
∣
∣
2
2

dt
+ (CD + δ)

∣
∣fn
∣
∣
2
2 ≤ βK3|Ω|. (3.11)

Now, we can apply Gronwall’s Lemma to yield

∣
∣fn(t)

∣
∣
2
2 ≤ e−(CD+δ)t∣∣f0

∣
∣
2
2 +

βK3|Ω|
CD + δ

≤ C, ∀t ≥ 0. (3.12)
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On the other hand we can integrate (3.10) from 0 to T to obtain

1
2
∣
∣fn(T)

∣
∣
2
2 +D

∫T

0

∣
∣∇fn

∣
∣
2
2dt + δ

∫T

0

∣
∣fn
∣
∣
2
2dt ≤

∫T

0
βK3|Ω|dt + ∣∣fn(0)

∣
∣
2
2. (3.13)

This immediately yields

∫T

0

∣
∣∇fn

∣
∣
2
2dt ≤

∫T

0
βK3|Ω|dt + ∣∣fn(0)

∣
∣
2
2

≤
∫T

0
βK3|Ω|dt + ∣∣f(0)∣∣22

≤ C.

(3.14)

Thus, via (3.12) and (3.14), we obtain

fn ∈ L∞
(

0, T ;L2(Ω)
)

, (3.15)

fn ∈ L2
(

0, T ;H1
0(Ω)

)

. (3.16)

3.2. Estimate for the Time Derivative of fn

We multiply (3.2) by a w ∈ H1
0(Ω) to yield

(
∂fn
∂t

,w

)

= −D〈∇fn,∇w
〉

+
〈

F
(

fn,mn, rn, sn
)

, Pn(w)
〉 − δ

〈

fn,w
〉

. (3.17)

We estimate the nonlinear term as follows:

(

F
(

fn
)

, Pn(w)
)

=
∫

Ω
mnfn

(

1 − fn +mn + rn + sn
K

)

Pn(w)dx

≤
∫

Ω
mnfnPn(w)dx

≤ |mn|∞
∫

Ω
fnPn(w)dx

≤ K
∣
∣fn
∣
∣
4|Pn(w)|4/3

≤ C
∣
∣fn
∣
∣
4|w|H1

0
.

(3.18)

This follows via the compact embedding of H1
0(Ω) ↪→ L4/3(Ω). Thus, we have

∣
∣
∣
∣

∂fn
∂t

∣
∣
∣
∣

2

H−1(Ω)
≤ ∣∣fn

∣
∣
2
4. (3.19)
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Integrating both sides of the above in the time interval [0, T] yields

∫T

0

∣
∣
∣
∣

∂fn
∂t

∣
∣
∣
∣

2

H−1(Ω)
dt ≤

∫T

0

∣
∣fn
∣
∣
2
4dt ≤ C

∫T

0

∣
∣∇fn

∣
∣
2
2dt ≤ C. (3.20)

This follows from the derived estimate via (3.16) and the compact embedding of H1
0(Ω) ↪→

L4(Ω). Thus, we obtain

∂fn
∂t

∈ L2
(

0, T ;H−1(Ω)
)

. (3.21)

We can now via (3.15) and (3.16) extract a subsequence fnj such that

fnj

∗
⇀ f in L∞

(

0, T ;L2(Ω)
)

,

fnj ⇀ f in L2
(

0, T ;H1
0(Ω)

)

,

fnj −→ f in L2
(

0, T ;L2(Ω)
)

.

(3.22)

The convergence in the last equation follows via the compact embedding ofH1
0(Ω) ↪→ L2(Ω).

3.3. A Priori Estimates for m, r, and s

The a priori estimates form, r and s are very similar to the estimates for f . We omit the details
here and present the results.

The truncation for m satisfies the following a priori estimates:

mn ∈ L∞
(

0, T ;L2(Ω)
)

,

mn ∈ L2
(

0, T ;H1
0(Ω)

)

,

∂sn
∂t

∈ L2
(

0, T ;H−1(Ω)
)

.

(3.23)

We can now extract a subsequence mnj such that

mnj

∗
⇀ s in L∞

(

0, T ;L2(Ω)
)

,

mnj ⇀ s in L2
(

0, T ;H1
0(Ω)

)

,

mnj −→ s in L2
(

0, T ;L2(Ω)
)

.

(3.24)
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The last inequality follows via the compact embedding of

H1
0(Ω) ↪→ L2(Ω). (3.25)

The truncation for s satisfies the following a priori estimates:

sn ∈ L∞
(

0, T ;L2(Ω)
)

,

sn ∈ L2
(

0, T ;H1
0(Ω)

)

,

∂sn
∂t

∈ L2
(

0, T ;H−1(Ω)
)

.

(3.26)

We can now extract a subsequence snj such that

snj

∗
⇀ s in L∞

(

0, T ;L2(Ω)
)

,

snj ⇀ s in L2
(

0, T ;H1
0(Ω)

)

,

snj −→ s in L2
(

0, T ;L2(Ω)
)

.

(3.27)

The last inequality follows via the compact embedding of

H1
0(Ω) ↪→ L2(Ω). (3.28)

The truncation for r satisfies the following a priori estimates:

rn ∈ L∞
(

0, T ;L2(Ω)
)

,

rn ∈ L2
(

0, T ;H1
0(Ω)

)

,

∂rn
∂t

∈ L2
(

0, T ;H−1(Ω)
)

.

(3.29)

We can now extract a subsequence rnj such that

rnj

∗
⇀ r in L∞

(

0, T ;L2(Ω)
)

,

rnj ⇀ r in L2
(

0, T ;H1
0(Ω)

)

,

rnj −→ r in L2
(

0, T ;L2(Ω)
)

.

