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A new conservative finite difference scheme is presented for an initial-boundary value problem of
the general Rosenau-RLW equation. Existence of its difference solutions are proved by Brouwer
fixed point theorem. It is proved by the discrete energy method that the scheme is uniquely
solvable, unconditionally stable, and second-order convergent. Numerical examples show the
efficiency of the scheme.

1. Introduction

In this paper, we consider the following initial-boundary value problem of the general
Rosenau-RLW equation:

ut − uxxt + uxxxxt + ux + (up)x = 0 (xl < x < xr, 0 < t < T), (1.1)

with an initial condition

u(x, 0) = u0(x) (xl ≤ x ≤ xr), (1.2)

and boundary conditions

u(xl, t) = u(xr, t) = 0, uxx(xl, t) = uxx(xr, t) = 0 (0 ≤ t ≤ T), (1.3)
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where p ≥ 2 is a integer and u0(x) is a known smooth function. When p = 2, (1.1) is called
as usual Rosenau-RLW equation. When p = 3, (1.1) is called as modified Rosenau-RLW
(MRosenau-RLW) equation. The initial boundary value problem (1.1)–(1.3) possesses the
following conservative quantities:

Q(t) =
1
2

∫xr

xl

u(x, t)dx =
1
2

∫xr

xl

u0(x, t)dx = Q(0), (1.4)

E(t) =
1
2

(
‖u‖2

L2 + ‖ux‖2
L2 + ‖uxx‖2

L2

)
=

1
2

(
‖u0‖2

L2 + ‖u0x‖2
L2 + ‖u0xx‖2

L2

)
= E(0). (1.5)

It is known the conservative scheme is better than the nonconservative ones. Zhang
et al. [1] point out that the nonconservative scheme may easily show nonlinear blow up.
In [2] Li and Vu-Quoc said “. . . in some areas, the ability to preserve some invariant
properties of the original differential equation is a criterion to judge the success of a numerical
simulation”. In [3–11], some conservative finite difference schemes were used for a system of
the generalized nonlinear Schrödinger equations, Regularized long wave (RLW) equations,
Sine-Gordon equation, Klein-Gordon equation, Zakharov equations, Rosenau equation,
respectively. Numerical results of all the schemes are very good. Hence, we propose a new
conservative difference scheme for the general Rosenau-RLW equation, which simulates
conservative laws (1.4) and (1.5) at the same time. The outline of the paper is as follows.
In Section 2, a nonlinear difference scheme is proposed and corresponding convergence and
stability of the scheme are proved. In Section 3, some numerical experiments are shown.

2. A Nonlinear-Implicit Conservative Scheme

In this section, we propose a nonlinear-implicit conservative scheme for the initial-boundary
value problem (1.1)–(1.3) and give its numerical analysis.

2.1. The Nonlinear-Implicit Scheme and Its Conservative Law

For convenience, we introduce the following notations

xj = xr + jh, tn = nτ, j = 0, 1, . . . , J, n = 0, 1, . . . ,
[
T

τ

]
= N, (2.1)

where h = (xr − xl)/J and τ denote the spatial and temporal mesh sizes, un
j ≡ u(xj , tn),

Un
j ≈ u(xj , tn), respectively,

(
Un

j

)
t
=

Un+1
j −Un

j

τ
,

(
Un

j

)
x
=

Un
j+1 −Un

j

h
,

(
Un

j

)
x
=

Un
j −Un

j−1

h
,

(
Un

j

)
x̂
=

1
2

((
Un

j

)
x
+
(
Un

j

)
x

)
, Un+1/2

j =
1
2

(
Un+1

j +Un
j

)
, 〈Un, V n〉 = h

J−1∑
j=1

Un
j V

n
j ,

‖Un‖2 = 〈Un,Un〉, ‖Un‖∞ = max
1≤j≤J

∣∣∣Un
j

∣∣∣,
(2.2)
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and in the paper, C denotes a general positive constant, which may have different values in
different occurrences.

