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We study the existence of positive solutions to the three-point integral boundary value problem
u′′+a(t)f(u) = 0, t ∈ (0, 1), u(0) = 0, α

∫η
0 u(s)ds = u(1), where 0 < η < 1 and 0 < α < 2/η2. We show

the existence of at least one positive solution if f is either superlinear or sublinear by applying the
fixed point theorem in cones.

1. Introduction

The study of the existence of solutions of multipoint boundary value problems for linear
second-order ordinary differential equations was initiated by Il’in and Moiseev [1]. Then
Gupta [2] studied three-point boundary value problems for nonlinear second-order ordinary
differential equations. Since then, nonlinear second-order three-point boundary value
problems have also been studied by several authors. We refer the reader to [3–19] and the
references therein. However, all these papers are concerned with problems with three-point
boundary condition restrictions on the slope of the solutions and the solutions themselves,
for example,

u(0) = 0, αu
(
η
)
= u(1),

u(0) = βu
(
η
)
, αu

(
η
)
= u(1),

u′(0) = 0, αu
(
η
)
= u(1),

u(0) − βu′(0) = 0, αu
(
η
)
= u(1),

αu(0) − βu′(0) = 0, u′(η
)
+ u′(1) = 0,

(1.1)

and so forth.
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In this paper, we consider the existence of positive solutions to the equation

u′′ + a(t)f(u) = 0, t ∈ (0, 1), (1.2)

with the three-point integral boundary condition

u(0) = 0, α

∫η

0
u(s)ds = u(1), (1.3)

where 0 < η < 1. We note that the new three-point boundary conditions are related to the area
under the curve of solutions u(t) from t = 0 to t = η.

The aim of this paper is to give some results for existence of positive solutions to (1.2)-
(1.3), assuming that 0 < α < 2/η2 and f is either superlinear or sublinear. Set

f0 = lim
u→ 0+

f(u)
u

, f∞ = lim
u→∞

f(u)
u

. (1.4)

Then f0 = 0 and f∞ = ∞ correspond to the superlinear case, and f0 = ∞ and f∞ = 0
correspond to the sublinear case. By the positive solution of (1.2)-(1.3) we mean that a
function u(t) is positive on 0 < t < 1 and satisfies the problem (1.2)-(1.3).

Throughout this paper, we suppose the following conditions hold:

(H1) f ∈ C([0,∞), [0,∞));

(H2) a ∈ C([0, 1], [0,∞)) and there exists t0 ∈ [η, 1] such that a(t0) > 0.

The proof of the main theorem is based upon an application of the following
Krasnoselskii’s fixed point theorem in a cone.

Theorem 1.1 (see [20]). Let E be a Banach space, and letK ⊂ E be a cone. Assume Ω1, Ω2 are open
subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩
(
Ω1 \Ω2

)
−→ K (1.5)

be a completely continuous operator such that

(i) ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω2; or

(ii) ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \Ω1).
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2. Preliminaries

We now state and prove several lemmas before stating our main results.

Lemma 2.1. Let αη2 /= 2. Then for y ∈ C[0, 1], the problem

u′′ + y(t) = 0, t ∈ (0, 1), (2.1)

u(0) = 0, α

∫η

0
u(s)ds = u(1), (2.2)

has a unique solution

u(t) =
2t

2 − αη2

∫1

0
(1 − s)y(s)ds − αt

2 − αη2

∫η

0

(
η − s

)2
y(s)ds −

∫ t

0
(t − s)y(s)ds. (2.3)

Proof. From (2.1), we have

u′′(t) = −y(t). (2.4)

For t ∈ [0, 1), integration from 0 to t, gives

u′(t) = u′(0) −
∫ t

0
y(s)ds. (2.5)

For t ∈ [0, 1], integration from 0 to t yields that

u(t) = u′(0)t −
∫ t

0

(∫x

0
y(s)ds

)
dx, (2.6)

that is,

u(t) = u′(0)t −
∫ t

0
(t − s)y(s)ds. (2.7)

So,

u(1) = u′(0) −
∫1

0
(1 − s)y(s)ds. (2.8)
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Integrating (2.7) from 0 to η, where η ∈ (0, 1), we have

∫η

0
u(s)ds = u′(0)

η2

2
−
∫η

0

(∫x

0
(x − s)y(s)ds

)
dx

= u′(0)
η2

2
− 1
2

∫η

0

(
η − s

)2
y(s)ds.