(3.30)
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The last inequality follows via the compact embedding of

H1
0(Ω) ↪→ L2(Ω). (3.31)

4. Existence of Solution

4.1. Preliminaries

We recast (1.1) in the following form:

∂f

∂t
= DΔf + F

(

f, r,m, s
) − δf, f

∣
∣
∂Ω = 0. (4.1)

Here,

F
(

f,m, r, s
)

=
β

2

(

1 − f +m + r + s

K

)

fm. (4.2)

Note that the key element in proving the existence will be to show convergence of the
nonlinear term F(fnj ,mnj , rnj , snj ) to F(f,m, r, s). To this end we state the following lemma,

Lemma 4.1. Consider the non linear terms F(f1, m1, r1, s1) and F(f2, m2, r2, s2) as defined via (4.2).
The following estimate for their difference holds

∣
∣F
(

f1, m1, r1, s1
) − F

(

f2, m2, r2, s2
)∣
∣
2 ≤ C

(∣
∣f1 − f2

∣
∣
2 + |m1 −m2|2 + |s1 − s2|2 + |r1 − r2|2

)

.
(4.3)

Proof. Via (4.2), we have that

(

F
(

f1, m2, r2, s2
) − F

(

f2, m2, r2, s2
))

= f1m1 − f2m2 −
(

f2
1m1 − f2

2m2

)

−
(

m2
1f1 −m2

2f2
)

+ f1m1r1 − f2m2r2 + f1m1s1 − f2m2s2

= f1(m1 −m2) +m2
(

f1 − f2
) −
(

f2
1 (m1 −m2) +m2

(

f2
1 − f2

2

))

−
(

m2
1

(

f1 − f2
)

+ f2
(

m2
1 −m2

2

))

+m1r1
(

f1 − f2
)

+ f2m2(r1 − r2)

+ f2r1(m1 −m2) +m1s1
(

f1 − f2
)

+ f2m2(s1 − s2)

+ f2s1(m1 −m2).

(4.4)

(We supress the dependence of the right-hand side on the constant β/2 for convenience.)
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This follows from standard algebraic manipulation. Application of Holder’s and
Minkowski’s inequalities yield

∣
∣F
(

f1, m2, r2, s2
) − F

(

f2, m2, r2, s2
)∣
∣
2

≤ ∣∣f1
∣
∣
∞|m1 −m2|2 + |m2|∞

∣
∣f1 − f2

∣
∣
2 +
∣
∣f1
∣
∣
2
∞|m1 −m2|2

+ |m2|∞
∣
∣f1 + f2

∣
∣
∞
∣
∣f1 − f2

∣
∣
2 + |m1|2∞

∣
∣f1 − f2

∣
∣
2

+
∣
∣f2
∣
∣
∞|m1 +m2|∞|m1 −m2|2

+ |m1|∞|r1|∞
∣
∣f1 − f2

∣
∣
2 +
∣
∣f2
∣
∣
∞|m2|∞|r1 − r2|2 + |r1|∞

∣
∣f2
∣
∣
∞|m1 −m2|2

+ |s1|∞|m1|∞
∣
∣f1 − f2

∣
∣
2 +
∣
∣f2
∣
∣
∞|m2|∞|s1 − s2|2 + |s1|∞

∣
∣f2
∣
∣
∞|m1 −m2|2

≤ C
(∣
∣f1 − f2

∣
∣
2 + |m1 −m2|2 + |s1 − s2|2 + |r1 − r2|2

)

.

(4.5)

4.2. Passage to Weak Limit

As, we have made the a priori estimates on the truncations, we will attempt to pass to the
weak limit, as is the standard practice. We will focus on (1.1). Recall via Galerkin truncation
we are seeking an approximate solution of the form

fn(t) =
n∑

j=1

fnj(t)wj, (4.6)

such that, for each 1 ≤ j ≤ n, and for all φ ∈ C∞
0 (0, T), the following holds:

〈
dfn
dt

, φwj

〉

+D
〈

∇fnj ,∇wjφ(t)
〉

+ δ
〈

fnj , φ(t)wj

〉

=
〈

F
(

fnj

)

, φwj

〉

, (4.7)

fn(0) = Pn

(

f0
)

. (4.8)

(Here and henceforth we assume F(fnj ) = Pn(F(fnj )), where Pn is the projection operator
onto the first n eigenvectors). Upon passage to the weak limit of (4.7), we will have obtained

〈
df

dt
,wj

〉

+D
〈∇f,∇wj

〉

+ δ
〈

f,wj

〉

=
〈

F
(

f
)

, wj

〉

. (4.9)

This will imply the existence of a weak solution f to (1.1). We proceed as follows. Consider a
φ ∈ C∞

0 (0, T). We multiply (4.7) by φ(t) and integrate by parts in time to yield

−
∫T

0

〈

fnj , φ
′(t)wj

〉

dt = −D
∫T

0

〈

∇fnj ,∇wjφ(t)
〉

dt +
∫T

0

〈

F
(

fnj

)

, φ(t)wj

〉

dt

− δ

∫T

0

〈

fnj , φ(t)wj

〉

dt.

(4.10)

We will first show convergence of the nonlinear term. This is stated via the following lemma.



Boundary Value Problems 13

Lemma 4.2. Consider the nonlinear term F(f,m, r, s) as defined via (4.2). The following convergence
result holds:

lim
j→∞

∫T

0

∫

Ω
F
(

fnj ,mnj , snj , rnj

)

φ(t)wj dxdt =
∫T

0

∫

Ω
F
(

f,m, s, r
)

φ(t)wjdxdt, (4.11)

for all φ ∈ C∞
0 (0, T).