Since (up)x = (2/(p + 1))
∑p−1

i=0 ui(up−i)x, then the finite difference scheme for the
problem (1.1)–(1.3) is written as follows:

(
Un

j

)
t
−
(
Un

j

)
xxt

+
(
Un

j

)
xxxxt

+
(
Un+1/2

j

)
x̂
+

2
p + 1

p−1∑
i=0

(
Un+1/2

j

)i[(
Un+1/2

j

)p−i]
x̂

= 0,

j = 1, 2, . . . , J − 1; n = 1, 2, . . . ,N,

(2.3)

U0
j = u0

(
xj

)
, j = 0, 1, 2, . . . , J, (2.4)

Un
0 = Un

J = 0,
(
Un

0

)
xx =

(
Un

J

)
xx

= 0, n = 1, 2, . . . ,N. (2.5)

Lemma 2.1 (see [12]). For any two mesh functions, U,V ∈ Z0
h
, one has

〈(U)x, V 〉 = −〈U, (V )x〉,

〈(U)x̂, V 〉 = −〈U, (V )x̂〉,

〈V, (U)xx〉 = −〈(V )x, (U)x〉,

〈U, (U)xx〉 = −〈(U)x, (U)x〉 = −‖Ux‖2.

(2.6)

Furthermore, if (Un
0 )xx = (Un

J )xx = 0, then

〈U, (U)xxxx〉 = ‖Uxx‖2. (2.7)

Theorem 2.2. Suppose that u0 ∈ H2
0[xl, xr], then scheme (2.3)–(2.5) is conservative in the senses:

Qn =
h

2

J−1∑
j=1

Un
j = Qn−1 = · · · = Q0, (2.8)

En =
1
2
‖Un‖2 +

1
2
‖Un

x‖
2 +

1
2
‖Un

xx‖
2 = En−1 = · · · = E0. (2.9)

Proof. Multiplying (2.3) with h/2, according to boundary condition (2.5), and then summing
up for j from 1 to J − 1, we have

h

2

J−1∑
j=1

(
Un+1

j −Un
j

)
= 0. (2.10)
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Let

Qn =
h

2

J−1∑
j=1

Un
j . (2.11)

Then (2.8) is gotten from (2.10).
Computing the inner product of (2.3) with Un+1/2, according to boundary condition

(2.5) and Lemma 2.1, we obtain

1
2
‖Un‖2

t +
1
2
‖Un

x‖
2
t +

1
2
‖Un

xx‖
2
t +
〈(

Un+1/2
)
x̂
, Un+1/2

〉
+
〈
κ
(
Un+1/2, Un+1/2

)
, Un+1/2

〉
= 0,

(2.12)

where

κ
(
Un+1/2, Un+1/2

)
=

2
p + 1

p−1∑
i=0

(
Un+1/2

)i[(
Un+1/2

)p−i]
x̂

,

Un+1/2 =
1
2

(
Un+1 +Un

)
.

(2.13)

According to

〈(
Un+1/2

)
x̂
, Un+1/2

〉
= 0,

〈
κ
(
Un+1/2, Un+1/2), Un+1/2〉 =

2
p + 1

〈
p−1∑
i=0

(
Un+1/2)i[(Un+1/2)p−i]

x̂
, Un+1/2

〉

= − 2
p + 1

〈
p−1∑
i=0

[(
Un+1/2)i+1

]
x̂
,
(
Un+1/2)p−i

〉

= − 2
p + 1

〈
p−1∑
i=0

(
Un+1/2)i[(Un+1/2)p−i]

x̂
, Un+1/2

〉
,

(2.14)

we have 〈κ(Un+1/2, Un+1/2), Un+1/2〉 = 0. It follows from (2.12) that

1
2
‖Un‖2

t +
1
2
‖Un

x‖
2
t +

1
2
‖Un

xx‖
2
t = 0. (2.15)

Let

En =
1
2
‖Un‖2 +

1
2
‖Un

x‖
2 +

1
2
‖Un

xx‖
2. (2.16)

Then (2.9) is gotten from (2.15). This completes the proof of Theorem 2.2.
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2.2. Existence and Prior Estimates of Difference Solution

To show the existence of the approximations Un (n = 1, 2, . . . ,N) for scheme (2.3)–(2.5), we
introduce the following Brouwer fixed point theorem [13].

Lemma 2.3. Let H be a finite-dimensional inner product space, ‖ · ‖ be the associated norm, and
g : H → H be continuous. Assume, moreover, that there exist α > 0, for all z ∈ H, ‖z‖ = α,
〈ω(z), z〉 > 0. Then, there exists a z∗ ∈ H such that g(z∗) = 0 and ‖z∗‖ ≤ α.