(2.9)

From (2.2), we obtain that

u′(0) −
∫1

0
(1 − s)y(s)ds = u′(0)

αη2

2
− α

2

∫η

0

(
η − s

)2
y(s)ds. (2.10)

Thus,

u′(0) =
2

2 − αη2

∫1

0
(1 − s)y(s)ds − α

2 − αη2

∫η

0

(
η − s

)2
y(s)ds. (2.11)

Therefore, (2.1)-(2.2) has a unique solution

u(t) =
2t

2 − αη2

∫1

0
(1 − s)y(s)ds − αt

2 − αη2

∫η

0

(
η − s

)2
y(s)ds −

∫ t

0
(t − s)y(s)ds. (2.12)

Lemma 2.2. Let 0 < α < 2/η2. If y ∈ C(0, 1) and y(t) � 0 on (0, 1), then the unique solution u of
(2.1)-(2.2) satisfies u � 0 for t ∈ [0, 1].

Proof. If u(1) � 0, then, by the concavity of u and the fact that u(0) = 0, we have u(t) � 0 for
t ∈ [0, 1].

Moreover, we know that the graph of u(t) is concave down on (0, 1), we get

∫η

0
u(s)ds � 1

2
ηu

(
η
)
, (2.13)

where (1/2)ηu(η) is the area of triangle under the curve u(t) from t = 0 to t = η for η ∈ (0, 1).
Assume that u(1) < 0. From (2.2), we have

∫η

0
u(s)ds < 0. (2.14)

By concavity of u and
∫η
0 u(s)ds < 0, it implies that u(η) < 0.
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Hence,

u(1) = α

∫η

0
u(s)ds � αη

2
u
(
η
)
>

u
(
η
)

η
, (2.15)

which contradicts the concavity of u.

Lemma 2.3. Let αη2 > 2. If y ∈ C(0, 1) and y(t) � 0 for t ∈ (0, 1), then (2.1)-(2.2) has no positive
solution.

Proof. Assume (2.1)-(2.2) has a positive solution u.
If u(1) > 0, then

∫η
0 u(s)ds > 0, it implies that u(η) > 0 and

u(1)
1

= α

∫η

0
u(s)ds � αη

2
u
(
η
)
=

αη2

2
u
(
η
)

η
>

u
(
η
)

η
, (2.16)

which contradicts the concavity of u.
If u(1) = 0, then

∫η
0 u(s)ds = 0, this is u(t) ≡ 0 for all t ∈ [0, η]. If there exists τ ∈ (η, 1)

such that u(τ) > 0, then u(0) = u(η) < u(τ), which contradicts the concavity of u. Therefore,
no positive solutions exist.

In the rest of the paper, we assume that 0 < αη2 < 2. Moreover, we will work in the
Banach space C[0, 1], and only the sup norm is used.

Lemma 2.4. Let 0 < α < 2/η2. If y ∈ C[0, 1] and y � 0, then the unique solution u of the problem
(2.1)-(2.2) satisfies

inf
t∈[η,1]

u(t) � γ‖u‖, (2.17)

where

γ := min

{

η,
αη2

2
,
αη

(
1 − η

)

2 − αη2

}

. (2.18)

Proof. Set u(τ) = ‖u‖. We divide the proof into three cases.