Proof. Consider

∣
∣
∣
∣
∣
lim
j→∞

∫T

0

∫

Ω
F
(

fnj

)

φ(t)wj dxdt −
∫T

0

∫

Ω
F
(

f
)

φ(t)wj dxdt

∣
∣
∣
∣
∣

≤ C

∫T

0

∫

Ω

∣
∣
∣

(

F
(

fnj

)

, φwj

)

− (F(f), φwj

)
∣
∣
∣

2
dxdt

≤ C
∣
∣φ
∣
∣
∞
∣
∣wj

∣
∣
∞

∫T

0

∫

Ω

∣
∣
∣F
(

f
) − F

(

fnj

)∣
∣
∣

2
dxdt

≤ C

∫T

0

(∣
∣
∣f − fnj

∣
∣
∣

2

2
+
∣
∣
∣m −mnj

∣
∣
∣

2

2
+
∣
∣
∣r − rnj

∣
∣
∣

2

2
+
∣
∣
∣s − snj

∣
∣
∣

2

2

)

dt

≤ C

(∣
∣
∣f − fnj

∣
∣
∣
L2(0,T ;L2)

+
∣
∣
∣m −mnj

∣
∣
∣
L2(0,T ;L2)

+
∣
∣
∣s − snj

∣
∣
∣
L2(0,T ;L2)

)

+ C

(∣
∣
∣r − rnj

∣
∣
∣
L2(0,T ;L2)

)

≤ C(0 + 0 + 0 + 0)

= 0.

(4.12)

This follows via Lemma 4.1 and because, we have demonstrated

fnj −→ f in L2
(

0, T ;L2(Ω)
)

,

mnj −→ m in L2
(

0, T ;L2(Ω)
)

,

snj −→ s in L2
(

0, T ;L2(Ω)
)

,

rnj −→ r in L2
(

0, T ;L2(Ω)
)

.

(4.13)
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Thus the convergence of the nonlinear term has been established. Now, taking the limit
as j → ∞ in (4.10), we obtain

lim
j→∞

∫T

0

〈

fnj , φ
′(t)wj

〉

dt +D

∫T

0

〈

∇fnj ,∇wjφ(t)
〉

dt

+ δ

∫T

0

〈

fnj , φwj

〉

dt −
∫T

0

〈

F
(

fnj

)

, φwj

〉

dt

=
∫T

0

〈

f, φ′(t)wj

〉

dt +D

∫T

0

〈∇f,∇wjφ
〉

dt

+ δ

∫T

0

〈

f, φwj

〉

dt −
∫T

0

〈

F
(

f
)

, φwj

〉

dt

= 0.

(4.14)

The last term on the right-hand side can be bounded as follows

∫T

0

〈

F
(

f
)

, φwj

〉

dt ≤ C
∣
∣φ
∣
∣
∞

∫T

0

∫

Ω

∣
∣
∣f2
∣
∣
∣

∣
∣wj

∣
∣dt

≤ C
∣
∣φ
∣
∣
∞
∣
∣wj

∣
∣
2

∣
∣f
∣
∣
L2(0,T ;L4(Ω))

≤ C
∣
∣φ
∣
∣
∞
∣
∣wj

∣
∣
H1

0 (Ω)

∣
∣f
∣
∣
L2(0,T ;H1

0 (Ω))

≤ C
∣
∣wj

∣
∣
H1

0 (Ω).

(4.15)

This follows by the compact embedding of H1
0(Ω) ↪→ L4(Ω) ↪→ L2(Ω). This implies

that, we have continuity with respect to wj . Thus, we obtain that for any v ∈ H1
0(Ω) the

following holds

−
∫T

0

〈

f, φ′(t)v
〉

dt +D

∫T

0

〈∇f,∇vφ(t)
〉

dt + δ

∫T

0

〈

f, φ(t)v
〉

dt =
∫T

0

〈

F
(

f
)

, φ(t)v
〉

dt. (4.16)

This yields the existence of an f such that the following is true in a distributional sense

d

dt

〈

f, v
〉

+D
〈∇f,∇v

〉

+ δ
〈

f, v
〉

=
〈

F
(

f
)

, v
〉

, ∀v ∈ H1
0(Ω). (4.17)

In other words there exists a weak solution f to (1.1). Since

f ∈ L∞
(

0, T ;L2(Ω)
)

∩ L2
(

0, T ;H1
0(Ω)

)

,

∂f

∂t
∈ L2

(

0, T ;H−1(Ω)
)

,

(4.18)
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it follows via standard PDE theory, see [16, 17], that

f ∈ C
(

[0, T];L2(Ω)
)

. (4.19)

This establishes that the solution belongs to the requisite functional spaces.

4.3. Continuity with Respect to Initial Data and Uniqueness of Solutions

We now show continuity with respect to initial data of the solution via the following lemma.

Lemma 4.3. Consider the Trojan Y Chromosome model. For positive initial data in L2(Ω), any weak
solution (f,m, s, r) of the Trojan Y Chromosome model is continuous with respect to initial data, that
is,

f(0) = f0, m(0) = m0, s(0) = s0, r(0) = r0. (4.20)

Proof. Wewill show the details for f , and the other variables follow suit accordingly. We take
a test function φ ∈ C1[0, T] such that

φ(0) = 1, φ(T) = 0. (4.21)

With this choice of φ(t) in (4.17), we integrate the first term twice by parts to yield

−
∫T

0

〈

f, φ′(t)v
〉

dt +D

∫T

0

〈∇f,∇vφ(t)
〉

dt + δ

∫T

0

〈

f, φ(t)v
〉

dt

=
〈

f(0), v
〉

+D

∫T

0

〈∇f,∇vφ(t)
〉

dt + δ

∫T

0

〈

f, φ(t)v
〉

dt.