Let Z0
h
= {ν = (νj) | ν0 = νJ = (ν0)xx = (νJ)xx = 0, j = 0, 1, . . . , J}, then have the

following.

Theorem 2.4. There existsUn+1 ∈ Z0
h which satisfies scheme (2.3)–(2.5).

Proof (by Brouwer fixed point theorem). It follows from the original problem (1.1)–(1.3) that U0

satisfies scheme (2.3)–(2.5). Assume there exists U1, U2, . . . , Un ∈ Z0
h

which satisfy scheme
(2.3)–(2.5), as n ≤ N − 1, now we try to prove that Un+1 ∈ Z0

h
, satisfy scheme (2.3)–(2.5).

We define ω on Z0
h as follows:

ω(ν) = 2ν − 2Un − 2νxx + 2Uxx + 2νxxxx − 2Uxxxx + τνx̂ + τκ(ν, ν), (2.17)

where κ(ν, ν) = (2/(p + 1))
∑p−1

i=0 νi(νp−i)x̂. Computing the inner product of (2.17) with ν and
considering 〈κ(ν, ν), ν〉 = 0 and 〈νx̂, ν〉 = 0, we obtain

〈ω(ν), ν〉 = 2‖ν‖2 + 2‖νx‖2 + 2‖νxx‖2 − 2〈Un, ν〉 + 2
〈
Un

xx, ν
〉
− 2
〈
Un

xxxx, ν
〉

≥ 2‖ν‖2 + 2‖νx‖2 + 2‖νxx‖2 −
(
‖Un‖2 + ‖ν‖2

)

−
(
‖Un

x‖
2 + ‖νx‖2

)
−
(
‖Un

xx‖
2 + ‖νxx‖2

)

= ‖ν‖2 + ‖νx‖2 + ‖νxx‖2 −
(
‖Un‖2 + ‖Un

x‖
2 + ‖Un

xx‖
2
)

≥ ‖ν‖2 −
(
‖Un‖2 + ‖Un

x‖
2 + ‖Un

xx‖
2
)
.

(2.18)

Hence, for all ν ∈ Z0
h
, ‖ν‖2 = ‖Un‖2 + ‖Un

x‖
2 + ‖Un

xx‖
2 + 1 there exists 〈ω(ν), ν〉 ≥ 0. It follows

from Lemma 2.3 that exists ν∗ ∈ Z0
h which satisfies ω(ν∗) = 0. Let Un+1 = 2ν −Un, then it can

be proved that Un+1 ∈ Z0
h

is the solution of scheme (2.3)–(2.5). This completes the proof of
Theorem 2.4.

Next we will give some priori estimates of difference solutions. First the following two
lemmas [14] are introduced:

Lemma 2.5 (discrete Sobolev’s estimate). For any discrete function {un
j | j = 0, 1, . . . , J} on the

finite interval {xl, xr}, there is the inequality

‖un‖∞ ≤ ε‖un
x‖ + C(ε)‖un‖, (2.19)

where ε, C(ε) are two constants independent of {un
j | j = 0, 1, . . . , J} and step length h.



6 Boundary Value Problems

Lemma 2.6 (discrete Gronwall’s inequality). Suppose that the discrete function {wn | n = 0, 1,
. . . ,N} satisfies the inequality

wn −wn−1 ≤ Aτwn + Bτwn−1 + Cnτ, (2.20)

where A,B and Cn (n = 0, 1, 2, . . . ,N) are nonnegative constants. Then

max
1≤n≤N

|wn| ≤
(
w0 + τ

N∑
l=1

Cl

)
e2(A+B)T , (2.21)

where τ is sufficiently small, such that (A + B)τ ≤ (N − 1)/2N, (N > 1).

Theorem 2.7. Suppose that u0 ∈ H2
0[xl, xr], then the following inequalities

‖Un‖ ≤ C, ‖Un
x‖ ≤ C, ‖Un‖∞ ≤ C, ‖Un

xx‖ ≤ C. (2.22)

hold.

Proof. It is follows from (2.9) that

‖Un‖ ≤ C, ‖Un
x‖ ≤ C, ‖Un

xx‖ ≤ C. (2.23)

According to Lemma 2.5, we obtain

‖Un‖∞ ≤ C. (2.24)

This completes the proof of Theorem 2.7.