Case 1. If η � τ � 1 and inft∈[η,1]u(t) = u(η), then the concavity of u implies that

u
(
η
)

η
� u(τ)

τ
� u(τ). (2.19)

Thus,

inf
t∈[η,1]

u(t) � η‖u‖. (2.20)
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Case 2. If η � τ � 1 and inft∈[η,1]u(t) = u(1), then (2.2), (2.13), and the concavity of u implies

u(1) = α

∫η

0
u(s)ds � αη2

2

[
u
(
η
)

η

]

� αη2

2
u(τ)
τ

� αη2

2
u(τ). (2.21)

Therefore,

inf
t∈[η,1]

u(t) � αη2

2
‖u‖. (2.22)

Case 3. If τ � η < 1, then inft∈[η,1]u(t) = u(1). Using the concavity of u and (2.2), (2.13), we
have

u(σ) � u(1) +
u(1) − u

(
η
)

1 − η
(0 − 1)

� u(1)
[
1 − 1 − 2/αη

1 − η

]

= u(1)
2 − αη2

αη
(
1 − η

) .

(2.23)

This implies that

inf
t∈[η,1]

u(t) �
αη

(
1 − η

)

2 − αη2 ‖u‖. (2.24)

This completes the proof.

3. Main Results

Now we are in the position to establish the main result.

Theorem 3.1. Assume (H1) and (H2) hold. Then the problem (1.2)-(1.3) has at least one positive
solution in the case

(i) f0 = 0 and f∞ = ∞ (superlinear), or

(ii) f0 = ∞ and f∞ = 0 (sublinear).
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Proof. It is known that 0 < α < 2/η2. From Lemma 2.1, u is a solution to the boundary value
problem (1.2)-(1.3) if and only if u is a fixed point of operator A, where A is defined by

Au(t) =
2t

2 − αη2

∫1

0
(1 − s)a(s)f(u(s))ds − αt

2 − αη2

∫η

0

(
η − s

)2
a(s)f(u(s))ds

−
∫ t

0
(t − s)a(s)f(u(s))ds.

(3.1)

Denote that

K =
{
u | u ∈ C[0, 1], u � 0, inf

η�t�1
u(t) � γ‖u‖

}
, (3.2)

where γ is defined in (2.18).
It is obvious that K is a cone in C[0, 1]. Moreover, by Lemmas 2.2 and 2.4, AK ⊂ K. It

is also easy to check that A : K → K is completely continuous.

Superlinear Case (f0 = 0 and f∞ = ∞).

Since f0 = 0, we may choose H1 > 0 so that f(u) � εu, for 0 < u � H1, where ε > 0 satisfies

2ε
2 − αη2

∫1

0
(1 − s)a(s)ds � 1. (3.3)

Thus, if we let

Ω1 = {u ∈ C[0, 1] | ‖u‖ < H1}, (3.4)

then, for u ∈ K ∩ ∂Ω1, we get

Au(t) � 2t
2 − αη2

∫1

0
(1 − s)a(s)f(u(s))ds

� 2tε
2 − αη2

∫1

0
(1 − s)a(s)u(s)ds

� 2ε
2 − αη2

∫1

0
(1 − s)a(s)ds‖u‖

� ‖u‖.

(3.5)

Thus ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω1.
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Further, since f∞ = ∞, there exists Ĥ2 > 0 such that f(u) � ρu, for u � Ĥ2, where
ρ > 0 is chosen so that

ργ
2η

2 − αη2

∫1

η

(1 − s)a(s)ds � 1. (3.6)