(4.22)

Note that the truncation satisfies

∫T

0

〈

fnj , φ
′(t)v

〉

dt +D

∫T

0

〈

∇fnj ,∇vφ(t)
〉

dt + δ

∫T

0

〈

fnj , φ(t)v
〉

dt

=
〈

fnj (0), v
〉

+D

∫T

0

〈

∇fnj ,∇vφ(t)
〉

dt + δ

∫T

0

〈

fnj , φ(t)v
〉

dt.

(4.23)

Thus, taking the limit as j → ∞ in (4.28) just as done earlier yields

−
∫T

0

〈

f, φ′(t)v
〉

dt +D

∫T

0

〈∇f,∇vφ(t)
〉

dt + δ

∫T

0

〈

f, φ(t)v
〉

dt

=
〈

f0, v
〉

+D

∫T

0

〈∇f,∇vφ(t)
〉

dt + δ

∫T

0

〈

f, φ(t)v
〉

dt.

(4.24)
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Thus, we obtain

〈

f(0), v
〉

=
〈

f0, v
〉

, ∀v ∈ H1
0(Ω). (4.25)

This yields

f(0) = f0, (4.26)

as is required.

We now state the uniqueness result via the following lemma.

Lemma 4.4. Consider the Trojan Y Chromosome model. For positive initial data in L2(Ω) any weak
solution (f,m, s, r) of the Trojan Y Chromosome model is unique.

Proof. Wework out the case for the f variable, uniqueness for the others follow similarly. We
consider the difference of two solutions f1 and f2 to (1.1). We denote

w = f1 − f2, (4.27)

and w satisfies the following equation:

dw

dt
−DΔw + δw = F

(

f1
) − F

(

f2
)

, (4.28)

w(0) = f1(0) − f2(0) = 0. (4.29)

We can multiply (4.28) by w and integrate by parts over Ω to yield

d|w|22
dt

+D|∇w|22 + δ|w|22 =
∫

Ω

(

F
(

f1
) − F

(

f2
))

wdx. (4.30)

Via the uniform L2 estimates on m, r, s, see [14], and Lemma 4.1, we obtain

d|w|22
dt

+D|∇w|22 + δ|w|22 ≤ C
∣
∣f1 − f2

∣
∣
2|w|2 ≤ CK|w|22. (4.31)

This yields

d|w|22
dt

+D|∇w|22 + δ|w|22 − (CK)|w|22 ≤ 0. (4.32)

Now using Poincaré’s Inequality, we obtain,

d|w|22
dt

+ (D + δ − C)|w|22 ≤ 0. (4.33)
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The use of Gronwall’s Lemma yields that for any t > 0 the following estimate holds:

|w(t)|22 ≤ e−(D+δ−C)t|w(0)|22 ≤ 0. (4.34)

Equation (4.17) in conjunction with Lemma 4.4 yields Theorem 1.1.

5. Weighted Sobolev Spaces

The purpose of this section is to introduce weighted Sobolev spaces into the framework of
our present problem. We will show that r given by (1.4), remains bounded in the norms of
these spaces. This will enable us to state a theorem about the existence of weak solution in
the weighted spaces. This in turn will entail making refined estimates on the dimension of
the global attractor for TYC system, when the phase space is a weighted Sobolev space. This
will be achieved via the elegant technique of projecting the trace operator onto a weighted
Sobolev space. We first make certain requisite definitions.

Definition 5.1. The weighted Sobolev spaceWk,p

ω(x), with weight functionω(x), is defined to be
the space consisting of all functions u such that

⎛

⎝
∑

|α|≤k

∫

Ω
|Dαu|pω(x)dx

⎞

⎠

1/p

< ∞. (5.1)

Remark 5.2. Here, Dα is the αth weak derivative of u. In particular, we are interested in the
following spaces for our application:

L2
ω(Ω) =

{

u :
(∫

Ω
ω(x)|u|2dx

)1/2

< ∞
}

,

H1
0,ω(Ω) =

{

u : |u|2,ω + |∇u|2,ω < ∞}.

(5.2)

Also, we denote (
∫

Ω ω(x)|u|2dx)1/2 = |u|2,ω. We define H−1
ω (Ω) to be the dual of H1

0,ω(Ω).

5.1. Estimates for r in Weighted Sobolev Spaces

Recall the equation for r

∂r

∂t
= DΔr − δr + μ, r|∂Ω = 0. (5.3)
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We choose ω(x) = eμx, μ > 0, multiply (5.3) by reμx, and integrate by parts over Ω to
yield

1
2
d

dt

∫

Ω
|r|2eμxdx = −D

∫

Ω
|∇r|2eμxdx −D

∫

Ω
∇r · ∇(reμx)dx − δ

∫

Ω
|r|2eμxdx

+ μ

∫

Ω
reμxdx

≤ −D
∫

Ω
|∇r|2eμxdx + D

2

∫

Ω
|∇r|2eμxdx + μ2

2

∫

Ω
|r|2eμxdx

− δ

∫

Ω
|r|2eμxdx + μ

∫

Ω
reμxdx

≤ −D
2

∫

Ω
|∇r|2eμxdx − δ

∫

Ω
|r|2eμxdx + C

(

μ2K2

2
+ μK

)

|Ω|.