Remark 2.8. Theorem 2.7 implies that scheme (2.3)–(2.5) is unconditionally stable.

2.3. Convergence and Uniqueness of Difference Solution

First, we consider the convergence of scheme (2.3)–(2.5). We define the truncation error as
follows:

rnj =
(
un
j

)
t
−
(
un
j

)
xxt

+
(
un
j

)
xxxxt

+
(
un+1/2
j

)
x̂
+

2
p + 1

p−1∑
i=0

(
un+1/2
j

)i[(
un+1/2
j

)p−i]
x̂

,

j = 1, 2, . . . , J − 1; n = 1, 2, . . . ,N,

(2.25)

then from Taylor’s expansion, we obtain the following.
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Theorem 2.9. Suppose that u0 ∈ H2
0[xl, xr] and u(x, t) ∈ C5,3, then the truncation errors of scheme

(2.3)–(2.5) satisfy

∣∣∣rnj
∣∣∣ = O

(
τ2 + h2

)
, (2.26)

as τ → 0, h → 0.

Theorem 2.10. Suppose that the conditions of Theorem 2.9 are satisfied, then the solution of scheme
(2.3)–(2.5) converges to the solution of problem (1.1)–(1.3) with order O(τ2 + h2) in the L∞ norm.

Proof. Subtracting (2.3) from (2.25) letting

enj = un
j −Un

j , (2.27)

we obtain

rnj =
(
enj

)
t
−
(
enj

)
xxt

+
(
enj

)
xxxxt

+
(
en+1/2
j

)
x̂
+ κ
(
un+1/2
j , un+1/2

j

)
− κ
(
Un+1/2

j , Un+1/2
j

)
. (2.28)

Computing the inner product of (2.28) with 2en+1/2, we obtain

〈
2rn, en+1/2

〉
= ‖en‖2

t + ‖enx‖
2
t + ‖enxx‖

2
t + 2

〈(
en+1/2
j

)
x̂
, en+1/2

j

〉

+ 2
〈
κ
(
un+1/2
j , un+1/2

j

)
− κ
(
Un+1/2

j , Un+1/2
j

)
, en+1/2

〉
.

(2.29)

From the conservative property (1.5), it can be proved by Lemma 2.5 that ‖u‖L∞
≤ C. Then by

Theorem 2.7 we can estimate (2.29) as follows:

〈
κ
(
un+1/2
j , un+1/2

j

)
− κ
(
Un+1/2

j , Un+1/2
j

)
, en+1/2

〉

=
2

p + 1
h
J−1∑
j=1

{
p−1∑
i=0

(
un+1/2
j

)i[(
un+1/2
j

)p−i]
x̂

−
p−1∑
i=0

(
Un+1/2

j

)i[(
un+1/2
j

)p−i]
x̂

}(
en+1/2
j

)

=
2

p + 1
h
J−1∑
j=1

{
p−1∑
i=0

(
en+1/2
j

)i i−1∑
r=0

[(
un+1/2
j

)i−1−r(
Un+1/2

j

)r][(
un+1/2
j

)p−i]
x̂

−
p−1∑
i=0

(
Un+1/2

i

)i[(
en+1/2
j

)p−i−1∑
r=0

[(
un+1/2
j

)p−i−1−r(
Un+1/2

j

)r]]}(
en+1/2
j

)

≤ C

(
‖en‖2 +

∥∥∥en+1
∥∥∥2

+ ‖enx‖
2 +
∥∥∥en+1

x

∥∥∥2
)
.

(2.30)
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According to the following inequality [11]

‖enx‖
2 ≤ 1

2

(
‖en‖2 + ‖enxx‖

2
)
,

∥∥∥en+1
x

∥∥∥2
≤ 1

2

(∥∥∥en+1
∥∥∥2

+
∥∥∥en+1

xx

∥∥∥2
)
,

〈(
en+1/2
j

)
x̂
, en+1/2

j

〉
= 0,

〈
2rn, en+1/2

〉
≤ ‖rn‖2 +

(
‖en‖2 +

∥∥∥en+1
∥∥∥2
)
.

(2.31)

Substituting (2.30)–(2.31) into (2.29), we obtain

‖en‖2
t + ‖enx‖

2
t + ‖enxx‖

2
t ≤ ‖rn‖2 + C

(
‖en‖2 +

∥∥∥en+1
∥∥∥2

+ ‖enx‖
2 +
∥∥∥en+1

x

∥∥∥2
+ ‖enxx‖

2 +
∥∥∥en+1

xx

∥∥∥2
)
.