Let H2 = max{2H1, Ĥ2/γ} and Ω2 = {u ∈ C[0, 1] | ‖u‖ < H2}. Then u ∈ K ∩ ∂Ω2 implies that

inf
η�t�1

u(t) � γ‖u‖ = γH2 � Ĥ2, (3.7)

and so

Au
(
η
)
=

2η
2 − αη2

∫1

0
(1 − s)a(s)f(u(s))ds − αη

2 − αη2

∫η

0

(
η − s

)2
a(s)f(u(s))ds

−
∫η

0

(
η − s

)
a(s)f(u(s))ds

=
2η

2 − αη2

∫1

0
(1 − s)a(s)f(u(s))ds − αη

2 − αη2

∫η

0

(
η2 − 2ηs + s2

)
a(s)f(u(s))ds

− 1
2 − αη2

∫η

0

(
2 − αη2

)(
η − s

)
a(s)f(u(s))ds

=
2η

2 − αη2

∫1

0
(1 − s)a(s)f(u(s))ds +

αη2

2 − αη2

∫η

0
sa(s)f(u(s))ds

− αη

2 − αη2

∫η

0
s2a(s)f(u(s))ds − 2η

2 − αη2

∫η

0
a(s)f(u(s))ds

+
2

2 − αη2

∫η

0
sa(s)f(u(s))ds

=
2η

2 − αη2

∫1

η

(1 − s)a(s)f(u(s))ds +
2
(
1 − η

)

2 − αη2

∫η

0
sa(s)f(u(s))ds

+
αη

2 − αη2

∫η

0
s
(
η − s

)
a(s)f(u(s))ds

� 2η
2 − αη2

∫1

η

(1 − s)a(s)f(u(s))ds

� 2ηρ
2 − αη2

∫1

η

(1 − s)a(s)u(s)ds � 2ηργ
2 − αη2

∫1

η

(1 − s)a(s)ds‖u‖ � ‖u‖.

(3.8)

Hence, ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω2. By the first past of Theorem 1.1, A has a fixed point in
K ∩ (Ω2 \Ω1) such that H1 � ‖u‖ � H2.
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Sublinear Case (f0 = ∞ and f∞ = 0).

Since f0 = ∞, choose H3 > 0 such that f(u) � Mu for 0 < u � H3, where M > 0 satisfies

2ηγM
2 − αη2

∫1

η

(1 − s)a(s)ds � 1. (3.9)

Let

Ω3 = {u ∈ C[0, 1] | ‖u‖ < H3}, (3.10)

then for u ∈ K ∩ ∂Ω3, we get

Au
(
η
)
=

2η
2 − αη2

∫1

0
(1 − s)a(s)f(u(s))ds − αη

2 − αη2

∫η

0

(
η − s

)2
a(s)f(u(s))ds

−
∫η

0

(
η − s

)
a(s)f(u(s))ds

� 2η
2 − αη2

∫1

η

(1 − s)a(s)f(u(s))ds

� 2ηγM
2 − αη2

∫1

η

(1 − s)a(s)ds‖u‖ � ‖u‖.

(3.11)

Thus, ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω3. Now, since f∞ = 0, there exists Ĥ4 > 0 so that f(u) � λu for
u � Ĥ4, where λ > 0 satisfies

2λ
2 − αη2

∫1

0
(1 − s)a(s)ds � 1. (3.12)

Choose H4 = max{2H3, Ĥ4/γ}. Let

Ω4 = {u ∈ C[0, 1] | ‖u‖ < H4}, (3.13)

then u ∈ K ∩ ∂Ω4 implies that

inf
η�t�1

u(t) � γ‖u‖ = γH4 � Ĥ4. (3.14)
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Therefore,

Au(t) =
2t

2 − αη2

∫1

0
(1 − s)a(s)f(u(s))ds − αt

2 − αη2

∫η

0

(
η − s

)2
a(s)f(u(s))ds

−
∫ t

0
(t − s)a(s)f(u(s))ds

� 2t
2 − αη2

∫1

0
(1 − s)a(s)f(u(s))ds

� 2λ‖u‖
2 − αη2

∫1

0
(1 − s)a(s)ds � ‖u‖.

(3.15)

Thus ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω4. By the second part of Theorem 1.1, A has a fixed point u in
K ∩ (Ω4 \ Ω3), such that H3 � ‖u‖ � H4. This completes the sublinear part of the theorem.
Therefore, the problem (1.2)-(1.3) has at least one positive solution.
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