(5.4)

These follow via integration by parts, the estimate |r|∞ ≤ K, and the Cauchy-Schwartz
inequality. Thus, we obtain

1
2
d

dt
|r|22,ω +

D

2
|∇r|22,ω + δ|r|22,ω ≤ C

(

μ2K2

2
+ μK

)

|Ω|. (5.5)

The use of Poincaire’s Inequality gives us

1
2
d|r|22,ω
dt

+
(
D

2
+ δ

)

|∇r|22,ω ≤ C

(

μ2K2

2
+ μK

)

|Ω|. (5.6)

Now, we can apply the Gronwall Lemma to yield

|r(t)|22,ω ≤ e−(CD+δ)t|r0|22,ω +
μ2K2/2 + μK

CD + δ
, ∀t ≥ 0. (5.7)

On the other hand we can integrate (5.5) from 0 to T to obtain

1
2
|r(T)|22,ω +

D

2

∫T

0
|∇r|22,ωdt + δ

∫T

0
|r|22,ωdt ≤

∫T

0

(

μ2K2

2
+ μK

)

|Ω|dt. (5.8)

This immediately yields

∫T

0
|∇r|22,ωdt ≤

∫T

0

(

μ2K2

2
+ μK

)

|Ω|dt. (5.9)
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Thus, via (5.7) and (5.9), we have that

|r|L∞(0,T ;L2
ω(Ω)) ≤ C < ∞, (5.10)

|r|L2(0,T ;H1
0,ω(Ω)) ≤ C < ∞. (5.11)

5.2. Estimate for the Time Derivative of r in Weighted Sobolev Space

We multiply (5.3) by a w ∈ H1
0,ω(Ω) to yield

〈
∂r

∂t
,w

〉

2,ω
= −D〈∇r,∇w〉2,ω − δ〈r,w〉2,ω +

〈

w,μ
〉

2,ω,

∣
∣
∣
∣

∂r

∂t

∣
∣
∣
∣
H−1

ω (Ω)
≤ μ|w|2,ω.

(5.12)

Integrating both sides in time from 0 to T yields

∫T

0

∣
∣
∣
∣

∂r

∂t

∣
∣
∣
∣

2

H−1
ω (Ω)

dt ≤ μ

∫T

0

(

|w|22,ω
)

dt. (5.13)

Because of the estimate via (5.11) and the embedding of

H1
0,ω(Ω) ↪→ L2

ω(Ω), (5.14)

we have

∂r

∂t
∈ L2

(

0, T ;H−1
ω (Ω)

)

< C < ∞. (5.15)

Thus it follows via the standard functional analysis theory, see [16], that

r ∈ C
(

[0, T);L2
ω(Ω)

)

. (5.16)

These estimates show that r remains bounded in the appropriate weighted spaces
introduced earlier and thus enables us to state the following theorem.

Theorem 5.3. Consider (1.4) in the TYC system. For positive r0 ∈ L2
ω(Ω), there exists a unique weak

solution r to the system with

r ∈ C
(

[0, T);L2
ω(Ω)

)

∩ L∞
(

0, T ;L2
ω(Ω)

)

∩ L2
(

0, T ;H1
0,ω(Ω)

)

,

∂r

∂t
∈ L2

(

0, T ;H−1
ω (Ω)

)

.

(5.17)

Furthermore, the solutions are continuous with respect to initial data.
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The uniqueness and convergence result by mimicking the method of proof for
Theorem 1.1.

6. Existence of Global Attractor in Weighted Sobolev Space

We recall the following spaces from [14], as the natural phase space for our problem:

H = L2(Ω) × L2(Ω) × L2(Ω) × L2(Ω),

Y = H1
0(Ω) ×H1

0(Ω) ×H1
0(Ω) ×H1

0(Ω),

X = H2(Ω) ×H2(Ω) ×H2(Ω) ×H2(Ω).

(6.1)

We next state the following definition.

Definition 6.1. Consider a semigroup S(t) acting on a phase spaceM, then the global attractor
A ⊂ M for this semigroup is an object that satisfies

(i) A is compact inM.

(ii) A is invariant, that is, S(t)A = A, t ≥ 0.

(iii) If B is bounded inM, then

distM(S(t)B,A) −→ 0, t −→ ∞. (6.2)

We showed in [14] that there exists a (H,X) global attractor for the TYC system.
That is an attractor that is compact X, and attracts bounded subsets in H in the X topology.
Furthermore we showed this attractor had finite fractal and Hausdorff dimension. Our goal
now is to improve these estimates, on a somewhat different attractor, via the technique of
weighted Sobolev spaces. To this end we define

H̃ = L2(Ω) × L2(Ω) × L2(Ω) × L2
ω(Ω),

Ỹ = H1
0(Ω) ×H1

0(Ω) ×H1
0(Ω) ×H1

0,ω(Ω).
(6.3)

Hereω is the weight as introduced earlier. We will first demonstrate the existence of a (H̃, H̃)
attractor for the TYC system. We will then provide estimates for its Hausdorff and fractal
dimensions. The following proposition is stated next.

Proposition 6.2. Consider the TYC system, (1.1)–(1.4). There exists a (H̃, H̃) global attractor Ã
for the this system which is compact and invariant in H̃ and attracts bounded subsets of H̃ in the H̃
metric.

The proof follows readily by applying the techniques of [14] to the weighted spaces
in question. Recall that there are two essential ingredients to show the existence of a global
attractor. The existence of a bounded absorbing set and the asymptotic compactness of the
semigroup, see [18]. Thus we will just focus on r, as the proof for the other variables is the
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same as in [14]. We will prove the above proposition via two lemmas. The first of these is
stated next.

Lemma 6.3. Consider the equation for r, (1.4), in the TYC system. For r0 ∈ L2
ω(Ω) there exists a

bounded absorbing set for r in L2
ω(Ω).