(2.32)

Let

Bn = ‖en‖2 + ‖enx‖
2 + ‖enxx‖

2, (2.33)

then (2.32) can be rewritten as

Bn − Bn−1 ≤ Cτ
(
τ2 + h2

)2
+ Cτ

(
Bn − Bn−1

)
. (2.34)

Choosing suitable τ which is small enough, we obtain by Lemma 2.6 that

Bn ≤ C

(
B0 +

(
τ2 + h2

)2
)
. (2.35)

From the discrete initial conditions, we know that e0 is of second-order accuracy, then

B0 = O
(
τ2 + h2

)2
. (2.36)

Then we have

‖en‖ ≤ O
(
τ2 + h2

)
, ‖enx‖ ≤ O

(
τ2 + h2

)
, ‖enxx‖ ≤ O

(
τ2 + h2

)
(2.37)

It follows from Lemma 2.5, we have ‖en‖∞ ≤ O(τ2 + h2). This completes the proof of
Theorem 2.10.
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Table 1: The errors of numerical solutions at t = 60 with τ = h for p = 2.

h ‖un −Un‖ ‖un −Un‖∞ ‖un/4 −Un/4‖/‖un −Un‖ ‖un/4 −Un/4‖∞/‖un −Un‖∞
0.4 5.476 327 × 10−2 1.958 718 × 10−2

0.2 1.385 256 × 10−2 4.983 761 × 10−3 3.953 296 3.930 200
0.1 3.474 318 × 10−3 1.252 185 × 10−3 3.987 130 3.980 050
0.05 8.691 419 × 10−4 3.134 571 × 10−4 3.997 412 3.994 759
0.025 2.059 064 × 10−4 7.550 730 × 10−5 4.221 051 4.151 348

Table 2: The errors of numerical solutions at t = 60 with τ = h for p = 3.

h ‖un −Un‖ ‖un −Un‖∞ ‖un/4 −Un/4‖/‖un −Un‖ ‖un/4 −Un/4‖∞/‖un −Un‖∞
0.4 1.164 674 × 10−1 4.251 029 × 10−2

0.2 2.940 136 × 10−2 1.080 424 × 10−2 3.961 294 3.934 592
0.1 7.357 052 × 10−3 2.708 996 × 10−3 3.996 350 3.988 283
0.05 1.837 759 × 10−3 6.772 212 × 10−4 4.003 273 4.000 165
0.025 4.283 535 × 10−4 1.596 208 × 10−4 4.290 286 4.242 688

Theorem 2.11. Scheme (2.3)–(2.5) is uniquely solvable.

Proof. Assume that Un and U
′n both satisfy scheme (2.3)–(2.5), let Wn = Un −U

′n, we obtain

(
Wn

j

)
t
−
(
Wn

j

)
xxt

+
(
Wn

j

)
xxxxt

+
(
Un+1/2

j

)
x̂
−
(
U

′n+1/2
j

)
x̂

+κ
(
Un+1/2

j , Un+1/2
j

)
− κ
(
U

′n+1/2
j , U

′n+1/2
j

)
= 0,

W0
j = 0

(
j = 0, 1, . . . ,N

)
.

(2.38)

Similarly to the proof of Theorem 2.10, we have

‖Wn‖2 + ‖Wn
x ‖

2 + ‖Wn
xx‖

2 = 0. (2.39)

This completes the proof of Theorem 2.11.

Remark 2.12. All results above in this paper are correct for initial-boundary value problem of
the general Rosenau-RLW equation with finite or infinite boundary.

3. Numerical Experiments

In order to test the correction of the numerical analysis in this paper, we consider the
following initial-boundary value problems of the general Rosenau-RLW equation:

ut − uxxt + uxxxxt + ux + (up)x = 0 (0 < t < T), (3.1)
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Figure 1: Exact solutions of u(x, t) at t = 0 and numerical solutions computed by scheme (2.3)–(2.5) at
t = 30, 60 for p = 2.