Proof. Recall, via (5.7), we have

|r(t)|22,ω ≤ e−(CD+δ)t|r0|22,ω +
μ2K2/2 + μK

CD + δ
, ∀t ≥ 0, (6.4)

Now consider a time t1 such that

t1 = max

⎛

⎜
⎝0,

ln
(

|r0|22,ω
)

CD + δ

⎞

⎟
⎠. (6.5)

It follows that for any time t > t1 the following uniform estimate holds

|r(t)|22,ω ≤ 1 +
μ2K2/2 + μK

CD + δ
≤ C. (6.6)

This gives us a bounded absorbing set for r in L2
ω(Ω).

We next state the following lemma.

Lemma 6.4. The semigroup S(t) for the TYC system, (1.1)–(1.4), is asymptotically compact in H̃.

Proof. We again demonstrate the proof for r. Multiply (5.3) by −Δreμx and integrate by parts
over Ω to yield

1
2
d

dt

∫

Ω
|∇r|2eμxdx ≤ −D

∫

Ω
|Δr|2eμxdx − δ

∫

Ω
∇r · ∇(reμx)dx

+ μ

∫

Ω

∣
∣
∣
∣
∇r

∂r

∂t
eμx
∣
∣
∣
∣
dx.

(6.7)

Now Poincaire’s Inequality along with Cauchy-Schwartz imply that

1
2
d

dt

∫

Ω
|∇r|2eμxdx + C(D + δ)

∫

Ω
|∇r|2eμxdx ≤ C

(

|∇r|22 +
∣
∣
∣
∣

∂r

∂t

∣
∣
∣
∣

2

2

)

. (6.8)

However directly from (1.4) and the compact Sobolev embedding of

H2(Ω) ↪→ H1
0(Ω). (6.9)
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we have

1
2
d

dt

∫

Ω
|∇r|2eμxdx + C(D + δ)

∫

Ω
|∇r|2eμxdx ≤ C

(

|Δr|22
)

≤ C. (6.10)

Also, integrating (5.6) in the time interval [t1, t1 + 1], we obtain

∫ t1+1

t1

|∇r|22,ωdt ≤ |r(t1)|22,ω + C. (6.11)

Thus, via a mean value theorem for integrals, we obtain the existence of a time t2 ∈
[t1, t1 + 1] such that

|∇r(t2)|22,ωdt ≤ C. (6.12)

With this in hand, we can apply Gronwall’s Lemma to (6.10), via integration in the
time interval [t2, t] to yield

|∇r|22,ω ≤ e−(D+δ)(t−t2)|∇r(t2)|22,ω + C. (6.13)

Thus, there exists a time t3 defined by

t3 = max

(

0, t2 + ln

(

|∇r(t2)|22
C(D + δ)

))

, (6.14)

such that for t > t3 the following estimate holds uniformly

|∇r|22,ω ≤ 1 + C ≤ C. (6.15)

Now, consider any sequence {r0,n}, and a sequence of times {tn} such that tn → ∞.
For n large enough we will eventually have tn > t3, thus this will yield that for such tn, we
have

|S(tn)r0,n|H1
0,ω(Ω) ≤ C. (6.16)

This follows trivially from (6.15). The standard functional analysis theory, see [17], now
implies the existence of a subsequence such that

S
(

tnj

)

r0,n ⇀ r in H1
0,ω(Ω). (6.17)

However, via the compact Sobolev embedding of

H1
0,ω(Ω) ↪→ L2

ω(Ω), (6.18)
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this implies that

S
(

tnj

)

r0,n −→ r in L2
ω(Ω). (6.19)

This proves the asymptotic compactness in L2
ω(Ω), and concludes the proof.

Lemmas 6.3 and 6.4 in conjunction prove Proposition 6.2.

Remark 6.5. Note that (1.4), for r, is just a diffusion equation with source term. The solutions
to (1.4) are functions in C∞(Ω). Thus r is trivially in H2(Ω) and so via the compact Sobolev
embedding ofH2(Ω) ↪→ H1

0(Ω), and the form of (1.4), we have the following estimate (which
was used earlier)

|∇r|22 +
∣
∣
∣
∣

∂r

∂t

∣
∣
∣
∣

2

2
≤ C|Δr|22 ≤ C. (6.20)

7. Improved Estimates for the Global Attractor

In [14], we derive estimates on the upper bound for the Hausdorff and Fractal dimensions
of the global attractor for the TYC system. The estimates are quite crude and are roughly
of the order of K3, where K is the carrying capacity of the system. Even choosing a modest
K = 100 for our numerical simulations, yields a upper bound of the order of 106. This bound
is quite impractical. It is of interest for improved numerical and modeling applications to
derive much sharper upper bounds, if possible. In this section we derive improved estimates
on these dimensions, but for the attractor in H̃, just described via Proposition 6.2. This is
done via projection onto weighted Sobolev spaces. The interested reader is referred to [19]
where similar techniques have been used, albeit in the framework for combustion type Stefan
problems. We follow the analysis in [19] closely and present details for completeness. For a
thorough treatment see [19]. We consider a volume element in the phase space, and try and
derive conditions that will cause it to decay. If Ã is the global attractor of the semigroup
{S(t)}t≥0 in H̃ associated with the Trojan Y Chromosome model, then the trace of the linear
operator

Δ + δ + F ′(S(τ)u0), (7.1)

where F is the nonlinear map in (1.1)–(1.4), can be projected onto an n dimensional subspace
formally. Let

qn = lim sup
t→∞

qn(t) (7.2)

where

sup
u0∈Ã

sup
gi∈H,‖gi‖=1,1≤i≤n

1
t

∫ t

0
Tr
(

ΔU(τ) − δU(τ) + F ′(S(τ)u0) ◦Qn(τ)
)

dτ. (7.3)
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Here, Qn is the orthogonal projection of the phase space H onto the subspace spanned by
U1(t), U2(t), . . . , Un(t), with

Ui(t) = L(S(t)u0)gi, i = 1, 2, . . . , n. (7.4)

L(S(t)u0) is the Frechet derivative of the map S(t) at u0. However for our purposes we will
choose Qn to be an n dimensional subspace of H1

0,ω(Ω). L(S(t)u0) is the Frechet derivative of
the map S(t) at u0. We recall the following Lemma from [18].

Lemma 7.1. If there is an integer n such that qn < 0, then the Hausdorff dimension dH(A) and the
fractal dimension dF(A) of A satisfy

dH(A) ≤ n, dF(A) ≤ 2n. (7.5)

For the TYC system, L(S(t)u0) U0 = U(t) = (F(t),M(t), R(t), S(t)), where u =
(f,m, r, s) is a solution to the TYC system. Note that since we are projecting onto a
weighted space, we are required to show the existence of solution in such a space. This was
demonstrated via Theorem 5.3. Also in our case we will denote φj = (φ1

j , φ
2
j , φ

3
j , φ

4
j e

μx) to be
an orthonormal basis for the subspace Qn(τ)H1

0,ω(Ω). Thus we define

∣
∣φj

∣
∣
2
2,ω =

∣
∣
∣φ1

j

∣
∣
∣

2

2
+
∣
∣
∣φ2

j

∣
∣
∣

2

2
+
∣
∣
∣φ3

j

∣
∣
∣

2

2
+
∣
∣
∣φ4

j e
μx/2
∣
∣
∣

2

2
. (7.6)

The first variational equation for this system is explicitly worked out in [14]. We now
estimate

Tr
(

ΔU(τ) − δU(τ) + F ′(S(τ)u0) ◦Qn(τ)
)

=
n∑

j=1

(〈

Δφj(τ), φj(τ)
〉

2,ω +
〈

F ′(S(τ)u0)φj(τ), φj(τ)
〉

2,ω − δ
〈

φj(τ), φj(τ)
〉

2,ω

)

≤
n∑

j=1

− 4D
∣
∣∇φj(τ)

∣
∣
2
2,ω − 4δ

∣
∣φj(τ)

∣
∣
2
2,ω + J1 + J2 + J3.

(7.7)
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J1, J2, and J3 have been worked out in [14]. We recall the details for J1 for completeness. Here,

J1 =
n∑

j=1

∫

Ω

(

f(τ)φ2
j (τ)φ

1
j (τ) +m(τ)

∣
∣
∣φ1

j

∣
∣
∣

2
)(

1 − f(τ) +m(τ) + r(τ) + s(τ)
K

)

− f(τ)m(τ)
(∣
∣
∣φ1

j

∣
∣
∣

2
+ φ1

j φ
2
j + φ1

j φ
3
j + φ1

j φ
4
j e

μx

)

dx

≤
n∑

j=1

∫

Ω

(

f(τ)φ2
j (τ)φ

1
j (τ) +m(τ)

∣
∣
∣φ1

j

∣
∣
∣

2
)

− f(τ)m(τ)
(∣
∣
∣φ1

j

∣
∣
∣

2
+ φ1

j φ
2
j + φ1

j φ
3
j + φ1

j φ
4
j e

μx

)

dx

≤
n∑

j=1

∫

Ω

(

f(τ)
(∣
∣
∣φ1

j

∣
∣
∣

2
+
∣
∣
∣φ2

j

∣
∣
∣

2
)

+m(τ)
∣
∣
∣φ1

j

∣
∣
∣

2
)

+ f(τ)m(τ)
(∣
∣
∣φ1

j

∣
∣
∣

2
+
∣
∣
∣φ1

j

∣
∣
∣

2
+
∣
∣
∣φ2

j

∣
∣
∣

2
+
∣
∣
∣φ1

j

∣
∣
∣

2
+
∣
∣
∣φ3

j

∣
∣
∣

2
+
∣
∣
∣φ1

j

∣
∣
∣

2
+ eμx

∣
∣
∣φ4

j

∣
∣
∣

2
)

≤ 4K2
n∑

j=1

(∣
∣φj

∣
∣
2
2,ω

)

.

(7.8)

J2 and J3 are estimated similarly. Thus, we obtain,

Tr
(

ΔU(τ) − δU(τ) + F ′(S(τ)u0) ◦Qn(τ)
)

≤ −
n∑

j=1

4D
∣
∣∇φj(τ)

∣
∣
2
2,ω + μ

∫

Ω
∇φ4

j φ
4
j e

μxdx − 4δ
∣
∣φj(τ)

∣
∣
2
2,ω + 24K2

n∑

j=1

∣
∣φj

∣
∣
2
2,ω

= −4D
n∑

j=1

∣
∣∇φj(τ)

∣
∣
2
2,ω +

(

−4δ + 24K2
) n∑

j=1

∣
∣φj(τ)

∣
∣
2
2,ω − μ2

2

∣
∣
∣∇φ4

j (τ)
∣
∣
∣

2

2,ω

= −4D
n∑

j=1

∣
∣∇φj(τ)

∣
∣
2
2,ω +

(

−4δ + 24K2 − Cμ2
) n∑

j=1

∣
∣φj(τ)

∣
∣
2
2,ω

≤ −4D
n∑

j=1

∣
∣∇φj(τ)

∣
∣
2
2,ω +

(

24K2 − 4δ − Cμ2
)

n.