Table 3: The errors of numerical solutions at t = 60 with τ = h for p = 6.

h ‖un −Un‖ ‖un −Un‖∞ ‖un/4 −Un/4‖/‖un −Un‖ ‖un/4 −Un/4‖∞/‖un −Un‖∞
0.4 1.787 127 × 10−1 6.353 868 × 10−2

0.2 4.598 952 × 10−2 1.649 585 × 10−2 3.885 945 3.851 797
0.1 1.156 944 × 10−2 4.159 339 × 10−3 3.975 084 3.965 980
0.05 2.892 147 × 10−3 1.040 878 × 10−3 4.000 294 3.995 992
0.025 6.585 307 × 10−4 2.375 782 × 10−4 4.391 818 4.381 199

Table 4: Discrete mass Qn and discrete energy En with τ = h = 0.1 at various t for p = 2.

Qn En

10 1.897 658 262 960 01 0.533 175 231 580 85
20 1.897 658 268 873 21 0.533 175 231 872 51
30 1.897 658 262 993 93 0.533 175 231 177 25
40 1.897 658 265 568 93 0.533 175 231 478 09
50 1.897 658 260 975 87 0.533 175 231 776 18
60 1.897 658 265 384 88 0.533 175 231 074 05

Table 5: Discrete mass Qn and discrete energy En with τ = h = 0.1 at various t for p = 3.

Qn En

10 2.672 608 675 265 30 1.113 462 678 852 70
20 2.672 608 676 236 58 1.113 462 678 465 22
30 2.672 608 674 147 13 1.113 462 678 083 94
40 2.672 608 672 639 88 1.113 462 678 711 58
50 2.672 608 672 874 71 1.113 462 678 330 06
60 2.672 608 679 729 44 1.113 462 678 958 71
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Table 6: Discrete mass Qn and discrete energy En with τ = h = 0.1 at various t for p = 6.

Qn En

10 3.988 663 320 390 89 1.917 613 014 656 71
20 3.988 663 260 854 26 1.917 613 014 739 89
30 3.988 663 167 685 49 1.917 613 014 820 83
40 3.988 663 194 506 97 1.917 613 014 927 44
50 3.988 663 973 359 89 1.917 613 014 009 71
60 3.988 663 621 972 59 1.917 613 014 679 17

with an initial condition

u(x, 0) = u0(x), (3.2)

and boundary conditions

u(xl, t) = u(xr, t) = 0, uxx(xl, t) = uxx(xr, t) = 0 (0 ≤ t ≤ T), (3.3)

where u0(x) = eln{(p+3)(3p+1)(p+1)/[2(p2+3)(p2+4p+7)]}/(p−1)sech4/(p−1)((p−1/
√

4p2 + 8p + 20)x). Then
the exact solution of the initial value problem (3.1)-(3.2) is

u(x, t) = eln{(p+3)(3p+1)(p+1)/[2(p2+3)(p2+4p+7)]}/(p−1)sech4/(p−1)

⎡
⎢⎣ p − 1√

4p2 + 8p + 20
(x − ct)

⎤
⎥⎦, (3.4)

where c = (p4 + 4p3 + 14p2 + 20p + 25)/(p4 + 4p3 + 10p2 + 12p + 21) is wave velocity.
It follows from (3.4) that the initial-boundary value problem (3.1)–(3.3) is consistent to

the boundary value problem (3.3) for −xl � 0, xr � 0. In the following examples, we always
choose xl = −30, xr = 120.

Tables 1, 2, and 3 give the errors in the sense of L2-norm and L∞-norm of the numerical
solutions under various steps of τ and h at t = 60 for p = 2, 3 and 6. The three tables verify
the second-order convergence and good stability of the numerical solutions. Tables 4, 5, and 6
shows the conservative law of discrete mass Qn and discrete energy En computed by scheme
(2.3)–(2.5) for p = 2, 3 and 6.

Figures 1, 2, and 3 plot the exact solutions at t = 0 and the numerical solutions
computed by scheme (2.3)–(2.5) with τ = h = 0.1 at t = 30, 60, which also show the accuracy
of scheme (2.3)–(2.5).
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Figure 2: Exact solutions of u(x, t) at t = 0 and numerical solutions computed by scheme (2.3)–(2.5) at
t = 30, 60 for p = 3.
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Figure 3: Exact solutions of u(x, t) at t = 0 and numerical solutions computed by scheme (2.3)–(2.5) at
t = 30, 60 for p = 6.
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