(7.9)

This follows via integration by parts on the second term, and property of the eigenfunction
φ4
j . Now via the generalized Sobolev-Lieb-Thirring inequalities [18] and Lieb-Thirring

inequalities for weighted Sobolev spaces [20], we obtain

n∑

j=1

∣
∣∇φj(τ)

∣
∣
2
2 ≥ K1

n5/3

|Ω|2/3
∫

Ω
ω(x)dx. (7.10)
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Here, K1 depends only on the shape and dimension of Ω. Thus, we obtain

Tr
(

ΔU(τ) − δU(τ) + F ′(S(τ)u0) ◦Qn(τ)
)

≤ −4DK1
n5/3

∫

Ω ω(x)dx

|Ω|2/3
+
(

24K2 − 4δ − cμ2
)

n, τ > 0, u0 ∈ Ã.
(7.11)

We now obtain

qn(t) = sup
u0∈Ã

sup
gi∈H,‖gi‖=1,1≤i≤n

1
t

∫ t

0
Tr
(

ΔU(τ) − δU(τ) + F ′(S(τ)u0) ◦Qn(τ)
)

dτ

≤ −4DK1
n5/3

∫

Ω ω(x)dx

|Ω|2/3
+
(

24K2 − 4δ − Cμ2
)

n, ∀t > 0.

(7.12)

This yields

qn = lim sup
t→∞

qn(t) ≤ −4DK1
n5/3

∫

Ω ω(x)dx

|Ω|2/3
+
(

24K2 − 3δ + μ
)

n < 0, (7.13)

if the integer n satisfies

n − 1 <

(

24K2 − 4δ − Cμ2

4DK1
∫

Ω ω(x)dx

)3/2

|Ω| < n. (7.14)

Notice that by a specific choice of μ now we can sharpen the estimates on the trace
operator. In particular if we want an upper bound on the Hausdorff dimension, to be of the
order M, we can choose μ such that

M2/3 4DK1

∫

Ω
ω(x)dx = 24K2 − 4δ − Cμ2, (7.15)

so that we will obtain

n − 1 <

(

24K2 − 4δ − Cμ2

4DK1
∫

Ω ω(x)dx

)3/2

, |Ω| =
(

M2/3
)3/2

< n. (7.16)

Via the above analysis, we can now use Lemma 7.1 to obtain the following result.
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Theorem 7.2. Consider the Trojan Y Chromosome model, (1.1)–(1.4). The global attractor Ã of the
system as defined in Proposition 6.2 is of finite dimension. Furthermore given parameters K, M, δ,
D and K1, if we choose the weight function, and in particular μ, such that the following equation is
satisfied

∫

Ω
eμxdx + Cμ2 =

6K2 − δ

M2/3DK1
, (7.17)

then, we have the following explicit upper bounds for the Hausdorff and fractal dimensions of the global
attractor Ã:

dH(A) ≤ M + 1,

dF(A) ≤ 2M + 2.
(7.18)

8. Conclusion

We have demonstrated thus far that the Trojan Y Chromosome model is well posed. We
have also shown there exists a global attractor for the system. This validate the TYC strategy
as an effective means of eradication of an invasive species. A necessary condition for the
existence of a global attractor is the presence of a bounded absorbing set in the phase
space. The existence of this implies that indeed the population of invasive species under
consideration will be confined to bounded regions after long time, and thus is unable to
grow without bound. The analysis of global attractors can be helpful to estimate times to
extinction in complex spatial domains. The analysis conducted here determines that for
Dirchlet boundary conditions on a connected domain there exists an extinction state as a
result of the introduction of feminised supermales r.

Furthermore, we have derived upper bounds on the Hausdorff and fractal dimension
for the global attractor in the space H̃. The technique of weighted Sobolev spaces enables
us to provide bounds that are of the order of modest order, as opposed to the order of 106

that were derived earlier. It should be noted that the improved bounds have been derived
via the theoretical construct of weighted sobolev spaces, and it is still a challenge to improve
these estimates in the regular Sobolev spaces that were considered in [14], that is without
the help of the “weight”. However this result has intuitive meaning. Theorem 7.2 tells us
there is an inverse relationship between the upper bound M on the Hausdorff dimension
for the attractor and μ. Thus there seems to be a scaling of the form μ = C/M. Thus if we
want to improve this estimate we will have to increase μ, which physically corresponds to
infusing a greater quantity of feminised supermales into the target population of interest,
which then would via the mating scenario described earlier, lead to a faster extinction of the
female population, and hence ultimately the male population of the invasive species. Thus
exploring this scaling further becomes important from a practical point of view. It is also of
interest to explore the relation between the attractors Ã in H̃, and A in H, particularly for
small μ. Various upper semicontinuity methods for attractors, [17, 18] could be looked into.
These questions are very much on our present agenda.

These estimates are also of numerical importance as most numerical scheme will
depend on the number of degrees of freedom in the system. Also note some of the parameters
in the system are actually under our control as modellers. Such as the parameter μ. Thus
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understanding fully the dynamics of the system in terms of these parameters is essential if
this strategy ever has to be implemented practically. Further questions of well posedness on
arbitrary domains and more involved boundary conditions can also be explored. There has
been a large interest lately in considering river networks as fractals or dendritic domains.
These and related questions are under investigation. Further more we also believe that we
can consider questions regarding existence of mild and strong solutions to the system, which
can be demonstrated if further regularity of the solutions can be shown. This question is also
currently under investigation. The other more practical question is to consider other forms of
the parameter μ. That is to consider what might happen if feminised supermales were added
not at a constant rate but perhaps periodically. This leads to considering the question of a
time dependent μ. It might also be feasible to look at a stochastic μ term, and thus bring in
tools from stochastic PDE’s to further inform our analysis.

In short, wewould like to conclude by reiterating that invasive species pose a clear and
present danger to both the ecosystems they reside in and the regional and global economies
they affect. They spread quickly and are difficult to eradicate. We believe or research efforts to
this end, despite in a nascent stage, will be of pragmatic and financial value to both ecologists,
government and industries in the long run.
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